

Broaden the scope of what Unicode calls “properties”
by Mathias Bynens (mths@google.com)

Proposal:

1. Officially broaden the scope of “properties” to include properties of strings as well as
properties of code points.

2. Characterize 6 sets of emoji data currently called type_fields as properties of strings.
3. Adopt a policy that any new Unicode properties of strings have the ​_Sequence​ suffix,

and rename the proposed ​Basic_Emoji​ property as ​Basic_Emoji_Sequence
accordingly.

Problem:

In Unicode terms, the word “properties” is currently restricted to just properties of characters (or
code points), such as ​Emoji​. Yet there are many cases in Unicode where properties ​of strings
are needed. For example, ​Emoji_Flag_Sequence​ is really a property of strings, not just of
code points. Limiting the terminology to just code points makes the application to high-runner
cases like regular expressions unnecessarily awkward. For example, ​\p{Emoji}​ should be the
set of all code points with the ​Emoji​ property value = ​True​, and ​\p{Emoji_Flag_Sequence}
should be the set of all strings with the ​Emoji_Flag_Sequence​ property value = ​True​.

Goal:

Having the Unicode Consortium explicitly approve (or reject) this proposal would unblock ​a
Stage 2 ECMAScript feature proposal​, and allow it to continue advancing through the
standardization process in Technical Committee 39 of Ecma International.

Details:

This document lists all of the important places where text would need to be changed, with
specific proposed additional text or rewordings. These are in UAX 44, UTS 18, and UTS 51 and
its data files.

There may be some additional places in the Unicode Standard or elsewhere that should be
changed as well.

https://github.com/tc39/proposal-regexp-unicode-sequence-properties
https://github.com/tc39/proposal-regexp-unicode-sequence-properties
rick
Text Box
L2/18-337

UAX 44 Unicode Character Database

5. Properties

This section documents the Unicode character properties, relating them in detail to the particular
UCD data files in which they are specified. For enumerated properties in particular, this section
also documents the actual values which those properties can have.

Suggested change:

5.​ Properties of characters

This section documents the Unicode character properties, relating them in detail to the particular
UCD data files in which they are specified. For enumerated properties in particular, this section
also documents the actual values which those properties can have.

Note that a “property of characters” (e.g. ID_Start) is a property of an individual code
point: that is, a function from code points onto some domain of values. A “property of
strings” (e.g. Emoji_Keycap_Sequence), on the other hand, is a property of a ​​sequence
of code points: that is, a function from sequences of code points onto some domain of
values.

https://unicode.org/reports/tr44/proposed.html

UTS 51 Unicode Emoji

These characters are in the emoji-sequences.txt file listed under the ​type_field
Emoji_Keycap_Sequence

Suggested replacement:

These characters are in the emoji-sequences.txt file listed under the ​property
Emoji_Keycap_Sequence.

…and similar for every other use of ​type_field​​ in this document.

ED-20. basic emoji set — The set of emoji code points and emoji presentation sequences listed
in the emoji-sequences.txt file [emoji-data] under the ​type_field​​ Basic_Emoji.

Suggested replacement:

ED-20. basic emoji set — The set of emoji code points and emoji presentation sequences listed
in the emoji-sequences.txt file [emoji-data] under the ​property ​​Basic_Emoji​_Sequence​​.

https://unicode.org/reports/tr51/proposed.html

UTS 18 Unicode Regular Expressions

1.2 Properties

Because Unicode is a large character set, a regular expression engine needs to provide for the
recognition of whole categories of characters as well as simply ranges of characters; otherwise
the listing of characters becomes impractical and error-prone. This is done by providing syntax
for sets of characters based on the Unicode character properties, and allowing them to be
mixed with lists and ranges of individual code points.

Suggested replacement:

1.2 Properties

Because Unicode is a large character set, a regular expression engine needs to provide for the
recognition of whole categories of characters, ranges of characters​, and categories of strings​​;
otherwise the listing of characters becomes impractical and error-prone. This is done by
providing syntax for sets of characters based on the Unicode character properties, and allowing
them to be mixed with lists and ranges of individual code points​; in addition, regular
expression engines may provide recognition for the Unicode properties of strings​​.

ITEM := POSITIVE_SPEC | NEGATIVE_SPEC

POSITIVE_SPEC := ("\p{" PROP_SPEC "}") | ("[:" PROP_SPEC ":]")

NEGATIVE_SPEC := ("\P{" PROP_SPEC "}") | ("[:^" PROP_SPEC ":]")

PROP_SPEC := <binary_unicode_property>

PROP_SPEC := <unicode_property> (":" | "=" | "≠" | "!=") VALUE

PROP_SPEC := <script_or_category_property_value> ("|"
<script_or_category_property_value>)*

PROP_VALUE := <unicode_property_value> ("|" <unicode_property_value>)*

https://unicode.org/reports/tr18/

The following table shows examples of this extended syntax to match properties: [...]

Suggested addition:

ITEM := POSITIVE_SPEC | NEGATIVE_SPEC

POSITIVE_SPEC := ("\p{" PROP_SPEC "}") | ("[:" PROP_SPEC ":]")

NEGATIVE_SPEC := ("\P{" PROP_SPEC "}") | ("[:^" PROP_SPEC ":]")

PROP_SPEC := <binary_unicode_property>

PROP_SPEC := <unicode_property> (":" | "=" | "≠" | "!=") VALUE

PROP_SPEC := <script_or_category_property_value> ("|"
<script_or_category_property_value>)*

PROP_VALUE := <unicode_property_value> ("|" <unicode_property_value>)*

Note that the abovementioned ​​NEGATIVE_SPEC​​ grammar is not permitted with for
properties of strings, e.g. ​​\P{Emoji_Keycap_Sequence}​​.

The following table shows examples of this extended syntax to match properties: [...]

The following table shows examples of this extended syntax to match properties:

[…table entries…]
\p{Whitespace} ​anything​​ that has binary property value Whitespace = True

Suggested addition to the table:

The following table shows examples of this extended syntax to match properties:

[…table entries…]
\p{Whitespace} ​any code point​​ that has binary property value Whitespace = True
\p{Emoji_Keycap_Sequence} any sequence that has the binary property of strings
Emoji_Keycap_Sequence = True (matching currently undefined)

emoji-sequences.txt

Format:
code_point(s) ; ​type_field​​ ; description # comments
Fields:
code_point(s): one or more code points in hex format, separated by
spaces
​type_field​​, one of the following:
Basic_Emoji
Emoji_Keycap_Sequence
Emoji_Flag_Sequence
Emoji_Tag_Sequence
Emoji_Modifier_Sequence
The type_field is a convenience for parsing the emoji sequence
files, and is not intended to be maintained as a property.

Suggested replacement:

Format:
code_point(s) ; ​property​​ ; description # comments
Fields:
code_point(s): one or more code points in hex format, separated by
spaces
​property​​, one of the following:
Basic_Emoji​_Sequence
Emoji_Keycap_Sequence
Emoji_Flag_Sequence
Emoji_Tag_Sequence
Emoji_Modifier_Sequence

Throughout the rest of the data file, apply the same Basic_Emoji → Basic_Emoji​_Sequence
replacement.

https://unicode.org/Public/emoji/12.0/emoji-zwj-sequences.txt

emoji-zwj-sequences.txt

Format:
code_point(s) ; ​type_field​​ ; description # comments
​type_field​​: Emoji_ZWJ_Sequence
The type_field is a convenience for parsing the emoji sequence
files, and is not intended to be maintained as a property.

Suggested replacement:

Format:
code_point(s) ; ​property​​ ; description # comments
​property​​: Emoji_ZWJ_Sequence

https://unicode.org/Public/emoji/12.0/emoji-zwj-sequences.txt

