
10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 1/39

 Technical Reports

Proposed Update Unicode® Standard Annex #29

UNICODE TEXT SEGMENTATION

Version Unicode 13.0.0

Editors Mark Davis (markdavis@google.com), Christopher
Chapman (cchapman@adobe.com)

Date 2019-08-22

This Version http://www.unicode.org/reports/tr29/tr29-36.html

Previous
Version

http://www.unicode.org/reports/tr29/tr29-35.html

Latest
Version

http://www.unicode.org/reports/tr29/

Latest
Proposed
Update

http://www.unicode.org/reports/tr29/proposed.html

Revision 36

Summary

This annex describes guidelines for determining default segmentation boundaries between
certain significant text elements: grapheme clusters (“user-perceived characters”), words,
and sentences. For line boundaries, see [UAX14] .

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode Consortium.
This is not a stable document; it is inappropriate to cite this document as other than a work in
progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard, but
is published online as a separate document. The Unicode Standard may require
conformance to normative content in a Unicode Standard Annex, if so specified in the
Conformance chapter of that version of the Unicode Standard. The version number of a
UAX document corresponds to the version of the Unicode Standard of which it forms a
part.

http://www.unicode.org/
http://www.unicode.org/reports/
mailto:markdavis@google.com
mailto:cchapman@adobe.com
http://www.unicode.org/reports/tr29/tr29-36.html
http://www.unicode.org/reports/tr29/tr29-35.html
http://www.unicode.org/reports/tr29/
http://www.unicode.org/reports/tr29/proposed.html
http://www.unicode.org/reports/tr41/tr41-24.html#UAX14
rick
Text Box
L2/19-359

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 2/39

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode Standard
Annex #41, “Common References for Unicode Standard Annexes.” For the latest version of
the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports, see
[Reports]. For more information about versions of the Unicode Standard, see [Versions]. For
any errata which may apply to this annex, see [Errata].

Contents

1 Introduction
1.1 Notation
1.2 Rule Constraints

2 Conformance
3 Grapheme Cluster Boundaries

3.1 Default Grapheme Cluster Boundary Specification
3.1.1 Grapheme Cluster Boundary Rules

4 Word Boundaries
4.1 Default Word Boundary Specification

4.1.1 Word Boundary Rules
4.2 Name Validation

5 Sentence Boundaries
5.1 Default Sentence Boundary Specification

5.1.1 Sentence Boundary Rules
6 Implementation Notes

6.1 Normalization
6.2 Replacing Ignore Rules
6.3 State Machines
6.4 Random Access
6.5 Tailoring

7 Testing
8 Hangul Syllable Boundary Determination

8.1 Standard Korean Syllables
8.2 Transforming into Standard Korean Syllables

Acknowledgments
References
Modifications

1 Introduction

This annex describes guidelines for determining default boundaries between certain
significant text elements: user-perceived characters, words, and sentences. The process of
boundary determination is also called segmentation.

A string of Unicode-encoded text often needs to be broken up into text elements
programmatically. Common examples of text elements include what users think of as
characters, words, lines (more precisely, where line breaks are allowed), and sentences. The
precise determination of text elements may vary according to orthographic conventions for a
given script or language. The goal of matching user perceptions cannot always be met
exactly because the text alone does not always contain enough information to
unambiguously decide boundaries. For example, the period (U+002E FULL STOP) is used
ambiguously, sometimes for end-of-sentence purposes, sometimes for abbreviations, and
sometimes for numbers. In most cases, however, programmatic text boundaries can match
user perceptions quite closely, although sometimes the best that can be done is not to
surprise the user.

http://www.unicode.org/reporting.html
http://www.unicode.org/reports/tr41/tr41-24.html
http://www.unicode.org/versions/latest/
http://www.unicode.org/reports/
http://www.unicode.org/versions/
http://www.unicode.org/errata/

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 3/39

Rather than concentrate on algorithmically searching for text elements (often called
segments), a simpler and more useful computation instead detects the boundaries (or
breaks) between those text elements. The determination of those boundaries is often critical
to performance, so it is important to be able to make such a determination as quickly as
possible. (For a general discussion of text elements, see Chapter 2, General Structure, of
[Unicode].)

The default boundary determination mechanism specified in this annex provides a
straightforward and efficient way to determine some of the most significant boundaries in
text: user-perceived characters, words, and sentences. Boundaries used in line breaking
(also called word wrapping) are defined in [UAX14].

The sheer number of characters in the Unicode Standard, together with its representational
power, place requirements on both the specification of text element boundaries and the
underlying implementation. The specification needs to allow the designation of large sets of
characters sharing the same characteristics (for example, uppercase letters), while the
implementation must provide quick access and matches to those large sets. The mechanism
also must handle special features of the Unicode Standard, such as nonspacing marks and
conjoining jamos.

The default boundary determination builds upon the uniform character representation of the
Unicode Standard, while handling the large number of characters and special features such
as nonspacing marks and conjoining jamos in an effective manner. As this mechanism lends
itself to a completely data-driven implementation, it can be tailored to particular orthographic
conventions or user preferences without recoding.

As in other Unicode algorithms, these specifications provide a logical description of the
processes: implementations can achieve the same results without using code or data that
follows these rules step-by-step. In particular, many production-grade implementations will
use a state-table approach. In that case, the performance does not depend on the complexity
or number of rules. Rather, performance is only affected by the number of characters that
may match after the boundary position in a rule that applies.

1.1 Notation

A boundary specification summarizes boundary property values used in that specification,
then lists the rules for boundary determinations in terms of those property values. The
summary is provided as a list, where each element of the list is one of the following:

A literal character
A range of literal characters
All characters satisfying a given condition, using properties defined in the Unicode
Character Database [UCD]:

Non-Boolean property values are given as <property> = <property value>, such
as General_Category = Titlecase_Letter.
Boolean properties are given as <property> = Yes, such as Uppercase = Yes.
Other conditions are specified textually in terms of UCD properties.

Boolean combinations of the above
Two special identifiers, sot and eot, standing for start of text and end of text,
respectively

For example, the following is such a list:

https://www.unicode.org/reports/tr41/tr41-24.html#Unicode
https://www.unicode.org/reports/tr41/tr41-24.html#UAX14
https://www.unicode.org/reports/tr41/tr41-24.html#UCD

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 4/39

General_Category = Line_Separator, or
General_Category = Paragraph_Separator, or
General_Category = Control, or
General_Category = Format
and not U+000D CARRIAGE RETURN (CR)
and not U+000A LINE FEED (LF)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

In the table assigning the boundary property values, all of the values are intended to be
disjoint except for the special value Any. In case of conflict, rows higher in the table have
precedence in terms of assigning property values to characters. Data files containing explicit
assignments of the property values are found in [Props].

Boundary determination is specified in terms of an ordered list of rules, indicating the status
of a boundary position. The rules are numbered for reference and are applied in sequence to
determine whether there is a boundary at any given offset. That is, there is an implicit
“otherwise” at the front of each rule following the first. The rules are processed from top to
bottom. As soon as a rule matches and produces a boundary status (boundary or no
boundary) for that offset, the process is terminated.

Each rule consists of a left side, a boundary symbol (see Table 1), and a right side. Either of
the sides can be empty. The left and right sides use the boundary property values in regular
expressions. The regular expression syntax used is a simplified version of the format
supplied in Unicode Technical Standard #18, Unicode Regular Expressions [UTS18].

Table 1. Boundary Symbols

÷ Boundary (allow break here)

× No boundary (do not allow break here)

→ Treat whatever on the left side as if it were what is on the right side

An open-box symbol (“␣”) is used to indicate a space in examples.

1.2 Rule Constraints

These rules are constrained in three ways, to make implementations significantly simpler and
more efficient. These constraints have not been found to be limitations for natural language
use. In particular, the rules are formulated so that they can be efficiently implemented, such
as with a deterministic finite-state machine based on a small number of property values.

1. Single boundaries. Each rule has exactly one boundary position. This restriction is
more a limitation on the specification methods, because a rule with multiple boundaries
could be expressed instead as multiple rules. For example:

“a b ÷ c d ÷ e f” could be broken into two rules “a b ÷ c d e f” and “a b c d ÷ e f”
“a b × c d × e f” could be broken into two rules “a b × c d e f” and “a b c d × e f”

2. Limited negation. Negation of expressions is limited to instances that resolve to a
match against single characters, such as “¬(OLetter | Upper | Lower | Sep)”.

3. Ignore degenerates. No special provisions are made to get marginally better behavior
for degenerate cases that never occur in practice, such as an A followed by an Indic
combining mark.

https://www.unicode.org/reports/tr41/tr41-24.html#Props0
https://www.unicode.org/reports/tr41/tr41-24.html#UTS18

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 5/39

4. Script boundaries. Script boundaries are treated as degenerate cases in these rules,
so the string “aquaφοβία” is treated as a single word, and the sequence ‘a’ + ‘ि ’ as a
single grapheme cluster. However, implementations are free to customize boundary
testing to break at script boundaries, which may be especially useful for grapheme
clusters. When this is done, the Common/Inherited values need to be handled properly,
and the Script_Extensions property should be used instead of the Script property alone.

2 Conformance

There are many different ways to divide text elements corresponding to user-perceived
characters, words, and sentences, and the Unicode Standard does not restrict the ways in
which implementations can produce these divisions.

This specification defines default mechanisms; more sophisticated implementations can and
should tailor them for particular locales or environments. For example, reliable detection of
word boundaries in languages such as Thai, Lao, Chinese, or Japanese requires the use of
dictionary lookup, analogous to English hyphenation. An implementation therefore may need
to provide means to override or subclass the default mechanisms described in this annex.
Note that tailoring can either add boundary positions or remove boundary positions,
compared to the defaults specified here.

Notes:

Locale-sensitive boundary specifications, including boundary suppressions, can
be expressed in LDML [UTS35]. Tailorings are available in the Common Locale
Data Repository [CLDR].
Some changes to rules and data are needed for best segmentation behavior of
additional emoji zwj sequences [UTS51]. Implementations are strongly
encouraged to use the extended text segmentation rules in the latest version of
CLDR (Version 31 or later) [CLDR] and the latest emoji properties (Version 5.0 or
later) [UTS51].

To maintain canonical equivalence, all of the following specifications are defined on text
normalized in form NFD, as defined in Unicode Standard Annex #15, “Unicode Normalization
Forms” [UAX15]. A boundary exists in text not normalized in form NFD if and only if it would
occur at the corresponding position in NFD text. However, the default rules have been written
to provide equivalent results for non-NFD text and can be applied directly. Even in the case
of tailored rules, the requirement to use NFD is only a logical specification; in practice,
implementations can avoid normalization and achieve the same results. For more
information, see Section 6, Implementation Notes.

3 Grapheme Cluster Boundaries

It is important to recognize that what the user thinks of as a “character”—a basic unit of a
writing system for a language—may not be just a single Unicode code point. Instead, that
basic unit may be made up of multiple Unicode code points. To avoid ambiguity with the
computer use of the term character, this is called a user-perceived character. For example,
“G” + grave-accent is a user-perceived character: users think of it as a single character, yet is
actually represented by two Unicode code points. These user-perceived characters are
approximated by what is called a grapheme cluster, which can be determined
programmatically.

Grapheme cluster boundaries are important for collation, regular expressions, UI interactions,
segmentation for vertical text, identification of boundaries for first-letter styling, and counting
“character” positions within text. Word boundaries, line boundaries, and sentence boundaries

https://www.unicode.org/reports/tr41/tr41-24.html#UTS35
https://www.unicode.org/reports/tr41/tr41-24.html#CLDR
https://www.unicode.org/reports/tr41/tr41-24.html#UTS51
https://www.unicode.org/reports/tr41/tr41-24.html#CLDR
https://www.unicode.org/reports/tr41/tr41-24.html#UTS51
https://www.unicode.org/reports/tr41/tr41-24.html#UAX15

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 6/39

should not occur within a grapheme cluster: in other words, a grapheme cluster should be an
atomic unit with respect to the process of determining these other boundaries.

As far as a user is concerned, the underlying representation of text is not important, but it is
important that an editing interface present a uniform implementation of what the user thinks
of as characters. Grapheme clusters can be treated as units, by default, for processes such
as the formatting of drop caps, as well as the implementation of text selection, arrow key
movement or backspacing through text, and so forth. For example, when a grapheme cluster
is represented internally by a character sequence consisting of base character + accents,
then using the right arrow key would skip from the start of the base character to the end of
the last accent.

This document defines a default specification for grapheme clusters. It may be customized
for particular languages, operations, or other situations. For example, arrow key movement
could be tailored by language, or could use knowledge specific to particular fonts to move in
a more granular manner, in circumstances where it would be useful to edit individual
components. This could apply, for example, to the complex editorial requirements for the
Northern Thai script Tai Tham (Lanna). Similarly, editing a grapheme cluster element by
element may be preferable in some circumstances. For example, on a given system the
backspace key might delete by code point, while the delete key may delete an entire cluster.

Moreover, there is not a one-to-one relationship between grapheme clusters and keys on a
keyboard. A single key on a keyboard may correspond to a whole grapheme cluster, a part of
a grapheme cluster, or a sequence of more than one grapheme cluster.

Grapheme clusters can only provide an approximation of where to put cursors. Detailed
cursor placement depends on the text editing framework. The text editing framework
determines where the edges of glyphs are, and how they correspond to the underlying
characters, based on information supplied by the lower-level text rendering engine and font.
For example, the text editing framework must know if a digraph is represented as a single
glyph in the font, and therefore may not be able to position a cursor at the proper position
separating its two components. That framework must also be able to determine display
representation in cases where two glyphs overlap—this is true generally when a character is
displayed together with a subsequent nonspacing mark, but must also be determined in
detail for complex script rendering. For cursor placement, grapheme clusters boundaries can
only supply an approximate guide for cursor placement using least-common-denominator
fonts for the script.

In those relatively rare circumstances where programmers need to supply end users with
user-perceived character counts, the counts should correspond to the number of segments
delimited by grapheme cluster boundaries. Grapheme clusters may also be used in
searching and matching; for more information, see Unicode Technical Standard #10,
“Unicode Collation Algorithm” [UTS10], and Unicode Technical Standard #18, “Unicode
Regular Expressions” [UTS18].

The Unicode Standard provides default algorithms for determining grapheme cluster
boundaries, with two variants: legacy grapheme clusters and extended grapheme
clusters. The most appropriate variant depends on the language and operation involved.
However, the extended grapheme cluster boundaries are recommended for general
processing, while the legacy grapheme cluster boundaries are maintained primarily for
backwards compatibility with earlier versions of this specification.

These algorithms can be adapted to produce tailored grapheme clusters for specific
locales or other customizations, such as the contractions used in collation tailoring tables. In
Table 1a are some examples of the differences between these concepts. The tailored

https://www.unicode.org/reports/tr41/tr41-24.html#UTS10
https://www.unicode.org/reports/tr41/tr41-24.html#UTS18

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 7/39

examples are only for illustration: what constitutes a grapheme cluster will depend on the
customizations used by the particular tailoring in question.

Table 1a. Sample Grapheme Clusters

Ex Characters Comments

Grapheme clusters (both legacy and extended)

g̈ 0067 (g) LATIN SMALL LETTER
G
0308 (◌̈) COMBINING
DIAERESIS

combining character sequences

각 AC01 (각) HANGUL SYLLABLE
GAG

Hangul syllables such as gag (which may be
a single character, or a sequence of
conjoining jamos)1100 (ᄀ) HANGUL CHOSEONG

KIYEOK
1161 (ᅡ) HANGUL JUNGSEONG
A
11A8 (ᆨ) HANGUL
JONGSEONG KIYEOK

ก 0E01 (ก) THAI CHARACTER KO
KAI

Thai ko

Extended grapheme clusters

நி 0BA8 (ந) TAMIL LETTER NA
0BBF (◌ி) TAMIL VOWEL SIGN I

Tamil ni

เ 0E40 (เ) THAI CHARACTER
SARA E

Thai e

กํา 0E01 (ก) THAI CHARACTER KO
KAI
0E33 (ํา) THAI CHARACTER
SARA AM

Thai kam

िष 0937 (ष) DEVANAGARI LETTER
SSA
093F (ि◌) DEVANAGARI VOWEL
SIGN I

Devanagari ssi

Legacy grapheme clusters

ํา 0E33 (ํา) THAI CHARACTER Thai am

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 8/39

SARA AM

ष 0937 (ष) DEVANAGARI LETTER
SSA

Devanagari ssa

ि◌ 093F (ि◌) DEVANAGARI VOWEL
SIGN I

Devanagari i

Tailored grapheme clusters

ch 0063 (c) LATIN SMALL LETTER
C
0068 (h) LATIN SMALL LETTER
H

Slovak ch digraph

kʷ 006B (k) LATIN SMALL LETTER
K
02B7 (ʷ) MODIFIER LETTER
SMALL W

sequence with letter modifier

ि� 0915 (क) DEVANAGARI LETTER
KA
094D (◌्) DEVANAGARI SIGN
VIRAMA
0937 (ष) DEVANAGARI LETTER
SSA
093F (ि◌) DEVANAGARI VOWEL
SIGN I

Devanagari kshi

See also: Where is my Character?, and the UCD file NamedSequences.txt [Data34].

A legacy grapheme cluster is defined as a base (such as A or カ) followed by zero or more
continuing characters. One way to think of this is as a sequence of characters that form a
“stack”.

The base can be single characters, or be any sequence of Hangul Jamo characters that form
a Hangul Syllable, as defined by D133 in The Unicode Standard, or be a pair of
Regional_Indicator (RI) characters. For more information about RI characters, see [UTS51].

The continuing characters include nonspacing marks, the Join_Controls (U+200C ZERO
WIDTH NON-JOINER and U+200D ZERO WIDTH JOINER) used in Indic languages, and a
few spacing combining marks to ensure canonical equivalence. Additional cases need to be
added for completeness, so that any string of text can be divided up into a sequence of
grapheme clusters. Some of these may be degenerate cases, such as a control code, or an
isolated combining mark.

An extended grapheme cluster is the same as a legacy grapheme cluster, with the addition
of some other characters. The continuing characters are extended to include all spacing
combining marks, such as the spacing (but dependent) vowel signs in Indic scripts. For

http://www.unicode.org/standard/where/
https://www.unicode.org/reports/tr41/tr41-24.html#Data34
https://www.unicode.org/reports/tr41/tr41-24.html#UTS51

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 9/39

example, this includes U+093F (ि) DEVANAGARI VOWEL SIGN I. The extended grapheme
clusters should be used in implementations in preference to legacy grapheme clusters,
because they provide better results for Indic scripts such as Tamil or Devanagari in which
editing by orthographic syllable is typically preferred. For scripts such as Thai, Lao, and
certain other Southeast Asian scripts, editing by visual unit is typically preferred, so for those
scripts the behavior of extended grapheme clusters is similar to (but not identical to) the
behavior of legacy grapheme clusters.

For the rules defining the boundaries for grapheme clusters, see Section 3.1. For more
information on the composition of Hangul syllables, see Chapter 3, Conformance, of
[Unicode].

Note: The boundary between default Unicode grapheme clusters can be determined by
just the two adjacent characters. See Section 7, Testing, for a chart showing the
interactions of pairs of characters.

A key feature of default Unicode grapheme clusters (both legacy and extended) is that they
remain unchanged across all canonically equivalent forms of the underlying text. Thus the
boundaries remain unchanged whether the text is in NFC or NFD. Using a grapheme cluster
as the fundamental unit of matching thus provides a very clear and easily explained basis for
canonically equivalent matching. This is important for applications from searching to regular
expressions.

Another key feature is that default Unicode grapheme clusters are atomic units with respect
to the process of determining the Unicode default word, and sentence boundaries. They are
usually—but not always—atomic units with respect to line boundaries: there are exceptions
due to the special handling of spaces. For more information, see Section 9.2 Legacy Support
for Space Character as Base for Combining Marks in [UAX14].

Grapheme clusters can be tailored to meet further requirements. Such tailoring is permitted,
but the possible rules are outside of the scope of this document. One example of such a
tailoring would be for the aksaras, or orthographic syllables, used in many Indic scripts.
Aksaras usually consist of a consonant, sometimes with an inherent vowel and sometimes
followed by an explicit, dependent vowel whose rendering may end up on any side of the
consonant letter base. Extended grapheme clusters include such simple combinations.

However, aksaras may also include one or more additional prefixed consonants, typically
with a virama (halant) character between each pair of consonants in the sequence. Such
consonant cluster aksaras are not incorporated into the default rules for extended grapheme
clusters, in part because not all such sequences are considered to be single “characters” by
users. Indic scripts vary considerably in how they handle the rendering of such aksaras—in
some cases stacking them up into combined forms known as consonant conjuncts, and in
other cases stringing them out horizontally, with visible renditions of the halant on each
consonant in the sequence. There is even greater variability in how the typical liquid
consonants (or “medials”), ya, ra, la, and wa, are handled for display in combinations in
aksaras. So tailorings for aksaras may need to be script-, language-, font-, or context-specific
to be useful.

Note: Font-based information may be required to determine the appropriate unit to use
for UI purposes, such as identification of boundaries for first-letter paragraph styling.
For example, such a unit could be a ligature formed of two grapheme clusters, such as
.(Arabic lam + alef) لا

The Unicode definitions of grapheme clusters are defaults: not meant to exclude the use of
more sophisticated definitions of tailored grapheme clusters where appropriate. Such

https://www.unicode.org/reports/tr41/tr41-24.html#Unicode
https://www.unicode.org/reports/tr41/tr41-24.html#UAX14

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 10/39

definitions may more precisely match the user expectations within individual languages for
given processes. For example, “ch” may be considered a grapheme cluster in Slovak, for
processes such as collation. The default definitions are, however, designed to provide a
much more accurate match to overall user expectations for what the user perceives of as
characters than is provided by individual Unicode code points.

Note: The default Unicode grapheme clusters were previously referred to as “locale-
independent graphemes.” The term cluster is used to emphasize that the term
grapheme is used differently in linguistics. For simplicity and to align terminology with
Unicode Technical Standard #10, “Unicode Collation Algorithm” [UTS10], the terms
default and tailored are preferred over locale-independent and locale-dependent,
respectively.

Display of Grapheme Clusters. Grapheme clusters are not the same as ligatures. For
example, the grapheme cluster “ch” in Slovak is not normally a ligature and, conversely, the
ligature “fi” is not a grapheme cluster. Default grapheme clusters do not necessarily reflect
text display. For example, the sequence <f, i> may be displayed as a single glyph on the
screen, but would still be two grapheme clusters.

For information on the matching of grapheme clusters with regular expressions, see Unicode
Technical Standard #18, “Unicode Regular Expressions” [UTS18].

Degenerate Cases. The default specifications are designed to be simple to implement, and
provide an algorithmic determination of grapheme clusters. However, they do not have to
cover edge cases that will not occur in practice. For the purpose of segmentation, they may
also include degenerate cases that are not thought of as grapheme clusters, such as an
isolated control character or combining mark. In this, they differ from the combining character
sequences and extended combining character sequences defined in [Unicode]. In addition,
Unassigned (Cn) code points and Private_Use (Co) characters are given property values that
anticipate potential usage.

Combining Character Sequences and Grapheme Clusters. For comparison, Table 1b
shows the relationship between combining character sequences and grapheme clusters,
using regex notation. Note that given alternates (X|Y), the first match is taken. The simple
identifiers starting with lowercase are variables that are defined in Table 1c; those starting
with uppercase letters are Grapheme_Cluster_Break Property Values defined in Table 2.

Table 1b. Combining Character Sequences and Grapheme Clusters

Term Regex Notes

combining
character
sequence

ccs-base? ccs-extend+ A single base character is not a
combining character sequence.
However, a single combining mark is
a (degenerate) combining character
sequence.

extended
combining
character
sequence

extended_base? ccs-extend+ extended_base includes Hangul
Syllables

crlf

https://www.unicode.org/reports/tr41/tr41-24.html#UTS10
https://www.unicode.org/reports/tr41/tr41-24.html#UTS18
https://www.unicode.org/reports/tr41/tr41-24.html#Unicode

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 11/39

legacy
grapheme
cluster

| Control
| legacy-core legacy-postcore*

A single base character is a grapheme
cluster. Degenerate cases include any
isolated non-base characters, and
non-base characters like controls.

extended
grapheme
cluster

crlf
| Control
| precore* core postcore*

Extended grapheme clusters add
prepending and spacing marks.

Table 1b uses several symbols defined in Table 1c. Square brackets and \p{...} are used to
indicate sets of characters, using the normal UnicodeSet notion.

Table 1c. Regex Definitions

ccs-base := [\p{L}\p{N}\p{P}\p{S}\p{Zs}]

ccs-extend := [\p{M}\p{Join_Control}]

extended_base := ccs-base
| hangul-syllable

crlf := CR LF

legacy-core := hangul-syllable
| ri-sequence
| xpicto-sequence
| [^Control CR LF]

legacy-postcore := [Extend ZWJ]

core := hangul-syllable
| ri-sequence
| xpicto-sequence
| [^Control CR LF]

postcore := [Extend ZWJ SpacingMark]

precore := Prepend

RI-Sequence := RI RI

hangul-syllable := L* (V+ | LV V* | LVT) T*
| L+
| T+

xpicto-sequence := \p{Extended_Pictographic} (Extend* ZWJ \p{Extended_Pictographic})*

3.1 Default Grapheme Cluster Boundary Specification

The following is a general specification for grapheme cluster boundaries—language-specific
rules in [CLDR] should be used where available.

The Grapheme_Cluster_Break property value assignments are explicitly listed in the
corresponding data file in [Props]. The values in that file are the normative property values.

For illustration, property values are summarized in Table 2, but the lists of characters are
illustrative.

Table 2. Grapheme_Cluster_Break Property Values

https://www.unicode.org/reports/tr41/tr41-24.html#CLDR
https://www.unicode.org/reports/tr41/tr41-24.html#Props0

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 12/39

Value Summary List of Characters

CR U+000D CARRIAGE RETURN (CR)

LF U+000A LINE FEED (LF)

Control General_Category = Line_Separator, or

General_Category = Paragraph_Separator, or

General_Category = Control, or

General_Category = Unassigned and

Default_Ignorable_Code_Point, or

General_Category = Format
and not U+000D CARRIAGE RETURN
and not U+000A LINE FEED
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)
and not Prepended_Concatenation_Mark = Yes

Extend Grapheme_Extend = Yes, or

Emoji_Modifier=Yes in emoji-data.txt (See [UTS51])
This includes:

General_Category = Nonspacing_Mark
General_Category = Enclosing_Mark
U+200C ZERO WIDTH NON-JOINER
plus a few General_Category = Spacing_Mark needed for

canonical equivalence.

ZWJ U+200D ZERO WIDTH JOINER

Regional_Indicator

(RI)
Regional_Indicator = Yes

This consists of the range:

U+1F1E6 REGIONAL INDICATOR SYMBOL LETTER A
..U+1F1FF REGIONAL INDICATOR SYMBOL LETTER Z

Prepend Indic_Syllabic_Category = Consonant_Preceding_Repha, or

Indic_Syllabic_Category = Consonant_Prefixed, or

Prepended_Concatenation_Mark = Yes

SpacingMark Grapheme_Cluster_Break ≠ Extend, and

General_Category = Spacing_Mark, or

any of the following (which have General_Category =
Other_Letter):
U+0E33 (ํา) THAI CHARACTER SARA AM

https://www.unicode.org/reports/tr41/tr41-24.html#UTS51

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 13/39

U+0EB3 (ໍາ) LAO VOWEL SIGN AM

Exceptions: The following (which have General_Category =
Spacing_Mark and would otherwise be included) are

specifically excluded:

U+102B (ါ) MYANMAR VOWEL SIGN TALL AA

U+102C (ာ) MYANMAR VOWEL SIGN AA

U+1038 (း) MYANMAR SIGN VISARGA

U+1062 (ၢ) MYANMAR VOWEL SIGN SGAW KAREN EU

..U+1064 (ၤ) MYANMAR TONE MARK SGAW KAREN KE PHO

U+1067 (ၧ) MYANMAR VOWEL SIGN WESTERN PWO KAREN EU

..U+106D (ၭ) MYANMAR SIGN WESTERN PWO KAREN TONE-5

U+1083 (ႃ) MYANMAR VOWEL SIGN SHAN AA

U+1087 (ႇ) MYANMAR SIGN SHAN TONE-2

..U+108C (ႌ) MYANMAR SIGN SHAN COUNCIL TONE-3

U+108F (ႏ) MYANMAR SIGN RUMAI PALAUNG TONE-5

U+109A (ႚ) MYANMAR SIGN KHAMTI TONE-1

..U+109C (ႜ) MYANMAR VOWEL SIGN AITON A

U+1A61 (�) TAI THAM VOWEL SIGN A
U+1A63 (�) TAI THAM VOWEL SIGN AA
U+1A64 (�) TAI THAM VOWEL SIGN TALL AA
U+AA7B (ꩻ) MYANMAR SIGN PAO KAREN TONE

U+AA7D (ꩽ) MYANMAR SIGN TAI LAING TONE-5

U+11720 (�) AHOM VOWEL SIGN A
U+11721 (�) AHOM VOWEL SIGN AA

L Hangul_Syllable_Type=L, such as:

U+1100 (ᄀ) HANGUL CHOSEONG KIYEOK
U+115F (ᅟ) HANGUL CHOSEONG FILLER
U+A960 (ꥠ) HANGUL CHOSEONG TIKEUT-MIEUM
U+A97C (ꥼ) HANGUL CHOSEONG SSANGYEORINHIEUH

V Hangul_Syllable_Type=V, such as:

U+1160 (ᅠ) HANGUL JUNGSEONG FILLER
U+11A2 (ᆢ) HANGUL JUNGSEONG SSANGARAEA
U+D7B0 (ힰ) HANGUL JUNGSEONG O-YEO
U+D7C6 (ퟆ) HANGUL JUNGSEONG ARAEA-E

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 14/39

T Hangul_Syllable_Type=T, such as:

U+11A8 (ᆨ) HANGUL JONGSEONG KIYEOK
U+11F9 (ᇹ) HANGUL JONGSEONG YEORINHIEUH
U+D7CB (ퟋ) HANGUL JONGSEONG NIEUN-RIEUL
U+D7FB (ퟻ) HANGUL JONGSEONG PHIEUPH-THIEUTH

LV Hangul_Syllable_Type=LV, that is:

U+AC00 (가) HANGUL SYLLABLE GA
U+AC1C (개) HANGUL SYLLABLE GAE
U+AC38 (갸) HANGUL SYLLABLE GYA
...

LVT Hangul_Syllable_Type=LVT, that is:

U+AC01 (각) HANGUL SYLLABLE GAG
U+AC02 (갂) HANGUL SYLLABLE GAGG
U+AC03 (갃) HANGUL SYLLABLE GAGS
U+AC04 (간) HANGUL SYLLABLE GAN
...

E_Base This value is obsolete and unused.

E_Modifier This value is obsolete and unused.

Glue_After_Zwj This value is obsolete and unused.

E_Base_GAZ (EBG) This value is obsolete and unused.

Any This is not a property value; it is used in the rules to represent

any code point.

3.1.1 Grapheme Cluster Boundary Rules

The same rules are used for the two variants of grapheme clusters, except the rules GB9a
and GB9b. The following table shows the differences, which are also marked on the rules
themselves. The extended rules are recommended, except where the legacy variant is
required for a specific environment.

Grapheme Cluster Variant Includes Excludes

LG: legacy grapheme clusters GB9a, GB9b

 EG: extended grapheme clusters GB9a, GB9b

When citing the Unicode definition of grapheme clusters, it must be clear which of the two
alternatives are being specified: extended versus legacy.

Break at the start and end of text, unless the text is empty.

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 15/39

GB1 sot ÷ Any

GB2 Any ÷ eot

Do not break between a CR and LF. Otherwise, break before and after controls.

GB3 CR × LF

GB4 (Control | CR | LF) ÷

GB5 ÷ (Control | CR | LF)

Do not break Hangul syllable sequences.

GB6 L × (L | V | LV | LVT)

GB7 (LV | V) × (V | T)

GB8 (LVT | T) × T

Do not break before extending characters or ZWJ.

GB9 × (Extend | ZWJ)

The GB9a and GB9b rules only apply to extended grapheme clusters:

Do not break before SpacingMarks, or after Prepend characters.

GB9a × SpacingMark

GB9b Prepend ×

Do not break within emoji modifier sequences or emoji zwj sequences.

GB11 \p{Extended_Pictographic} Extend* ZWJ × \p{Extended_Pictographic}

The \p{Extended_Pictographic} values are provided as a part of the Emoji data in
[UTS51].

Do not break within emoji flag sequences. That is, do not break between regional

indicator (RI) symbols if there is an odd number of RI characters before the break

point.

GB12 sot (RI RI)* RI × RI

GB13 [^RI] (RI RI)* RI × RI

Otherwise, break everywhere.

GB999 Any ÷ Any

https://www.unicode.org/reports/tr41/tr41-24.html#UTS51

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 16/39

Notes:

Grapheme cluster boundaries can be transformed into simple regular expressions. For
more information, see Section 6.3, State Machines.
The Grapheme_Base and Grapheme_Extend properties predated the development of
the Grapheme_Cluster_Break property. The set of characters with
Grapheme_Extend=Yes is used to derive the set of characters with
Grapheme_Cluster_Break=Extend. However, the Grapheme_Base property proved to
be insufficient for determining grapheme cluster boundaries. Grapheme_Base is no
longer used by this specification.

4 Word Boundaries

Word boundaries are used in a number of different contexts. The most familiar ones are
selection (double-click mouse selection or “move to next word” control-arrow keys) and the
dialog option “Whole Word Search” for search and replace. They are also used in database
queries, to determine whether elements are within a certain number of words of one another.
Searching may also use word boundaries in determining matching items. Word boundaries
are not restricted to whitespace and punctuation. Indeed, some languages do not use spaces
at all.

Figure 1 gives an example of word boundaries, marked in the sample text with vertical bars.
In the following discussion, search terms are indicated by enclosing them in square brackets
for clarity. Spaces are indicated with the open-box symbol “␣”, and the matching parts
between the search terms and target text are emphasized in color.

Figure 1. Word Boundaries

The quick (“brown”) fox can’t jump 32.3 feet, right?

Boundaries such as those flanking the words in Figure 1 are the boundaries that users would
expect, for example, when searching for a term in the target text using Whole Word Search
mode. In that mode there is a match if—in addition to a matching sequence of characters—
there are word boundaries in the target text on both sides of the search term. In the sample
target text in Figure 1, Whole Word Search would have results such as the following:

The search term [brown] matches because there are word boundaries on both sides.
The search term [brow] does not match because there is no word boundary in the
target text between ‘w’ and the following character, ‘n’.
The term [“brown”] matches because there are word boundaries between the quotation
marks and the parentheses that enclose them.
The term [(“brown”)] also matches because there are word boundaries between the
parentheses and the space characters around them.
Finally, the term [␣(“brown”)␣] with spaces included matches as well, because there are
word boundaries between the space characters and the letters immediately before and
after them in the target text.

To allow for such matches that users would expect, there are word breaks by default between
most characters that are not normally considered parts of words, such as punctuation and
spaces.

Word boundaries can also be used in intelligent cut and paste. With this feature, if the user
cuts a selection of text on word boundaries, adjacent spaces are collapsed to a single space.

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 17/39

For example, cutting “quick” from “The␣quick␣fox” would leave “The␣ ␣fox”. Intelligent cut and
paste collapses this text to “The␣fox”. However, spaces need to be handled separately:
cutting the center space from “The␣ ␣ ␣fox” probably should not collapse the remaining two
spaces to one.

Proximity tests in searching determines whether, for example, “quick” is within three words of
“fox”. That is done with the above boundaries by ignoring any words that contain only
whitespace, punctuation, and similar characters, as in Figure 2. Thus, for proximity, “fox” is
within three words of “quick”. This same technique can be used for “get next/previous word”
commands or keyboard arrow keys. Letters are not the only characters that can be used to
determine the “significant” words; different implementations may include other types of
characters such as digits or perform other analysis of the characters.

Figure 2. Extracted Words

Thequickbrownfoxcan’t jump32.3feetright

Word boundaries are related to line boundaries, but are distinct: there are some word
boundaries that are not line boundaries, and vice versa. A line boundary is usually a word
boundary, but there are exceptions such as a word containing a SHY (soft hyphen): it will
break across lines, yet is a single word.

As with the other default specifications, implementations may override (tailor) the results to
meet the requirements of different environments or particular languages. For some
languages, it may also be necessary to have different tailored word break rules for selection
versus Whole Word Search.

In particular, the characters with the Line_Break property values of Contingent_Break (CB),
Complex_Context (SA/Southeast Asian), and Unknown (XX) are assigned Word_Break
property values based on criteria outside of the scope of this annex. That means that
satisfactory treatment of languages like Chinese or Thai requires special handling.

4.1 Default Word Boundary Specification

The following is a general specification for word boundaries—language-specific rules in
[CLDR] should be used where available.

The Word_Break property value assignments are explicitly listed in the corresponding data
file in [Props]. The values in that file are the normative property values.

For illustration, property values are summarized in Table 3, but the lists of characters are
illustrative.

Table 3. Word_Break Property Values

Value Summary List of Characters

CR U+000D CARRIAGE RETURN (CR)

LF U+000A LINE FEED (LF)

Newline U+000B LINE TABULATION
U+000C FORM FEED (FF)

https://www.unicode.org/reports/tr41/tr41-24.html#CLDR
https://www.unicode.org/reports/tr41/tr41-24.html#Props0

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 18/39

U+0085 NEXT LINE (NEL)
U+2028 LINE SEPARATOR
U+2029 PARAGRAPH SEPARATOR

Extend Grapheme_Extend = Yes, or

General_Category = Spacing_Mark, or

Emoji_Modifier=Yes in emoji-data.txt (See [UTS51])
and not U+200D ZERO WIDTH JOINER (ZWJ)

ZWJ U+200D ZERO WIDTH JOINER

Regional_Indicator

(RI)
Regional_Indicator = Yes

This consists of the range:

U+1F1E6 REGIONAL INDICATOR SYMBOL LETTER A
..U+1F1FF REGIONAL INDICATOR SYMBOL LETTER Z

Format General_Category = Format
and not U+200B ZERO WIDTH SPACE (ZWSP)
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

Katakana Script = KATAKANA, or

any of the following:

U+3031 (〱) VERTICAL KANA REPEAT MARK
U+3032 (〲) VERTICAL KANA REPEAT WITH VOICED SOUND
MARK
U+3033 (〳) VERTICAL KANA REPEAT MARK UPPER HALF
U+3034 (〴) VERTICAL KANA REPEAT WITH VOICED SOUND
MARK UPPER HALF
U+3035 (〵) VERTICAL KANA REPEAT MARK LOWER HALF
U+309B (゛) KATAKANA-HIRAGANA VOICED SOUND MARK
U+309C (゜) KATAKANA-HIRAGANA SEMI-VOICED SOUND
MARK
U+30A0 (゠) KATAKANA-HIRAGANA DOUBLE HYPHEN
U+30FC (ー) KATAKANA-HIRAGANA PROLONGED SOUND
MARK
U+FF70 (ｰ) HALFWIDTH KATAKANA-HIRAGANA PROLONGED
SOUND MARK

Hebrew_Letter Script = Hebrew
and General_Category = Other_Letter

https://www.unicode.org/reports/tr41/tr41-24.html#UTS51

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 19/39

ALetter Alphabetic = Yes, or

any of the following characters:

U+02C2 (˂) MODIFIER LETTER LEFT ARROWHEAD
..U+02C5 (˅) MODIFIER LETTER DOWN ARROWHEAD
U+02D2 (˒) MODIFIER LETTER CENTRED RIGHT HALF RING
..U+02D7 (˗) MODIFIER LETTER MINUS SIGN
U+02DE (˞) MODIFIER LETTER RHOTIC HOOK
U+02DF (˟) MODIFIER LETTER CROSS ACCENT
U+02E5 (˥) MODIFIER LETTER EXTRA-HIGH TONE BAR
..U+02EB (˫) MODIFIER LETTER YANG DEPARTING TONE MARK
U+02ED (˭) MODIFIER LETTER UNASPIRATED
U+02EF (˯) MODIFIER LETTER LOW DOWN ARROWHEAD
..U+02FF (˿) MODIFIER LETTER LOW LEFT ARROW
U+055A (՚) ARMENIAN APOSTROPHE
U+055B (՛) ARMENIAN EMPHASIS MARK
U+055C (՜) ARMENIAN EXCLAMATION MARK
U+055E (՞) ARMENIAN QUESTION MARK
U+058A (֊) ARMENIAN HYPHEN
U+05F3 (׳) HEBREW PUNCTUATION GERESH
U+A708 (꜈) MODIFIER LETTER EXTRA-HIGH DOTTED TONE
BAR
..U+A716 (꜖) MODIFIER LETTER EXTRA-LOW LEFT-STEM
TONE BAR
U+A720 (꜠) MODIFIER LETTER STRESS AND HIGH TONE
U+A721 (꜡) MODIFIER LETTER STRESS AND LOW TONE
U+A789 (꞉) MODIFIER LETTER COLON
U+A78A (꞊) MODIFIER LETTER SHORT EQUALS SIGN
U+AB5B (꭛) MODIFIER BREVE WITH INVERTED BREVE
and Ideographic = No
and Word_Break ≠ Katakana
and Line_Break ≠ Complex_Context (SA)
and Script ≠ Hiragana
and Word_Break ≠ Extend
and Word_Break ≠ Hebrew_Letter

Review Note:
Should any other MODIFIER LETTERs be added to ALetter?
If any of these characters cannot occur at the start of words,
we could move them to MidLetter or ExtendNumLet.

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 20/39

Single_Quote U+0027 (') APOSTROPHE

Double_Quote U+0022 (") QUOTATION MARK

MidNumLet U+002E (.) FULL STOP
U+2018 (‘) LEFT SINGLE QUOTATION MARK
U+2019 (’) RIGHT SINGLE QUOTATION MARK
U+2024 (․) ONE DOT LEADER
U+FE52 (﹒) SMALL FULL STOP
U+FF07 (＇) FULLWIDTH APOSTROPHE
U+FF0E (．) FULLWIDTH FULL STOP

MidLetter U+003A (:) COLON (used in Swedish)

U+00B7 (·) MIDDLE DOT
U+0387 (·) GREEK ANO TELEIA
U+055F (՟) ARMENIAN ABBREVIATION MARK
U+05F4 (״) HEBREW PUNCTUATION GERSHAYIM
U+2027 (‧) HYPHENATION POINT
U+FE13 (︓) PRESENTATION FORM FOR VERTICAL COLON
U+FE55 (﹕) SMALL COLON
U+FF1A (：) FULLWIDTH COLON

Review Note:
Is this the correct category for U+055F ARMENIAN
ABBREVIATION MARK?

MidNum Line_Break = Infix_Numeric, or

any of the following:

U+066C (٬) ARABIC THOUSANDS SEPARATOR
U+FE50 (﹐) SMALL COMMA
U+FE54 (﹔) SMALL SEMICOLON
U+FF0C (，) FULLWIDTH COMMA
U+FF1B (；) FULLWIDTH SEMICOLON
and not U+003A (:) COLON
and not U+FE13 (︓) PRESENTATION FORM FOR VERTICAL
COLON
and not U+002E (.) FULL STOP

Review Note:
Should U+003B SEMICOLON be added to MidNum?
Should U+FF0C FULLWIDTH COMMA and U+FF1B FULLWIDTH

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 21/39

SEMICOLON remain in MidNum?
Should U+FE10 PRESENTATION FORM FOR VERTICAL COMMA
and U+FE14 PRESENTATION FORM FOR VERTICAL SEMICOLON
be added to MidNum?

Numeric Line_Break = Numeric
or any of the following:

U+FF10 (０) FULLWIDTH DIGIT ZERO
..U+FF19 (９) FULLWIDTH DIGIT NINE
and not U+066C (٬) ARABIC THOUSANDS SEPARATOR

ExtendNumLet General_Category = Connector_Punctuation, or

U+202F NARROW NO-BREAK SPACE (NNBSP)

E_Base This value is obsolete and unused.

E_Modifier This value is obsolete and unused.

Glue_After_Zwj This value is obsolete and unused.

E_Base_GAZ (EBG) This value is obsolete and unused.

WSegSpace General_Category = Zs
and not Linebreak = Glue

Any This is not a property value; it is used in the rules to represent

any code point.

4.1.1 Word Boundary Rules

The table of word boundary rules uses the macro values listed in Table 3a. Each macro
represents a repeated union of the basic Word_Break property values and is shown in
boldface to distinguish it from the basic property values.

Table 3a. Word_Break Rule Macros

Macro Represents

AHLetter (ALetter | Hebrew_Letter)

MidNumLetQ (MidNumLet | Single_Quote)

Break at the start and end of text, unless the text is empty.

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 22/39

WB1 sot ÷ Any

WB2 Any ÷ eot

Do not break within CRLF.

WB3 CR × LF

Otherwise break before and after Newlines (including CR and LF)

WB3a (Newline | CR | LF) ÷

WB3b ÷ (Newline | CR | LF)

Do not break within emoji zwj sequences.

WB3c ZWJ × \p{Extended_Pictographic}

The \p{Extended_Pictographic} values are provided as a part of the Emoji data in
[UTS51].

Keep horizontal whitespace together.

WB3d WSegSpace × WSegSpace

Ignore Format and Extend characters, except after sot, CR, LF, and Newline. (See

Section 6.2, Replacing Ignore Rules.) This also has the effect of: Any × (Format |

Extend | ZWJ)

WB4 X (Extend | Format | ZWJ)* → X

Do not break between most letters.

WB5 AHLetter × AHLetter

Do not break letters across certain punctuation.

WB6 AHLetter × (MidLetter | MidNumLetQ)
AHLetter

WB7 AHLetter (MidLetter | MidNumLetQ) × AHLetter

WB7a Hebrew_Letter × Single_Quote

WB7b Hebrew_Letter × Double_Quote Hebrew_Letter

WB7c Hebrew_Letter Double_Quote × Hebrew_Letter

Do not break within sequences of digits, or digits adjacent to letters (“3a”, or “A3”).

https://www.unicode.org/reports/tr41/tr41-24.html#UTS51

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 23/39

WB8 Numeric × Numeric

WB9 AHLetter × Numeric

WB10 Numeric × AHLetter

Do not break within sequences, such as “3.2” or “3,456.789”.

WB11 Numeric (MidNum | MidNumLetQ) × Numeric

WB12 Numeric × (MidNum | MidNumLetQ)
Numeric

Do not break between Katakana.

WB13 Katakana × Katakana

Do not break from extenders.

WB13a (AHLetter | Numeric | Katakana |
ExtendNumLet)

× ExtendNumLet

WB13b ExtendNumLet × (AHLetter | Numeric |
Katakana)

Do not break within emoji flag sequences. That is, do not break between regional

indicator (RI) symbols if there is an odd number of RI characters before the break

point.

WB15 sot (RI RI)* RI × RI

WB16 [^RI] (RI RI)* RI × RI

Otherwise, break everywhere (including around ideographs).

WB999 Any ÷ Any

Notes:

It is not possible to provide a uniform set of rules that resolves all issues across
languages or that handles all ambiguous situations within a given language. The goal
for the specification presented in this annex is to provide a workable default; tailored
implementations can be more sophisticated.

For Thai, Lao, Khmer, Myanmar, and other scripts that do not typically use spaces
between words, a good implementation should not depend on the default word
boundary specification. It should use a more sophisticated mechanism, as is also
required for line breaking. Ideographic scripts such as Japanese and Chinese are even
more complex. Where Hangul text is written without spaces, the same applies.
However, in the absence of a more sophisticated mechanism, the rules specified in this
annex supply a well-defined default.

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 24/39

The correct interpretation of hyphens in the context of word boundaries is challenging.
It is quite common for separate words to be connected with a hyphen: “out-of-the-box,”
“under-the-table,” “Italian-American,” and so on. A significant number are hyphenated
names, such as “Smith-Hawkins.” When doing a Whole Word Search or query, users
expect to find the word within those hyphens. While there are some cases where they
are separate words (usually to resolve some ambiguity such as “re-sort” as opposed to
“resort”), it is better overall to keep the hyphen out of the default definition. Hyphens
include U+002D HYPHEN-MINUS, U+2010 HYPHEN, possibly also U+058A
ARMENIAN HYPHEN, and U+30A0 KATAKANA-HIRAGANA DOUBLE HYPHEN.

Implementations may build on the information supplied by word boundaries. For
example, a spell-checker would first check that each word was valid according to the
above definition, checking the four words in “out-of-the-box.” If any of the words failed,
it could build the compound word and check if it as a whole sequence was in the
dictionary (even if all the components were not in the dictionary), such as with “re-
iterate.” Of course, spell-checkers for highly inflected or agglutinative languages will
need much more sophisticated algorithms.

The use of the apostrophe is ambiguous. It is usually considered part of one word
(“can’t” or “aujourd’hui”) but it may also be considered as part of two words (“l’objectif”).
A further complication is the use of the same character as an apostrophe and as a
quotation mark. Therefore leading or trailing apostrophes are best excluded from the
default definition of a word. In some languages, such as French and Italian, tailoring to
break words when the character after the apostrophe is a vowel may yield better results
in more cases. This can be done by adding a rule WB5a.

Break between apostrophe and vowels (French, Italian).

WB5a apostrophe ÷ vowels

and defining appropriate property values for apostrophe and vowels. Apostrophe
includes U+0027 (') APOSTROPHE and U+2019 (’) RIGHT SINGLE QUOTATION
MARK (curly apostrophe). Finally, in some transliteration schemes, apostrophe is used
at the beginning of words, requiring special tailoring.

Certain cases such as colons in words (c:a) are included in the default even though
they may be specific to relatively small user communities (Swedish) because they do
not occur otherwise, in normal text, and so do not cause a problem for other languages.

For Hebrew, a tailoring may include a double quotation mark between letters, because
legacy data may contain that in place of U+05F4 (״) HEBREW PUNCTUATION
GERSHAYIM. This can be done by adding double quotation mark to MidLetter. U+05F3
.HEBREW PUNCTUATION GERESH may also be included in a tailoring (׳)

Format characters are included if they are not initial. Thus <LRM><ALetter> will break
before the <letter>, but there is no break in <ALetter><LRM><ALetter> or <ALetter>
<LRM>.

Characters such as hyphens, apostrophes, quotation marks, and colon should be taken
into account when using identifiers that are intended to represent words of one or more
natural languages. See Section 2.4, Specific Character Adjustments, of [UAX31].
Treatment of hyphens, in particular, may be different in the case of processing
identifiers than when using word break analysis for a Whole Word Search or query,
because when handling identifiers the goal will be to parse maximal units

https://www.unicode.org/reports/tr41/tr41-24.html#UAX31

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 25/39

corresponding to natural language “words,” rather than to find smaller word units within
longer lexical units connected by hyphens.

Normally word breaking does not require breaking between different scripts. However,
adding that capability may be useful in combination with other extensions of word
segmentation. For example, in Korean the sentence “I live in Chicago.” is written as
three segments delimited by spaces:

나는 Chicago에 산다.

According to Korean standards, the grammatical suffixes, such as “에” meaning “in”,
are considered separate words. Thus the above sentence would be broken into the
following five words:

나, 는, Chicago, 에, and 산다.

Separating the first two words requires a dictionary lookup, but for Latin text (“Chicago”)
the separation is trivial based on the script boundary.

Modifier letters (General_Category = Lm) are almost all included in the ALetter class,
by virtue of their Alphabetic property value. Thus, by default, modifier letters do not
cause word breaks and should be included in word selections. Modifier symbols
(General_Category = Sk) are not in the ALetter class and so do cause word breaks by
default.

Some or all of the following characters may be tailored to be in MidLetter, depending on
the environment:

U+002D (-) HYPHEN-MINUS
U+055A (՚) ARMENIAN APOSTROPHE
U+058A (֊) ARMENIAN HYPHEN
U+0F0B (་) TIBETAN MARK INTERSYLLABIC TSHEG
U+1806 (᠆) MONGOLIAN TODO SOFT HYPHEN
U+2010 (‐) HYPHEN
U+2011 (‑) NON-BREAKING HYPHEN
U+201B (‛) SINGLE HIGH-REVERSED-9 QUOTATION MARK
U+30A0 (゠) KATAKANA-HIRAGANA DOUBLE HYPHEN
U+30FB (・) KATAKANA MIDDLE DOT
U+FE63 (﹣) SMALL HYPHEN-MINUS
U+FF0D (－) FULLWIDTH HYPHEN-MINUS
In UnicodeSet notation, this is:
[\u002D\uFF0D\uFE63\u058A\u1806\u2010\u2011\u30A0\u30FB\u201B\u055A\u0F0B]
For example, some writing systems use a hyphen character between syllables
within a word. An example is the Iu Mien language written with the Thai script.
Such words should behave as single words for the purpose of selection (“double-
click”), indexing, and so forth, meaning that they should not word-break on the
hyphen.

Some or all of the following characters may be tailored to be in MidNum, depending on
the environment, to allow for languages that use spaces as thousands separators, such
as €1 234,56.

U+0020 SPACE
U+00A0 NO-BREAK SPACE
U+2007 FIGURE SPACE

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[\u002D\uFF0D\uFE63\u058A\u1806\u2010\u2011\u30A0\u30FB\u201B\u055A\u0F0B]

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 26/39

U+2008 PUNCTUATION SPACE
U+2009 THIN SPACE
U+202F NARROW NO-BREAK SPACE
In UnicodeSet notation, this is: [\u0020\u00A0\u2007\u2008\u2009\u202F]

4.2 Name Validation

Related to word determination is the issue of personal name validation. Implementations
sometimes need to validate fields in which personal names are entered. The goal is to
distinguish between characters like those in “James Smith-Faley, Jr.” and those in “!#@♥≠”. It
is important to be reasonably lenient, because users need to be able to add legitimate
names, like “di Silva”, even if the names contain characters such as space. Typically, these
personal name validations should not be language-specific; someone might be using a Web
site in one language while his name is in a different language, for example. A basic set of
name validation characters consists the characters allowed in words according to the above
definition, plus a number of exceptional characters:

Basic Name Validation Characters

[\p{name=/COMMA/}\p{name=/FULL STOP/}&\p{p}
\p{whitespace}-\p{c}
\p{alpha}
\p{wb=Katakana}\p{wb=Extend}\p{wb=ALetter}\p{wb=MidLetter}\p{wb=MidNumLet}
[\u002D\u055A\u058A\u0F0B\u1806\u2010\u2011\u201B\u2E17\u30A0\u30FB\uFE63\uFF0D]
]

This is only a basic set of validation characters; in particular, the following points should be
kept in mind:

It is a lenient, non-language-specific set, and could be tailored where only a limited set
of languages are permitted, or for other environments. For example, the set can be
narrowed if name fields are separated: “,” and “.” may not be necessary if titles are not
allowed.
It includes characters that may not be appropriate for identifiers, and some that would
not be parts of words. It also permits some characters that may be part of words in a
broad sense, but not part of names, such as in “c:a” in Swedish, or hyphenation points
used in dictionary words.
Additional tests may be needed in cases where security is at issue. In particular, names
may be validated by transforming them to NFC format, and then testing to ensure that
no characters in the result of the transformation change under NFKC. A second test is
to use the information in Table 5. Recommended Scripts in Unicode Identifier and
Pattern Syntax [UAX31]. If the name has one or more characters with explicit script
values that are not in Table 5, then reject the name.

5 Sentence Boundaries

Sentence boundaries are often used for triple-click or some other method of selecting or
iterating through blocks of text that are larger than single words. They are also used to
determine whether words occur within the same sentence in database queries.

Plain text provides inadequate information for determining good sentence boundaries.
Periods can signal the end of a sentence, indicate abbreviations, or be used for decimal
points, for example. Without much more sophisticated analysis, one cannot distinguish
between the two following examples of the sequence <?, ”, space, uppercase-letter>. In the
first example, they mark the end of a sentence, while in the second they do not.

http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[\u0020\u00A0\u2007\u2008\u2009\u202F]
http://unicode.org/cldr/utility/list-unicodeset.jsp?a=[\p{name%3D%2FCOMMA%2F}\p{name%3D%2FFULL+STOP%2F}%26\p{p}%0D%0A\p{whitespace}-\p{c}%0D%0A\p{alpha}%0D%0A\p{wb%3DKatakana}\p{wb%3DExtend}\p{wb%3DALetter}\p{wb%3DMidLetter}\p{wb%3DMidNumLet}%0D%0A[\u002D\u055A\u058A\u0F0B\u1806\u2010\u2011\u201B\u2E17\u30A0\u30FB\uFE63\uFF0D]]
https://www.unicode.org/reports/tr41/tr41-24.html#UAX31

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 27/39

He said, “Are you going?” John shook his head.

“Are you going?” John asked.

Without analyzing the text semantically, it is impossible to be certain which of these usages is
intended (and sometimes ambiguities still remain). However, in most cases a straightforward
mechanism works well.

Note: As with the other default specifications, implementations are free to override
(tailor) the results to meet the requirements of different environments or particular
languages. For example, locale-sensitive boundary suppression specifications can be
expressed in LDML [UTS35]. Specific sentence boundary suppressions are available in
the Common Locale Data Repository [CLDR] and may be used to improve the quality
of boundary analysis.

5.1 Default Sentence Boundary Specification

The following is a general specification for sentence boundaries—language-specific rules in
[CLDR] should be used where available.

The Sentence_Break property value assignments are explicitly listed in the corresponding
data file in [Props]. The values in that file are the normative property values.

For illustration, property values are summarized in Table 4, but the lists of characters are
illustrative.

Table 4. Sentence_Break Property Values

Value Summary List of Characters

CR U+000D CARRIAGE RETURN (CR)

LF U+000A LINE FEED (LF)

Extend Grapheme_Extend = Yes, or

U+200D ZERO WIDTH JOINER (ZWJ), or

General_Category = Spacing_Mark

Sep U+0085 NEXT LINE (NEL)
U+2028 LINE SEPARATOR
U+2029 PARAGRAPH SEPARATOR

Format General_Category = Format
and not U+200C ZERO WIDTH NON-JOINER (ZWNJ)
and not U+200D ZERO WIDTH JOINER (ZWJ)

Sp White_Space = Yes
and Sentence_Break ≠ Sep
and Sentence_Break ≠ CR
and Sentence_Break ≠ LF

https://www.unicode.org/reports/tr41/tr41-24.html#UTS35
https://www.unicode.org/reports/tr41/tr41-24.html#CLDR
https://www.unicode.org/reports/tr41/tr41-24.html#CLDR
https://www.unicode.org/reports/tr41/tr41-24.html#Props0

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 28/39

Lower Lowercase = Yes
and Grapheme_Extend = No and not in the ranges (for Mkhedruli
Georgian)
U+10D0 (ა) GEORGIAN LETTER AN
..U+10FA (ჺ) GEORGIAN LETTER AIN and

U+10FD (ჽ) GEORGIAN LETTER AEN
..U+10FF (ჿ) GEORGIAN LETTER LABIAL SIGN

Upper General_Category = Titlecase_Letter, or

Uppercase = Yes and not in the ranges (for Mtavruli Georgian)
U+1C90 (Ა) GEORGIAN MTAVRULI CAPITAL LETTER AN
..U+1CBA (Ჺ) GEORGIAN MTAVRULI CAPITAL LETTER AIN and

U+1CBD (Ჽ) GEORGIAN MTAVRULI CAPITAL LETTER AEN
..U+1CBF (Ჿ) GEORGIAN LETTER MTAVRULI CAPITAL LABIAL SIGN

OLetter Alphabetic = Yes, or

U+00A0 NO-BREAK SPACE (NBSP), or

U+05F3 (׳) HEBREW PUNCTUATION GERESH
and Lower = No
and Upper = No
and Sentence_Break ≠ Extend

Numeric Line_Break = Numeric
or any of the following:

U+FF10 (０) FULLWIDTH DIGIT ZERO
..U+FF19 (９) FULLWIDTH DIGIT NINE

ATerm U+002E (.) FULL STOP
U+2024 (․) ONE DOT LEADER
U+FE52 (﹒) SMALL FULL STOP
U+FF0E (．) FULLWIDTH FULL STOP

SContinue U+002C (,) COMMA
U+002D (-) HYPHEN-MINUS
U+003A (:) COLON
U+055D (՝) ARMENIAN COMMA
U+060C (،) ARABIC COMMA
U+060D (؍) ARABIC DATE SEPARATOR
U+07F8 (߸) NKO COMMA
U+1802 (᠂) MONGOLIAN COMMA
U+1808 (᠈) MONGOLIAN MANCHU COMMA
U+2013 (–) EN DASH

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 29/39

U+2014 (—) EM DASH
U+3001 (、) IDEOGRAPHIC COMMA
U+FE10 (︐) PRESENTATION FORM FOR VERTICAL COMMA
U+FE11 (︑) PRESENTATION FORM FOR VERTICAL IDEOGRAPHIC
COMMA
U+FE13 (︓) PRESENTATION FORM FOR VERTICAL COLON
U+FE31 (︱) PRESENTATION FORM FOR VERTICAL EM DASH
U+FE32 (︲) PRESENTATION FORM FOR VERTICAL EN DASH
U+FE50 (﹐) SMALL COMMA
U+FE51 (﹑) SMALL IDEOGRAPHIC COMMA
U+FE55 (﹕) SMALL COLON
U+FE58 (﹘) SMALL EM DASH
U+FE63 (﹣) SMALL HYPHEN-MINUS
U+FF0C (，) FULLWIDTH COMMA
U+FF0D (－) FULLWIDTH HYPHEN-MINUS
U+FF1A (：) FULLWIDTH COLON
U+FF64 (､) HALFWIDTH IDEOGRAPHIC COMMA

STerm Sentence_Terminal = Yes

Close General_Category = Open_Punctuation, or

General_Category = Close_Punctuation, or

Line_Break = Quotation
and not U+05F3 (׳) HEBREW PUNCTUATION GERESH
and ATerm = No
and STerm = No

Any This is not a property value; it is used in the rules to represent any

code point.

5.1.1 Sentence Boundary Rules

The table of sentence boundary rules uses the macro values listed in Table 4a. Each macro
represents a repeated union of the basic Sentence_Break property values and is shown in
boldface to distinguish it from the basic property values.

Table 4a. Sentence_Break Rule Macros

Macro Represents

ParaSep (Sep | CR | LF)

SATerm (STerm | ATerm)

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 30/39

Break at the start and end of text, unless the text is empty.

SB1 sot ÷ Any

SB2 Any ÷ eot

Do not break within CRLF.

SB3 CR × LF

Break after paragraph separators.

SB4 ParaSep ÷

Ignore Format and Extend characters, except after sot, ParaSep, and within CRLF.

(See Section 6.2, Replacing Ignore Rules.) This also has the effect of: Any × (Format

| Extend)

SB5 X (Extend | Format)* → X

Do not break after full stop in certain contexts. [See note below.]

SB6 ATerm × Numeric

SB7 (Upper | Lower) ATerm × Upper

SB8 ATerm Close* Sp* × (¬(OLetter | Upper | Lower | ParaSep |
SATerm))* Lower

SB8a SATerm Close* Sp* × (SContinue | SATerm)

Break after sentence terminators, but include closing punctuation, trailing spaces,

and any paragraph separator. [See note below.]

SB9 SATerm Close* × (Close | Sp | ParaSep)

SB10 SATerm Close* Sp* × (Sp | ParaSep)

SB11 SATerm Close* Sp*
ParaSep?

÷

Otherwise, do not break.

SB998 Any × Any

Notes:

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 31/39

Rules SB6–SB8 are designed to forbid breaks after ambiguous terminators (primarily
U+002E FULL STOP) within strings such as those shown in Figure 3. The contexts
which forbid breaks include occurrence directly before a number, between uppercase
letters, when followed by a lowercase letter (optionally after certain punctuation), or
when followed by certain continuation punctuation such as a comma, colon, or
semicolon. These rules permit breaks in strings such as those shown in Figure 4. They
cannot detect cases such as “...Mr. Jones...”; more sophisticated tailoring would be
required to detect such cases.
Rules SB9–SB11 are designed to allow breaks after sequences of the following form,
but not within them:

(STerm | ATerm) Close* Sp* (Sep | CR | LF)?
Note that in unusual cases, a word segment (determined according to Section 4 Word
Boundaries) may span a sentence break (according to Section 5 Sentence Boundaries
). Inconsistencies between word and sentence boundaries can be reduced by
customizing SB11 to take account of whether a period is followed by a character from a
script that does not normally require spaces between words.
Users can run experiments in an interactive online demo to observe default word and
sentence boundaries in a given piece of text.

Figure 3. Forbidden Breaks on “.”

c.d

3.4

U.S.

... the resp. leaders are ...

... etc.)’ ‘(the ...

Figure 4. Allowed Breaks on “.”

She said “See spot run.” John shook his head. ...

... etc. 它们指...

...理数字. 它们指...

6 Implementation Notes

6.1 Normalization

The boundary specifications are stated in terms of text normalized according to
Normalization Form NFD (see Unicode Standard Annex #15, “Unicode Normalization Forms”
[UAX15]). In practice, normalization of the input is not required. To ensure that the same
results are returned for canonically equivalent text (that is, the same boundary positions will
be found, although those may be represented by different offsets), the grapheme cluster
boundary specification has the following features:

There is never a break within a sequence of nonspacing marks.

http://unicode.org/cldr/utility/breaks.jsp
https://www.unicode.org/reports/tr41/tr41-24.html#UAX15

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 32/39

There is never a break between a base character and subsequent nonspacing marks.

The specification also avoids certain problems by explicitly assigning the Extend property
value to certain characters, such as U+09BE (া) BENGALI VOWEL SIGN AA, to deal with
particular compositions.

The other default boundary specifications never break within grapheme clusters, and they
always use a consistent property value for each grapheme cluster as a whole.

6.2 Replacing Ignore Rules

An important rule for the default word and sentence specifications ignores Extend and
Format characters. The main purpose of this rule is to always treat a grapheme cluster as a
single character—that is, as if it were simply the first character of the cluster. Both word and
sentence specifications do not distinguish between L, V, T, LV, and LVT: thus it does not
matter whether there is a sequence of these or a single one. In addition, there is a specific
rule to disallow breaking within CRLF. Thus ignoring Extend is sufficient to disallow breaking
within a grapheme cluster. Format characters are also ignored by default, because these
characters are normally irrelevant to such boundaries.

The “Ignore” rule is then equivalent to making the following changes in the rules:

Replace the “Ignore” rule by the following, to disallow breaks within sequences

(except after CRLF and related characters):

Original Modified

X (Extend |
Format)*→X

⇒ (¬Sep) × (Extend | Format)

In all subsequent rules, insert (Extend | Format)* after every boundary property

value, except in negations (such as ¬(OLetter | Upper ...). (It is not necessary to do

this after the final property, on the right side of the break symbol.) For example:

Original Modified

X Y × Z W ⇒ X (Extend | Format)* Y (Extend | Format)* × Z (Extend |
Format)* W

X Y × ⇒ X (Extend | Format)* Y (Extend | Format)* ×

An alternate expression that resolves to a single character is treated as a whole.

For example:

Original Modified

(STerm | ATerm) ⇒ (STerm | ATerm) (Extend | Format)*

This is not interpreted as:

 ⇏ (STerm (Extend | Format)* | ATerm (Extend | Format)*)

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 33/39

Note: Where the “Ignore” rule uses a different set, such as (Extend | Format | ZWJ)
instead of (Extend | Format), the corresponding changes would be made in the above
replacements.

The “Ignore” rules should not be overridden by tailorings, with the possible exception of
remapping some of the Format characters to other classes.

6.3 State Machines

The rules for grapheme clusters can be easily converted into a regular expression, as in
Table 1b, Combining Character Sequences and Grapheme Clusters. It must be evaluated
starting at a known boundary (such as the start of the text), and it will determine the next
boundary position. The resulting regular expression can also be used to generate fast,
deterministic finite-state machines that will recognize all the same boundaries that the rules
do.

The conversion into a regular expression is very straightforward for grapheme cluster
boundaries. It is not as easy to convert the word and sentence boundaries, nor the more
complex line boundaries [UAX14]. However, it is possible to also convert their rules into fast,
deterministic finite-state machines that will recognize all the same boundaries that the rules
do. The implementation of text segmentation in the ICU library follows that strategy.

For more information on Unicode Regular Expressions, see Unicode Technical Standard #18,
“Unicode Regular Expressions” [UTS18].

6.4 Random Access

Random access introduces a further complication. When iterating through a string from
beginning to end, a regular expression or state machine works well. From each boundary to
find the next boundary is very fast. By constructing a state table for the reverse direction from
the same specification of the rules, reverse iteration is possible.

However, suppose that the user wants to iterate starting at a random point in the text, or
detect whether a random point in the text is a boundary. If the starting point does not provide
enough context to allow the correct set of rules to be applied, then one could fail to find a
valid boundary point. For example, suppose a user clicked after the first space after the
question mark in “Are␣you␣there?␣ ␣No,␣I’m␣not”. On a forward iteration searching for a
sentence boundary, one would fail to find the boundary before the “N”, because the “?” had
not been seen yet.

A second set of rules to determine a “safe” starting point provides a solution. Iterate
backward with this second set of rules until a safe starting point is located, then iterate
forward from there. Iterate forward to find boundaries that were located between the safe
point and the starting point; discard these. The desired boundary is the first one that is not
less than the starting point. The safe rules must be designed so that they function correctly
no matter what the starting point is, so they have to be conservative in terms of finding
boundaries, and only find those boundaries that can be determined by a small context (a few
neighboring characters).

Figure 5. Random Access

http://www.unicode.org/reports/tr41/tr41-24.html#UAX14
http://www.unicode.org/reports/tr41/tr41-24.html#UTS18

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 34/39

This process would represent a significant performance cost if it had to be performed on
every search. However, this functionality can be wrapped up in an iterator object, which
preserves the information regarding whether it currently is at a valid boundary point. Only if it
is reset to an arbitrary location in the text is this extra backup processing performed. The
iterator may even cache local values that it has already traversed.

6.5 Tailoring

Rule-based implementation can also be combined with a code-based or table-based tailoring
mechanism. For typical state machine implementations, for example, a Unicode character is
typically passed to a mapping table that maps characters to boundary property values. This
mapping can use an efficient mechanism such as a trie. Once a boundary property value is
produced, it is passed to the state machine.

The simplest customization is to adjust the values coming out of the character mapping table.
For example, to mark the appropriate quotation marks for a given language as having the
sentence boundary property value Close, artificial property values can be introduced for
different quotation marks. A table can be applied after the main mapping table to map those
artificial character property values to the real ones. To change languages, a different small
table is substituted. The only real cost is then an extra array lookup.

For code-based tailoring a different special range of property values can be added. The state
machine is set up so that any special property value causes the state machine to halt and
return a particular exception value. When this exception value is detected, the higher-level
process can call specialized code according to whatever the exceptional value is. This can all
be encapsulated so that it is transparent to the caller.

For example, Thai characters can be mapped to a special property value. When the state
machine halts for one of these values, then a Thai word break implementation is invoked
internally, to produce boundaries within the subsequent string of Thai characters. These
boundaries can then be cached so that subsequent calls for next or previous boundaries
merely return the cached values. Similarly Lao characters can be mapped to a different
special property value, causing a different implementation to be invoked.

7 Testing

There is no requirement that Unicode-conformant implementations implement these default
boundaries. As with the other default specifications, implementations are also free to override
(tailor) the results to meet the requirements of different environments or particular languages.
For those who do implement the default boundaries as specified in this annex, and wish to
check that that their implementation matches that specification, three test files have been
made available in [Tests29].

These tests cannot be exhaustive, because of the large number of possible combinations;
but they do provide samples that test all pairs of property values, using a representative
character for each value, plus certain other sequences.

A sample HTML file is also available for each that shows various combinations in chart form,
in [Charts29]. The header cells of the chart consist of a property value, followed by a

https://www.unicode.org/reports/tr41/tr41-24.html#Tests29
https://www.unicode.org/reports/tr41/tr41-24.html#Charts29

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 35/39

representative code point number. The body cells in the chart show the break status: whether
a break occurs between the row property value and the column property value. If the browser
supports tool-tips, then hovering the mouse over the code point number will show the
character name, General_Category, Line_Break, and Script property values. Hovering over
the break status will display the number of the rule responsible for that status.

Note: Testing two adjacent characters is insufficient for determining a boundary, except
for the case of the default grapheme clusters.

The chart may be followed by some test cases. These test cases consist of various strings
with the break status between each pair of characters shown by blue lines for breaks and by
whitespace for non-breaks. Hovering over each character (with tool-tips enabled) shows the
character name and property value; hovering over the break status shows the number of the
rule responsible for that status.

Due to the way they have been mechanically processed for generation, the test rules do not
match the rules in this annex precisely. In particular:

1. The rules are cast into a more regex-style.
2. The rules “sot ÷”, “÷ eot”, and “÷ Any” are added mechanically and have artificial

numbers.
3. The rules are given decimal numbers without prefix, so rules such as WB13a are given

a number using tenths, such as 13.1.
4. Where a rule has multiple parts (lines), each one is numbered using hundredths, such

as
21.01) × $BA
21.02) × $HY
...

5. Any “treat as” or “ignore” rules are handled as discussed in this annex, and thus
reflected in a transformation of the rules not visible in the tests.

The mapping from the rule numbering in this annex to the numbering for the test rules is
summarized in Table 5.

Table 5. Numbering of Rules

Rule in This Annex Test Rule Comment

xx1 0.2 sot (start of text)

xx2 0.3 eot (end of text)

SB8a 8.1

Letter styleWB13a 13.1

WB13b 13.2

GB999
999.0 Any

WB999

Note: Rule numbers may change between versions of this annex.

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 36/39

8 Hangul Syllable Boundary Determination

In rendering, a sequence of jamos is displayed as a series of syllable blocks. The following
rules specify how to divide up an arbitrary sequence of jamos (including nonstandard
sequences) into these syllable blocks. The symbols L, V, T, LV, LVT represent the
corresponding Hangul_Syllable_Type property values; the symbol M for combining marks.

The precomposed Hangul syllables are of two types: LV or LVT. In determining the syllable
boundaries, the LV behave as if they were a sequence of jamo L V, and the LVT behave as if
they were a sequence of jamo L V T.

Within any sequence of characters, a syllable break never occurs between the pairs of
characters shown in Table 6. In all cases other than those shown in Table 6, a syllable break
occurs before and after any jamo or precomposed Hangul syllable. As for other characters,
any combining mark between two conjoining jamos prevents the jamos from forming a
syllable block.

Table 6. Hangul Syllable No-Break Rules

Do Not Break Between Examples

L L, V, LV or LVT L × L
L × V
L × LV
L × LVT

V or LV V or T V × V
V × T
LV × V
LV × T

T or LVT T T × T
LVT × T

Jamo, LV or LVT Combining marks L × M
V × M
T × M
LV × M
LVT × M

Even in Normalization Form NFC, a syllable block may contain a precomposed Hangul
syllable in the middle. An example is L LVT T. Each well-formed modern Hangul syllable,
however, can be represented in the form L V T? (that is one L, one V and optionally one T)
and consists of a single encoded character in NFC.

For information on the behavior of Hangul compatibility jamos in syllables, see Section 18.6,
Hangul of [Unicode].

8.1 Standard Korean Syllables

https://www.unicode.org/reports/tr41/tr41-24.html#Unicode

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 37/39

Standard Korean syllable block: A sequence of one or more L followed by a sequence
of one or more V and a sequence of zero or more T, or any other sequence that is
canonically equivalent.

All precomposed Hangul syllables, which have the form LV or LVT, are standard Korean
syllable blocks.
Alternatively, a standard Korean syllable block may be expressed as a sequence of a
choseong and a jungseong, optionally followed by a jongseong.
A choseong filler may substitute for a missing leading consonant, and a jungseong filler
may substitute for a missing vowel.

Using regular expression notation, a canonically decomposed standard Korean syllable block
is of the following form:

L+ V+ T*

Arbitrary standard Korean syllable blocks have a somewhat more complex form because
they include any canonically equivalent sequence, thus including precomposed Korean
syllables. The regular expressions for them have the following form:

(L+ V+ T*) | (L* LV V* T*) | (L* LVT T*)

All standard Korean syllable blocks used in modern Korean are of the form <L V T> or <L V>
and have equivalent, single-character precomposed forms.

Old Korean characters are represented by a series of conjoining jamos. While the Unicode
Standard allows for two L, V, or T characters as part of a syllable, KS X 1026-1 only allows
single instances. Implementations that need to conform to KS X 1026-1 can tailor the default
rules in Section 3.1 Default Grapheme Cluster Boundary Specification accordingly.

8.2 Transforming into Standard Korean Syllables

A sequence of jamos that do not all match the regular expression for a standard Korean
syllable block can be transformed into a sequence of standard Korean syllable blocks by the
correct insertion of choseong fillers (Lf) and jungseong fillers (Vf). This transformation of a
string of text into standard Korean syllables is performed by determining the syllable breaks
as explained in the earlier subsection “Hangul Syllable Boundaries,” then inserting one or two
fillers as necessary to transform each syllable into a standard Korean syllable as shown in
Figure 6.

Figure 6. Inserting Fillers

L [^V] → L Vf [^V]

[^L] V → [^L] Lf V

[^V] T → [^V] Lf Vf T

In Figure 6, [^X] indicates a character that is not X, or the absence of a character.

In Table 7, the first row shows syllable breaks in a standard sequence, the second row shows
syllable breaks in a nonstandard sequence, and the third row shows how the sequence in the
second row could be transformed into standard form by inserting fillers into each syllable.
Syllable breaks are shown by middle dots “·”.

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 38/39

Table 7. Korean Syllable Break Examples

No. Sequence Sequence with Syllable Breaks Marked

1 LVTLVLVLVf Lf VLf Vf T → LVT · LV · LV · LVf · Lf V · Lf Vf T

2 LLTTVVTTVVLLVV → LL · TT · VVTT · VV · LLVV

3 LLTTVVTTVVLLVV → LLVf · Lf Vf TT · Lf VVTT · Lf VV · LLVV

Acknowledgments

Mark Davis is the author of the initial version and has added to and maintained the text of this
annex. Laurențiu Iancu assisted in updating it for Versions 7.0 through 10.0.

Thanks to Julie Allen, Asmus Freytag, Manish Goregaokar, Andy Heninger, Ted Hopp,
Tsuyoshi Ito, Martin Hosken, Michael Kaplan, Eric Mader, Otto Stolz, Steve Tolkin, Ken
Whistler, and Karl Williamson for their feedback on this annex, including earlier versions.

References

For references for this annex, see Unicode Standard Annex #41, “Common References for
Unicode Standard Annexes.”

Modifications

The following summarizes modifications from the previous published version of this annex.

Revision 36 [CJC]

Proposed update for Unicode 13.0.
Added Christopher Chapman as editor.
Section 3 Grapheme Cluster Boundaries

Table 2, Grapheme_Cluster_Break Property Values
Excluded prepended concatenation marks from Control.

Section 4 Word Boundaries
Table 3, Word_Break Property Values

Added U+02E5..U+02EB, U+055A, U+058A, U+A708..U+A716 to ALetter.
Added a review note to ALetter.
Added U+055F to MidLetter.
Added a review note to MidLetter.
Added a review note to MidNum.

Revision 35

Reissued for Unicode 12.0.
Section 3 Grapheme Cluster Boundaries

Moved surrogate code points from Control to XX
Section 4 Word Boundaries

Added U+FF10..U+FF19 to Numeric
Section 5 Sentence Boundaries

https://www.unicode.org/reports/tr41/tr41-24.html

10/7/2019 UAX #29: Unicode Text Segmentation

https://www.unicode.org/reports/tr29/tr29-36.html 39/39

Modified Lower and Upper to reflect the special nature of Georgian, since it is not
effectively a bicameral script in the same way as others.
Added U+FF10..U+FF19 to Numeric

Revision 34 being a proposed update, only changes between revisions 33 and 35 are noted
here.

Modifications for previous versions are listed in those respective versions.

© 2019 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind,
and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in
connection with or arising out of the use of the information or programs contained or accompanying this technical report.
The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

http://www.unicode.org/copyright.html

