
Title: A note on the syntax of Ancient Egyptian hieroglyphic control characters
From: Mark-Jan Nederhof (University of St Andrews)
To: UTC
Date: 2018-06-13

1 Introduction

Ancient Egyptian is an exceptional writing system in that arrangements of signs can be deeply nested. For
example, two signs can be arranged next to one another, and both signs can be underneath a third sign, and
these three signs can together be next to a fourth sign. An encoding of the spatial layout must therefore be
capable of specifying such nesting.

The control characters for Ancient Egyptian hieroglyphic text, as described in document L2/17-112, are
listed in Table 2. There were two main differences with the syntax in the initial proposal L2/16-177. First,
the collection of primitives was originally much larger, with some being clearly essential, while others seemed
merely desirable. Starting from L2/16-210, the proposal was scaled down to only include the most essential
primitives.

Second, the initial proposal had a very simple syntax, motivated by font technology such as OpenType,
which is not able to ‘parse’ in the usual sense of the word. Our syntax had a combination of bracketing
and Polish notation, avoiding any notion of operator precedence. Proof of concept was established that
OpenType would be able to process this form of bracketing.

The downside was that a large number of control characters were needed to describe relatively simple
groups of hieroglyphs. It was argued by some that this would hinder manual input of hieroglyphic texts, un-
der the assumption that dedicated hieroglyphic editors with graphical user interfaces could not be developed.
Others argued that bracketing was a concept alien to Unicode, and therefore to be avoided altogether.

This made us change direction and L2/16-233 and ultimately L2/16-210R explored syntax without
brackets, which unavoidably resulted in a complicated system of control characters, in which each primitive
would exist on several levels of operator precedence. It also meant that there would be a hard limit on the
depth of nesting.

Eventually, resistance against the concept of bracketing waned, which paved the way towards reintroduc-
tion of brackets, albeit in combination with operator precedence, to require relatively few control characters
for simple groups. It was shown in Appendix C of L2/16-210R how OpenType could deal with operator
precedence.

However, the eventually accepted proposal L2/17-112 went one step further than we did in Appendix A.1

Table 1: The control characters from L2/17-112 in the left column, with in the right column the abbreviated
names used in this document.

13430 EGYPTIAN HIEROGLYPH VERTICAL JOINER VERT
13431 EGYPTIAN HIEROGLYPH HORIZONTAL JOINER HOR
13432 EGYPTIAN HIEROGLYPH START AT TOP ST
13433 EGYPTIAN HIEROGLYPH START AT BOTTOM SB
13434 EGYPTIAN HIEROGLYPH END AT TOP ET
13435 EGYPTIAN HIEROGLYPH END AT BOTTOM EB
13436 EGYPTIAN HIEROGLYPH OVERLAY MIDDLE OVERLAY
13437 EGYPTIAN HIEROGLYPH BEGIN SEGMENT BEGIN
13438 EGYPTIAN HIEROGLYPH END SEGMENT END

1

rick
Text Box
L2/18-236

of L2/16-210R, and this causes a complication for standard parser generators. Fortunately, a workaround
was recently found. The aim of this document is:

• to ensure that the UTC is aware of the issue,

• to ask confirmation that the syntax as formally described in this document is what was agreed with
the approval of L2/17-112,

• to inform developers of the workaround,

• to give the UTC the opportunity to initiate a revision of the syntax if the proposed workaround is
deemed impractical.

2 Syntax

2.1 Accepted syntax

Table 2 presents the syntax as formally specified in Appendix A.1 of L2/16-210R, with modifications implicit
in L2/17-112. In this Backus-Naur specification, lower-case non-bold names are classes. Bold-face names
represent characters, with upper-case boldface names representing the particular characters specified in
Table 1, and sign representing any hieroglyph. The pipe symbol | separates alternatives. Square brackets
[] indicate optional elements, round brackets followed by an asterisk ()∗ indicate repetition zero or more
times, and round brackets followed by a plus symbol ()+ indicate repetition one or more times.

The first few lines of Table 2 specify that a fragment of hieroglyphic text consists of one or more groups,
and that a group may be a vertical group, a horizontal group, or a basic group. A vertical or horizontal
group may have subgroups, separated by the appropriate control character. A subgroup of a vertical group
may not be a vertical group itself however, nor may a subgroup of a horizontal group be a horizontal group
itself. In order to avoid ambiguity, if a vertical group is a subgroup of a horizontal group, then it must be
enclosed in a pair of control characters BEGIN and END, which act as ‘brackets’.

The next few lines specify that a basic group is a core group optionally followed by inserted groups.
In order to avoid ambiguity, an inserted group (in group) must be enclosed in brackets, unless it is a core
group by itself, i.e. without inserted groups. Specifying an insertion with at least one out of ST, SB, ET,
EB requires more rules than one may expect.

A core group can be a single sign, or an overlay of a flat horizontal group and a flat vertical group. If
such a flat horizontal or vertical group has more than a single sign, it must be enclosed in brackets, once
more to avoid ambiguity.

Regrettably, this specification is not amenable to standard parser generators. To see this, consider two
encodings starting with:

s1 ST BEGIN s2 HOR s3 END OVERLAY etc.
s1 ST BEGIN s2 HOR s3 END SB etc.

where s1, s2, s3 are signs. In the first case, a reduction to flat hor group would take place when OVERLAY
is seen as lookahead, but in the second case, a reduction of s2 HOR s3 to hor group would take place earlier,
upon seeing END as lookahead. In technical terms, the grammar would need to be LR(k) for k ≥ 2 in
order to choose the correct parser action at the right time, while standard parser generators such as Yacc,
Bison or Jison require grammars to be at least LR(1). Note that this problem did not exist in Appendix A
of L2/16-210R, which assumed dedicated control characters in place of HOR and VERT in overlays.

2

Table 2: The agreed syntax.

fragment ::= (group)+

group ::= vert group | hor group | basic group

vert group ::= vert subgroup (VERT vert subgroup)+

vert subgroup ::= hor group | basic group
hor group ::= hor subgroup (HOR hor subgroup)+

hor subgroup ::= BEGIN vert group END | basic group

basic group ::= core group | insert group
insert group ::= core group insertion
insertion ::= ST in group [SB in group] [ET in group] [EB in group] |

SB in group [ET in group] [EB in group] |
ET in group [EB in group] |
EB in group

in group ::= BEGIN vert group END |
BEGIN hor group END |
BEGIN insert group END |
core group

core group ::= flat hor group OVERLAY flat vert group | sign
flat hor group ::= BEGIN sign (HOR sign)+ END | sign
flat vert group ::= BEGIN sign (VERT sign)+ END | sign

2.2 LALR(1) grammar

By transforming the grammar, the equivalent LALR(1) grammar in Table 3 results, where ε denotes the
empty string. Intuitively, the difference is that sign is taken out of core groups, basic groups and horizontal
subgroups. Further, vertical and horizontal groups are specified using tail recursion. This means in particular
that the choice between a bracketed flat horizontal group and a general bracketed horizontal group can be
postponed long enough to allow lookahead to distinguish the two cases.

Note however that the price we pay for this workaround is a much larger number of rules, which moreover
are more difficult to understand. Fortunately, details of the grammar can be hidden from end users, so that
the issue is mainly of concern to developers.

3 Implementation

The Jison parser (JavaScript) in https://mjn.host.cs.st-andrews.ac.uk/egyptian/res/js/ uses the
grammar in Table 3. As far as we know, this is also the first full implementation of the control characters
for Ancient Egyptian.

It should be understood that implementation of the control characters in font technology such as Open-
Type and Graphite is not directly affected by the issue described in this document, as such implementation
would likely not make use of LR parsing.

3

Table 3: LALR(1) grammar for the same syntax.

fragment ::= groups
groups ::= group | group groups
group ::= vert group | hor group | basic group | sign

vert group ::= vert subgroup rest vert group
rest vert group ::= VERT vert subgroup rest vert group | VERT vert subgroup

br vert group ::= BEGIN vert subgroup rest br vert group
rest br vert group ::= VERT vert subgroup rest br vert group | VERT vert subgroup END

br flat vert group ::= BEGIN sign rest br flat vert group
rest br flat vert group ::= VERT sign rest br flat vert group | VERT sign END

vert subgroup ::= hor group | basic group | sign

hor group ::= hor subgroup rest hor group | sign rest hor group
rest hor group ::= HOR hor subgroup rest hor group | HOR sign rest hor group |

HOR hor subgroup | HOR sign

br hor group ::= BEGIN hor subgroup rest br hor group | BEGIN sign rest br hor group
rest br hor group ::= HOR hor subgroup rest br hor group | HOR sign rest br hor group |

HOR hor subgroup END | HOR sign END

br flat hor group ::= BEGIN sign rest br flat hor group
rest br flat hor group ::= HOR sign rest br flat hor group | HOR sign END

hor subgroup ::= br vert group | basic group

basic group ::= core group | insert group
insert group ::= core group insertion | sign insertion
br insert group ::= BEGIN core group insertion END | BEGIN sign insertion END

insertion ::= ST in group opt sb insertion opt et insertion opt eb insertion |
SB in group opt et insertion opt eb insertion |
ET in group opt eb insertion |
EB in group

opt sb insertion ::= SB in group | ε
opt et insertion ::= ET in group | ε
opt eb insertion ::= EB in group | ε

in group ::= br vert group | br hor group | br insert group | core group | sign

core group ::= flat hor group OVERLAY flat vert group
flat hor group ::= br flat hor group | sign
flat vert group ::= br flat vert group | sign

4

