
1

Canonical Ordering of Marks in Thai Script

Peter Constable
July 7, 2018

This document examines canonical ordering of marks in Thai script, and some issues that arise. It arrives
at a set of rendering rules to use in a Thai rendering engine. These rules maintain principles that
canonically-equivalent sequences have the same display, and that non-canonically-equivalent sequences
have distinct displays. Not all sequences are treated as valid, however, for purposes of Thai shaping.

This analysis was motivated by evaluating requirements for Patani Malay orthography, as described in
Unicode 10, Chapter 16, and by document L2/10-451, Proposal not to encode 4 minority Thai letters for
Patani Malay.

Background: the canonical ordering algorithm
Unicode normalization was created to deal with certain issues that arise from dynamic composition, and
from the need to accommodate legacy encodings. In particular, a character sequence can include marks
in distinct positions that cannot interact typographically, and so different orderings of those marks in a
sequence do not lead to visual distinction.

For example, consider a sequence of a base character followed by an above mark, then a below mark;
for instance, < “a”, “◌̃”, “◌”̣ >. Since the marks occupy different positions relative to the base, they do
not interact typographically, and reversing the order of marks in the encoded representation — < “a” ,
“◌̣”, “◌̃” > — would result in the same presentation: “ạ̃”.

Because there is no visual distinction between these differently-ordered sequences, there cannot be a
useful and safe semantic distinction. Hence, these differently-ordered sequences are effectively
equivalent. Unicode normalization is an algorithm intended to reflect such equivalence. The canonical
ordering algorithm is the specific portion of the normalization algorithm intended to establish
equivalence between differently-ordered combining mark sequences.

In contrast, different combining marks that occupy the same positions relative to a base do interact
typographically, and so different orderings of those marks in a sequence do lead to a visual distinction.
For example, a tilde can be above an acute, as in “á̃”; or the acute can be above the tilde, as in “ã”́. For
marks that interact in this way, marks stack outward from the base in the order they occur in the
encoded sequence. Since, in such cases, the different ordering of encoded sequences do correspond to
visual distinctions, the canonical ordering algorithm is intended to establish non-equivalence between
the differently-ordered sequences.

Every combining mark is assigned to a canonical combining class. When marks fall into distinct positions
relative to a base (e.g., tilde above versus dot below), they are put into distinct classes. Because relative
ordering does not result in a visual distinction, these are to be considered equivalent. During
normalization, the canonical ordering algorithm will re-order marks into a canonical order based on their
class assignments, thereby neutralizing or “folding away” the semantically-irrelevant difference in
ordering.

http://www.unicode.org/versions/Unicode10.0.0/ch16.pdf
http://www.unicode.org/L2/L2010/10451-patani-proposal.pdf
http://www.unicode.org/L2/L2010/10451-patani-proposal.pdf
rick
Text Box
L2/18-216

2

In contrast, marks that are similarly positioned relative to a base, and so can interact typographically,
are assigned to the same canonical combining class. Because they interact typographically, different
orders of the marks within an encoded sequence do correspond to different relative positions of those
marks. During normalization, marks in the same class are not re-ordered, but maintain their relative
ordering. In this way, canonical ordering preserves the differently-ordered sequences as a semantically-
significant distinction.

Note that this ordering of marks is considered canonical solely for purposes of comparison and
determining equivalence. In general, Unicode does not consider any particular ordering of marks to be
preferred, and there is no expectation that marks would be re-ordered in user data, though this can
happen.

Canonical order of marks is determined by a numeric value assigned to each class: marks in a lower-
value class are re-ordered before marks in a higher-value class.

Some combining marks are assigned to a class with numeric value 0, which has special properties. In
particular, class 0 is exempt from re-ordering. Moreover, it creates an opaque boundary for canonical
re-ordering.

For example, if the classes in a mark sequence are 230 220, normalization will reorder them as 220 230.
But for a sequence 230 0 220, no re-ordering occurs: marks in class 0 are not re-ordered, and they block
re-ordering of marks that precede and follow. Because of this, sequences with classes 230 0 220 are not
deemed by Unicode normalization to be equivalent to the differently-ordered sequences 220 0 230 even
though there may be no visual distinction.

Some general issues
While canonical ordering is not intended to be a preferred order for marks in user data, it does have a
bearing on what kinds of sequences can be considered useful for user data. For one thing, some
applications may treat canonical ordering as preferred, and transform any user data that isn’t so-
ordered into canonical order. Also, even if applications do no reorder user data into canonical order,
they will often use canonical ordering to determine when strings are deemed to be the same
(equivalent) or different. Because of this, different ordering of mark sequences that are folded under
canonical ordering cannot be considered viable for semantic distinctions since it should be expected that
applications will not treat these as distinct, and there is no guarantee that the ordering differences will
be retained.

Now, it so happens that there are cases of marks assigned to classes in such a way that different orders
of the marks are folded under canonical ordering even though the different orders of the marks do
result in visual distinctions and so otherwise would potentially be useful for semantic distinctions. An
example of this for Thai will be considered below. These cases (generally accidents of history, not a
result of specific design intent) are unfortunate: a potentially-useful distinction cannot be considered
viable. They also add complexity for implementations since the implementations should ensure that the
ordering distinctions are folded and are not reflected in any usable way. For example, the marks must be
presented with a fixed positioning relative to the base, regardless of the order in the encoded
representation.

3

Issues could also arise if marks that have distinct positions relative to a base, hence cannot interact
typographically, yet were not re-ordered during normalization: that would mean that different encoded
orderings are preserved as non-equivalent, and so a semantic distinction could be assumed, even
though no visible distinction is possible. This would create phishing vulnerabilities, and so would be a
bad thing. This arises in certain cases due to some marks being assigned to class 0. Because of the way
class 0 is handled in normalization, these are treated as non-equivalent in Unicode normalization, yet no
visual distinction is possible. Examples of this for Thai will be considered below.

One other general scenario to consider are marks that can interact typographically, yet some are
assigned to class 0. For example, consider a situation involving above marks, some of which are assigned
to class 230, and some assigned to class 0. Since marks in the same class retain their ordering, and since
marks in class 0 are not re-ordered, this situation is no different than if all the marks had been in class
230, or all had been in class 0. This case is not problematic precisely because there is only one non-zero
class involved. But if class 0 marks combine with marks in two other classes, then issues will arise.
Examples of this for Thai will be considered below.

Background: combining classes of marks used in Thai script
Combining marks used with Thai script include marks used for Thai language and for other languages,
such as Pattani Malay. They fall into six categories involving six combining classes:

A. Thai-specific above vowel/rhyme marks, combining class 0:

• U+0E31 THAI CHARACTER MAI HAN-AKAT “◌ั”

• U+0E34 THAI CHARACTER SARA I “◌ิ”

• U+0E35 THAI CHARACTER SARA II “◌ี”

• U+0E36 THAI CHARACTER SARA UE “◌ึ”

• U+0E37 THAI CHARACTER SARA UEE “◌ื”

• U+0E47 THAI CHARACTER MAITAIKHU “◌็”

• U+0E4C THAI CHARACTER THANTHAKHAT “◌์”

• U+0E4D THAI CHARACTER NIKHAHIT “◌ํ”

• U+0E4E THAI CHARACTER YAMAKKAN “◌๎”
B. Thai-specific nukta, combining class 9:

• U+0E3A THAI CHARACTER PHINTHU “◌ฺ”
C. Thai-specific below vowel marks, combining class 103:

• U+0E38 THAI CHARACTER SARA U “◌ุ”

• U+0E39 THAI CHARACTER SARA UU “◌ู”
D. Thai-specific above tone marks, combining class 107:

• U+0E48 THAI CHARACTER MAI EK “◌่”

• U+0E49 THAI CHARACTER MAI THO “◌้”

4

• U+0E4A THAI CHARACTER MAI TRI “◌๊”

• U+0E4B THAI CHARACTER MAI CHATTAWA “◌๋”
E. Generic below marks, combining class 220:

• One known case, used for a consonant modifier (nukta) in Patani Malay: U+0331

COMBINING MACRON BELOW “◌̱”
F. Generic above marks, combining class 230:

• One known case, used for a vowel in Patani Malay: U+0303 COMBINING TILDE “◌̃”

In examples below, one representative mark from each class will be used (SARA I for class A, SARA U for
class C, MAI EK for class D).

Interactions between marks of different classes
Some of the more problematic cases described in this section are not known to be used in the
orthography of any language. That doesn’t ensure that users won’t want to use them in some way.
General-purpose implementations can’t predict what sequences will be used, and need to be able
support any possible sequences.

Examples will be shown on the same base, “ก”.

Case 1: Non-interacting marks in distinct, non-zero classes
This case involves an above mark and a below mark in distinct, non-zero classes. In principle, these cases
should not be problematic: the differently-ordered sequences cannot be visually distinct, and they are
folded by normalization.

Classes Sequences Appearance
Phintuu (9), tones (107) <0E01 0E3A 0E48> “กฺ”่

≡ <0E01 0E48 0E3A> “ก◌ฺ่”

Phintuu (9), generic above
marks (230)

<0E01 0E3A 0303> “กฺ̃”
≡ <0E01 0303 0E3A> “ก̃◌ฺ”

Below vowels (103), tones
(107)

<0E01 0E38 0E48> “กุ”่
≡ <0E01 0E48 0E38> “ก◌ุ่”

5

Below vowels (103), generic
above marks (230)

<0E01 0E38 0303> “กุ̃”
≡ <0E01 0303 0E38> “ก̃◌ุ”

Generic below marks (220),
tones (107)

<0E01 0331 0E48> “ก̱◌่”
≡ <0E01 0E48 0331> “ก่̱”

Generic below marks (220),
generic above marks (230)

<0E01 0331 0303> “ก̱̃”
≡ <0E01 0303 0331> “ก̱̃”

Note that the shaping engine in Windows is differentiating between the different orders in each case
except the last, which has no Thai-specific marks. This is because the Thai engine in Windows was
designed to follow Thai-language conventions and legacy-implementation behaviours in which Thai
marks must be entered in a particular order (phinthu, then vowel, then tone), and because it wasn’t
designed to accommodate generic marks — it hasn’t been updated to support Patani Malay — and
breaks the cluster before a Thai-specific mark that follows a non-Thai-specific character.

Case 2: Non-interacting marks, one in class 0
This case involves an above vowel mark in class 0 with a below mark. Because class 0 marks are not re-
ordered during normalization, the differently-ordered sequences are not canonically equivalent. Yet
there is no possible visible distinction.

Classes Sequences Appearance
Phintuu (9), above vowels (0) <0E01 0E3A 0E34> “กฺ”ิ

≢ <0E01 0E34 0E3A> “ก◌ฺิ”

Below vowels (103), above
vowels (0)

<0E01 0E38 0E34> “กุ”ิ
≢ <0E01 0E34 0E38> “ก◌ุิ”

Generic below marks (220),
above vowels (0)

<0E01 0331 0E34> “ก̱◌ิ”
≢ <0E01 0E34 0331> “กิ̱”

6

Because the differently-ordered sequences are not canonically equivalent yet have no visual distinction,
this can lead to spoofing vulnerability.

In this case, the Windows Thai engine is designed to accept only one order as valid — the below marks
must occur before the above vowel mark — and it treats the other order as invalid (the cluster breaks
before the second mark). In this way, a spoofing vulnerability is avoided, and users are motivated to use
only one encoded representation.

The second sub-case has vowel marks below and above. I am not aware of any attested usage of such
combinations, though that does not imply it will never be useful for some situation. The other two sub-
cases occur in Patani Malay, and it so happens that the order below mark + above vowel is the one that
is most useful since the below marks are used as consonant diacritics.

Case 3: Below mark + below mark, distinct classes
This case involves two below marks from distinct classes. Because the marks are all positioned below a
base, they can interact typographically and have distinct relative positions. Yet because they are in
distinct canonical combining classes, different relative ordering in encoded representation is folded
away in normalization. Hence, visual distinctions from different ordering cannot be preserved.

Since no visual distinction can be preserved, one of the two possible relative positions of the marks
should be preferred over the other. A priori, there is no reason to prefer either over the other. But
actual usage in particular writing systems may provide a basis to prefer one over the other.

Classes Sequences Appearance
Phintuu (9), below vowels (103) <0E01 0E3A 0E38> “กุ”ฺ

≡ <0E01 0E38 0E3A> “กุ”ฺ

 or
Generic below marks (220),
below vowels (103)

<0E01 0331 0E38> “ก̱◌ุ”

≡ <0E01 0E38 0331> “กุ̱”

 or
Phintuu (9), generic below
marks (220)

<0E01 0E3A 0331> “กฺ̱”

≡ <0E01 0331 0E3A> “ก̱◌ฺ”

 or

It so happens that the first two of these combinations are used in Patani Malay, using the appearance on
the left in each case. In the first case, the visual appearance is consistent with the canonical ordering —
the phintuu (9) is closer to the consonant than the vowel mark. In the second case, however, the
canonical order is contrary to the visual appearance: the macron below must be closer to the consonant,
but in canonical order it follows the vowel.

7

The third case is not used in Patani Malay; assuming no unforeseen requirements of other
orthographies, the preferred appearance can be chosen solely on the basis of consistency with the
canonical ordering.

Thus, Thai rendering engines can be designed to display the left-hand result in each case. Note that
ensuring only one of these possibilities is displayed adds complexity into a Thai rendering engine.

Also note that implementations will face serious problems if there are ever any writing systems that
require these marks to be displayed with the other relative positioning.

Note: In my opinion, it would have been better to encode a new Thai-specific consonant diacritic,
or new consonant letters, as was done for Devanagari script: four consonant letters were added
for Sindhi, each with a precomposed macron below and no decomposition. The Thai block has
plenty of room for three additions.

The Windows Thai engine currently does not support using generic combining marks, and so breaks a
cluster before a Thai-specific mark when it follows a generic mark. In the case of phintu + below vowels,
it displays these the same, but in the opposite order to what is required for Patani Malay.

Case 4: Above mark + above mark, one in class 0
This case involves two above marks, one of them in class 0. Because the marks are all positioned above a
base, they can interact typographically and have distinct relative positions. And because one of the
marks is in class 0, no re-ordering occurs during normalization, and different orders are preserved.

Note that this is like the case of two marks from the same class: by definition, they interact
typographically and can have different relative positions; but no re-ordering occurs in during
normalization, and different orders are preserved.

These cases should not be problematic.

Classes Sequences Appearance
Above vowels (0), tones (107) <0E01 0E34 0E48> “กิ”่

≢ <0E01 0E48 0E34> “ก่”ิ

Above vowels (0), generic
above marks (230)

<0E01 0E34 0303> “กิ̃”

≢ <0E01 0303 0E34> “ก̃◌ิ”

8

Note that the Windows Thai engine handles the different orders of Thai-specific marks. It does not yet
handle generic marks, however, and breaks a cluster before a Thai mark when it follows a generic mark.

Case 5: Above mark + above mark, distinct non-zero classes
This case involves two above marks in distinct, non-zero classes: a generic above mark, and a tone.
Because the marks are all positioned above a base, they can interact typographically and have distinct
relative positions. Yet because they are in distinct canonical combining classes, different relative
ordering in encoded representation is folded away in normalization. Hence, visual distinctions from
different ordering cannot be preserved.

Since no visual distinction can be preserved, one of the two possible relative positions of the marks
should be preferred over the other. A priori, there is no reason to prefer either over the other. But
actual usage in particular writing systems may provide a basis to prefer one over the other.

Classes Sequences Appearance
Generic above marks (230),
tones (107)

<0E01 0303 0E48> “ก̃◌่”

≡ <0E01 0E48 0303> “ก่̃”

 or

It so happens that this combination is used in Patani Malay, using the appearance on the left. The
canonical order, however, is contrary to the visual appearance: the tone must be farther from the
consonant since it modifies the syllable as a whole; but in canonical order, it precedes the vowel.

Thus, Thai rendering engines can be designed to display the left-hand result. Note that ensuring only
one of these possibilities is displayed adds complexity into a Thai rendering engine.

Also note that implementations will face serious problems if there are ever any writing systems that
require these marks to be displayed with the other relative positioning.

Note that the Windows Thai engine does not yet handle generic marks and breaks a cluster before a
Thai mark when it follows a generic mark.

Case 6: Three above marks in distinct classes
This case involves three above marks in distinct classes: a Thai above vowel sign, a generic above mark,
and a tone.

Note: These combinations are not known to be in use. Nevertheless, general-purpose
implementations must allow for any possible sequences.

Because the marks are all positioned above a base, they can interact typographically and have distinct
relative positions. Because these have distinct canonical combining classes, some ordering distinctions
are folded during normalization. Yet because one mark is class 0, that will cause some ordering
distinctions to be retained.

Three marks (representative examples are 0E34, 0E48 and 0303) have six possible orders in encoded
representations. These fall into four equivalence classes under normalization.

9

Equivalence class Sequences Appearance
A <0E01 0E34 0E48 0303> “กิ่̃”

≡ <0E01 0E34 0303 0E48> “กิ̃◌่”

 or
B <0E01 0E48 0E34 0303> “ก่ิ̃”

C <0E01 0E48 0303 0E34> “ก่̃◌ิ”

≡ <0E01 0303 0E48 0E34> “ก̃◌่◌ิ”

 or
D <0E01 0303 0E34 0E48> “ก̃◌ิ◌่”

For equivalence classes A and C, we can adopt the same principle used in case 5 to decide which
possible display to use: the tone marks always display outside the generic above marks.

So, we end up allowing tones to go above or below the grouping of the two other marks. But the relative
ordering within that grouping is constrained if the tone is below, yet unconstrained if the tone is above.
And the tone can occur between the other two only if the generic mark is below it and the Thai vowel
mark is above it.

Re-evaluation
The above approach has tried to maintain these general principles:

• That two canonically-equivalent sequences are equally valid and should display the same.
• That two sequences that are not canonically equivalent and that have distinct displays can be

equally-valid sequences.

Given the nature of the combining marks used in Thai and their canonical combining classes, however, it
has been necessary to make choices that remove any possibility of displaying certain visual
arrangements of marks, and we have needed to introduce some non-trivial complexity into rendering
logic.

10

Suppose we were to revisit case 4, specifically the sub-case of Thai above vowels and tones. Because the
differently-ordered sequences are not canonically equivalent and can have a distinct display, it was
assumed above that each should be treated as valid. Yet this resulted in an interaction between tones
and other above marks that could not be maintained consistently when we came to case 5. There is no
known use case in which tone marks should be positioned below vowel marks, however. So, perhaps if
we are willing to rule out that possibility — as we have been required to do for other plausible
arrangements of marks because the character sequences are canonically equivalent — then perhaps it
might allow some simplification of logic. The new constraint would be not to treat as valid a sequence in
which Thai above vowel sign (CCC = 0) occurs within the same sequence as a preceding tone mark.

But if we

Thai rendering rules
With the above analysis, we arrive at certain tentative rules for a Thai rendering engine:

• If a combining sequence includes a tone mark, and a Thai above vowel is encountered within the
same combining sequence but after the tone mark, then break the cluster before the Thai above
vowel. (The vowel and any following marks will then comprise an invalid cluster.)

• If a combining sequence has a Thai above vowel, and if a below mark (phintuu, Thai below vowel
or generic below mark) is encountered within the same combining sequence but after the above
vowel, then break the cluster before the below mark. (These will then comprise an invalid
cluster.)

• If a valid cluster sequence contains any tone marks, move the tone marks (maintaining their
relative order) to the end of the sequence.

• If (after the preceding steps) a valid cluster sequence ends with a tone mark and the tone mark
is followed by U+0E33 THAI CHARACTER SARA AM, then replace the sara am with the sequence
<0E4D 0E32>, and then move 0E4D directly before the tone mark.

• Within a valid cluster sequence, if there is a phintuu, move it immediately after the base glyph.
• Within a valid cluster sequence, if there are generic below marks, move them (maintaining their

relative order) to a position following the base glyph and, if present, following phintuu.
• Other marks within a valid cluster sequence retain their relative ordering.

This is how each of the example of sequences given above would display following these rules:

Reference Sequence(s) Appearance
Case 1, phintuu + tones <0E01 0E3A 0E48> “กฺ”่

≡ <0E01 0E48 0E3A> “ก◌ฺ่”

Case 1, phintuu + generic above
marks

<0E01 0E3A 0303> “กฺ̃”

≡ <0E01 0303 0E3A> “ก̃◌ฺ”

11

Case 1, below vowels + tones <0E01 0E38 0E48> “กุ”่

≡ <0E01 0E48 0E38> “ก◌ุ่”

Case 1, below vowels + generic
above marks

<0E01 0E38 0303> “กุ̃”

≡ <0E01 0303 0E38> “ก̃◌ุ”

Case 1, generic below marks +
tones

<0E01 0331 0E48> “ก̱◌่”

≡ <0E01 0E48 0331> “ก่̱”

Case 1, generic below marks +
generic above marks

<0E01 0331 0303> “ก̱̃”

≡ <0E01 0303 0331> “ก̱̃”

Case 2, phintuu + above vowels,
order (i)

<0E01 0E3A 0E34> “กฺ”ิ

Case 2, phintuu + above vowels,
order (ii)

<0E01 0E34 0E3A> “ก◌ฺิ”

Case 2, below vowels + above
vowels, order (i)

<0E01 0E38 0E34> “กุ”ิ

Case 2, below vowels + above
vowels, order (ii)

<0E01 0E34 0E38> “ก◌ุิ”

Case 2, generic below marks +
above vowels, order (i)

<0E01 0331 0E34> “ก̱◌ิ”

12

Case 2, generic below marks +
above vowels, order (ii)

<0E01 0E34 0331> “กิ̱”

Case 3, phintuu + below vowels <0E01 0E3A 0E38> “กุ”ฺ

≡ <0E01 0E38 0E3A> “กุ”ฺ

Case 3, generic below marks +
below vowels

<0E01 0331 0E38> “ก̱◌ุ”

≡ <0E01 0E38 0331> “กุ̱”

Case 3, phintuu + generic below
marks

<0E01 0E3A 0331> “กฺ̱”

≡ <0E01 0331 0E3A> “ก̱◌ฺ”

Case 4, above vowels + tones,
order (i)

<0E01 0E34 0E48> “กิ”่

Case 4, above vowels + tones,
order (ii)

<0E01 0E48 0E34> “ก่”ิ

Case 4, above vowels + generic
above marks, order (i)

<0E01 0E34 0303> “กิ̃”

Case 4, above vowels + generic
above marks, order (ii)

<0E01 0303 0E34> “ก̃◌ิ”

Case 5, generic above marks +
tones

<0E01 0303 0E48> “ก̃◌่”
≡ <0E01 0E48 0303> “ก่̃”

Case 6, above vowels + tones +
generic above marks, equivalence
class “A”

<0E01 0E34 0E48 0303> “กิ่̃”

≡ <0E01 0E34 0303 0E48> “กิ̃◌่”

13

Case 6, above vowels + tones +
generic above marks, equivalence
class “B”

<0E01 0E48 0E34 0303> “ก่ิ̃”

Case 6, above vowels + tones +
generic above marks, equivalence
class “C”

<0E01 0E48 0303 0E34> “ก่̃◌ิ”

≡ <0E01 0303 0E48 0E34> “ก̃◌่◌ิ”

Case 6, above vowels + tones +
generic above marks, equivalence
class “D”

<0E01 0303 0E34 0E48> “ก̃◌ิ◌่”

	Background: the canonical ordering algorithm
	Some general issues
	Background: combining classes of marks used in Thai script
	Interactions between marks of different classes
	Case 1: Non-interacting marks in distinct, non-zero classes
	Case 2: Non-interacting marks, one in class 0
	Case 3: Below mark + below mark, distinct classes
	Case 4: Above mark + above mark, one in class 0
	Case 5: Above mark + above mark, distinct non-zero classes
	Case 6: Three above marks in distinct classes
	Re-evaluation
	Thai rendering rules

