

Supporting string properties in regular expressions
by Mathias Bynens (mths@google.com)

Goals:

Having the Unicode Consortium explicitly approve/reject or respond to the following points
would unblock a Stage 2 ECMAScript feature proposal, and allow it to continue advancing
through the standardization process in Technical Committee 39 of Ecma International.

1. Get UTC-level resolution on whether to use \p{…} or \q{…} syntax for accessing string
properties (“sequence properties”) in regular expressions.

2. Adopt a stability guarantee stating that any non-string properties may never become
string properties in future versions of the Unicode Standard. (Without this guarantee, a
backwards-compatibility issue occurs where existing code of the form \P{Foo} or
[\p{Foo}] suddenly starts throwing exceptions.)

Details:

UTS18 defines syntax for accessing various types of Unicode properties in regular expression
patterns:

\p{Script_Extensions=Greek} // catalog property
\p{General_Category=Control} // enumeration property
\p{White_Space} // binary property
\p{Numeric_Value=4} // numeric property
\p{Case_Folding=F} // string property
\p{Name=BOM} // miscellaneous property

JavaScript (formally ECMAScript) currently supports various catalog, enumeration, binary, and
properties through \p{…}. A proposal adds support for string properties:

\p{Emoji_Flag_Sequence}
\p{Emoji_Keycap_Sequence}
\p{Emoji_Modifier_Sequence}
\p{Emoji_Tag_Sequence}
\p{Emoji_ZWJ_Sequence}
\p{Basic_Emoji}

mailto:mths@google.com
https://github.com/tc39/proposal-regexp-unicode-sequence-properties
https://unicode.org/reports/tr18/
https://unicode.org/reports/tr44/#Type_Key_Table
https://github.com/tc39/proposal-regexp-unicode-sequence-properties
rick
Text Box
L2/19-168

Unlike other types of properties, string properties cannot be negated using \P{…} and cannot
occur within character classes. The current proposal therefore bans the use of string properties
in those scenarios:

\p{Emoji_Keycap_Sequence} // works
\P{Emoji_Keycap_Sequence} // throws an exception
[\p{Emoji_Keycap_Sequence}] // throws an exception
[^\p{Emoji_Keycap_Sequence}] // throws an exception

However, another approach would be to introduce new syntax specifically for string properties,
such as \q{…}:

\q{Emoji_Keycap_Sequence} // works
\Q{Emoji_Keycap_Sequence} // throws an exception
[\Q{Emoji_Keycap_Sequence}] // throws an exception
[^\Q{Emoji_Keycap_Sequence}] // throws an exception

Before advancing this proposal further, TC39 wants explicit guidance from UTC on how to
proceed. Should we use \p{…} for string properties, or should we introduce new syntax?

The case for \p{…}
Introducing new syntax comes at a cost for JavaScript developers. In this case, the proposal
champion asserts that the cost of adding new syntax for this functionality outweighs the
benefits.

The mental model for developers currently is: \p{…} refers to a Unicode property. Continuing to
use the familiar \p{…} syntax for the new string properties proposal means that this mental
model remains unchanged.

\P{…} and [\p{…}] throw exceptions for string properties, because that logically follows from
that mental model: the exact behavior of \p{foo} and \P{foo} has always depended on
Unicode's definition of foo, and continues to do so with this proposal. Developers already have
to know the meaning of foo to understand how this regular expression pattern behaves today.
For example, if foo is not a valid Unicode property, it throws an exception.

This is also motivated by UTS18 which uses \p{…} even for string properties (RL2.7 explicitly
lists Case_Folding, for example).

https://github.com/tc39/proposal-regexp-unicode-sequence-properties#why-ban-the-use-of-these-properties-within-character-classes
https://unicode.org/reports/tr18/#Full_Properties
https://unicode.org/reports/tr18/#Full_Properties

The case for \q{…} (or something else)
Proponents of new syntax claim that it would make the distinction between other types of
properties (such as binary properties) vs. string properties more clear. A developer could tell
that \Q{foo} or [\q{foo}] would throw just by reading the code, even without knowing how
Unicode defines foo. However, as explained in the previous section, developers have to know
how Unicode defines foo anyhow (and if it's a valid Unicode property in the first place) to
understand and write such regular expression patterns.

Additionally, UTS18 already defines \q{foo} syntax, and it explicitly supports cases we need
to ban for string properties: UTS18's \q{foo} works within character classes. If we decide to
go with new syntax, it'd have to be something other than \q{foo} to avoid this conflict with
UTS18.

Stability guarantee
Regardless of the outcome of the above, we propose that UTC adopt a stability guarantee
stating that any non-string properties may never become string properties in future versions of
the Unicode Standard (if such a guarantee does not yet exist).

Without this guarantee, a backwards-compatibility issue occurs where existing code of the form
\P{foo} or [\p{foo}] suddenly starts throwing exceptions if Unicode's definition of foo
changes from a non-string property to a string property. Note that this back-compat issue would
be worse if new syntax like \q{foo} is introduced: in that case, even \p{foo} would start
throwing exceptions.

Supporting string properties
in regular expressions

● Emoji_Flag_Sequence

● Emoji_Keycap_Sequence

● Emoji_Modifier_Sequence

● Emoji_Tag_Sequence

● Emoji_ZWJ_Sequence

● Basic_Emoji

● …possibly more in the future

Terminology: string properties

● RGI_Emoji_Flag_Sequence

● Emoji_Keycap_Sequence

● RGI_Emoji_Modifier_Sequence

● RGI_Emoji_Tag_Sequence

● RGI_Emoji_ZWJ_Sequence

● Basic_Emoji

● …possibly more in the future

Markus Scherer’s proposal

// Existing functionality:

const regexGreekSymbol = /\p{Script_Extensions=Greek}/u;

regexGreekSymbol.test('π');

// → true

// Existing functionality:

const regexGreekSymbol = /\p{Script_Extensions=Greek}/u;

regexGreekSymbol.test('π');

// → true

// New proposal:

const regexEmojiKeycap = /\p{Emoji_Keycap_Sequence}/u;

regexEmojiKeycap.test(''); // '4\uFE0F\u20E3'

// → true

// Unified syntax with \p{…}

\p{Emoji} // works

\P{Emoji} // works

\p{Emoji_Keycap_Sequence} // works

\P{Emoji_Keycap_Sequence} // throws an exception

[\p{Emoji_Keycap_Sequence}] // throws an exception

[^\p{Emoji_Keycap_Sequence}] // throws an exception

// Disunified syntax with \q{…}

\p{Emoji} // works

\P{Emoji} // works

\q{Emoji} // throws an exception

\p{Emoji_Keycap_Sequence} // throws an exception

\P{Emoji_Keycap_Sequence} // throws an exception

\q{Emoji_Keycap_Sequence} // works

\Q{Emoji_Keycap_Sequence} // throws an exception

[\q{Emoji_Keycap_Sequence}] // throws an exception

[^\q{Emoji_Keycap_Sequence}] // throws an exception

// mental model for developers:

\p{Foo}
// refers to the Unicode property Foo

Proposal: adopt a stability guarantee stating that any non-string properties may

never become string properties in future versions of the Unicode Standard (if

such a guarantee does not yet exist).

Without this guarantee, a backwards-compatibility issue occurs where existing

code of the form \P{foo} or [\p{foo}] suddenly starts throwing exceptions if

Unicode’s definition of foo changes from a non-string property to a string

property. Note that this back-compat issue would be worse if new syntax like

\q{foo} is introduced: in that case, even \p{foo} would start throwing

exceptions.

Stability guarantee

