
L2/17-050R
Georgian: Comments on Database StabilityGeorgian: Comments on Database Stability

Author: Steven R. Loomis @srl295 srloomis@us.ibm.com

Updated: 9 !"#$#, 2017 (May 9, 2017)

Introduction

Relevant to the response to point 2 in L2/17–045 (Razmadze), here are a few comments on how addition of
codepoints can cause database instability when different implementations are used.

Background

1. If a new set of capital letters were added now, it would be very destabilizing and lead to serious
representation and interoperability issues. Names in databases, for example, would be
destabilized if capitalization was introduced. Searching and comparison operations would no
longer give expected results, which would be significant when analyzing the large corpus of
existing documentation.

We have had consults with local specialists and based on their conclusions, names in databases will not
be causing destabilization. There wonʼt be any problems with searching, either, since Mtavruli and
Mkhedruli letters will be linked through the case pairing function and Mtavruli letter results will also be
represented in Mkhedruli letter searches, just like in Latin letter search for the word “GEORGIA” we will
receive the lowercase result – “georgia” as well.

Overview

Changing the encoding of Georgian to disunify Mkhedruli/Mtavruli has effects beyond those within a single
closed system. For example, if a single computer was upgraded to support this disunification, that computer
would have an updated keyboard/keyboard layout, updated fonts, and updated software (perhaps a word
processor) which would recognize “!"%&'("”/“მადლობა” as equivalent but with case differences. If the

user of computer then were to interchange documents with other computers— whether interacting with web
servers or sending a document file— any system with a lack of support for disunification would simply not
support the Mtavruli content until that system were upgraded. A non-upgraded system might only show ??? or
��� or ⃞⃞⃞ until such time as the system is upgraded. This is an inconvenience, but can be resolved in
time.

However, what this present document will discuss is the more serious effect which a casing change has on
operations within a database system or within multiple interoperating databases. The issues discussed would
not simply result in display problems, but could result in loss or corruption of data, potentially making some
database records inaccessible.

https://srl295.github.io/
http://www.unicode.org/L2/L2017/17045-georgian-resp.pdf

If a database represents something such as patient medical records, a missing record could result in not only
inconvenience but serious injury.

Databases today

A real example from MySQL today illustrates the current situation:

 UPPER('ჭიჭიკო ბენდელიანი')
 ჭიჭიკო ბენდელიანი
 UPPER('суп')
 СУП

and SQLite:

 sqlite> select UPPER('ჭიჭიკო ბენდელიანი');
 ჭიჭიკო ბენდელიანი

So today UPPER('ჭიჭიკო ბენდელიანი') just produces ჭიჭიკო ბენდელიანი , not ჭიჭიკო ბენდელიანი

Effect of disunification

Suppose there were a patient records table with a constraint that patient names must be in uppercase (via the
function UPPER). Currently, Georgian text would satisfy this requirement (as per above). I am going to display
the example in Mkhedruli as it is “current Unicode”.

id name medicine

2)#)#*' (+,%+&#",# TRUE

8 TEST PATIENT FALSE

We can search for patients:

sqlite> SELECT * FROM PATIENTS WHERE NAME LIKE UPPER('TEST PATIENT');

id name medicine

8 TEST PATIENT FALSE

sqlite> SELECT * FROM PATIENTS WHERE NAME LIKE UPPER('ჭიჭიკო ბენდელიანი');

id name medicine

2)#)#*' (+,%+&#",# TRUE

Because the uppercase version is the same:

sqlite> select UPPER('ჭიჭიკო ბენდელიანი');

UPPER('!"!"#$ %&'(&)"*'"')

)#)#*' (+,%+&#",#

Unicode upgrade

However, if the database system is now upgraded to support disunified Mtavruli we now have the following: (I
added another patient whose name is now Mtavruli for comparison).

sqlite> SELECT * FROM PATIENTS WHERE NAME LIKE UPPER('ჭიჭიკო ბენდელიანი');

id name medicine

2)#)#*' (+,%+&#",# TRUE

8 TEST PATIENT FALSE

16 მადლობა ბენდელიანი FALSE

Now, we can no longerno longer locate patient #2, even with the very same SQL query:

sqlite> SELECT * FROM PATIENTS WHERE NAME LIKE UPPER('ჭიჭიკო ბენდელიანი');
(no results)

This is because the uppercase function has changed.

sqlite> select UPPER('ჭიჭიკო ბენდელიანი');

UPPER('!"!"#$ %&'(&)"*'"')

ჭიჭიკო ბენდელიანი

For simplicity, a SELECT statement was shown. But the above scenario could also occur if there is a foreign
key, stored procedure, or constraint. In other words, other data or code could need to interact with the patient
record table.

Remediation

While these difficulties are definitely problematic, they are not too difficult to be solved with careful work.
Upgrading the Unicode version of such databases must be done on a very careful basis. In some cases,
delaying an upgrade may be the right solution for a system.

Maintaining a list or some venue for discussion of these issues and discussing them among database
administrators would be important to ensure a smooth transition.

Colophon

Web fonts are BPG Nino, licensed under CC BY-NC-ND 4.0

https://web-fonts.ge/
http://creativecommons.org/licenses/by-nc-nd/4.0/

