
Feedback related to memory alignment and Unicode
encoding schemes

Henri Sivonen (hsivonen@mozilla.com)
2018-05-02

When discussing the distinction between Encoding Forms and Encoding Schemes,
Unicode 10.0 discusses byte order on pages 40 and 41 in section 2.6 Encoding
Schemes and on page 134 in section 3.10 Unicode Encoding Schemes. However, nei-
ther section mentions memory alignment.

The text of the Standard is suggestive of byte order being the main issue when con-
verting from a Unicode Encoding Scheme to the corresponding Unicode Encoding
Form. This ignores that in addition to the Encoding Form being in the native-en-
dian byte order of the computer that is processing text, the code units of the En-
coding Form also need to be aligned according to the requirements of the pro-
gramming language. (Even on CPU architectures that do not restrict the alignment
of scalar loads and stores, e.g. the C programming language imposes alignment re-
quirements, whose practical relevance can become visible via autovectorization on
the assumption that alignment requirements were adhered to and the CPU archi-
tecture enforcing alignment for vector loads and stores.)

Therefore, when ingesting data in a non-UTF-8 Unicode Encoding Scheme using a
byte-oriented IO interface, not only byte order but also memory alignment is an
obstacle to interpreting a byte buffer as a buffer consisting of code units of the Uni-
code Encoding Form corresponding to the Unicode encoding Scheme being in-
gested.

It would be worthwhile to informatively point this out in the Standard in order to
give readers a more comprehensive view of the information they should be aware
or when evaluating the merits of the different Unicode Encoding Schemes for stor-
age or interchange. That is, UTF-8 not only avoids the byte order issue but it also
avoids the alignment issue.

mailto:hsivonen@mozilla.com
rick
Text Box
L2/18-186

	Feedback related to memory alignment and Unicode encoding schemes

