
L2/20-175

UTC #164 properties feedback & recommendations
Markus Scherer / Unicode properties & algorithms group, 2020-jul-21

Properties & algorithms
We are a group of Unicode contributors who take an interest in properties and algorithms.
We look at relevant feedback reports and documents that Unicode receives, do some research, and submit
UTC documents with recommendations as input to UTC meetings.

This group started with the UCD file and production tool maintainers, with Markus Scherer as the chair. Several
UTC participants have requested and received invitations to join. So far, discussion has been via email and
shared documents. We may use video meetings if needed.

Participants
The following people have contributed to this document:

Markus Scherer (chair), Mark Davis, Christopher Chapman, Ken Lunde, Peter Constable, Asmus Freytag,
Andy Heninger, Koji Ishii, Ken Whistler

Public feedback
Feedback received via the Unicode reporting form, see L2/20-174 “Comments on Public Review Issues (April
20 - July 16, 2020)”.

F1: IdentifierType of Ainu Katakana characters

Feedback (verbatim)

Date/Time: Tue May 12 20:46:39 CDT 2020
Name: Manish Goregaokar
Report Type: Error Report
Opt Subject: IdentifierType of Ainu Katakana characters

In IdentifierStatus.txt:

31F0..31FF ; Technical # 3.2 [16] KATAKANA LETTER SMALL KU..KATAKANA LETTER SMALL RO

These are from the Katakana Phonetic Extensions block; which exists for writing the Ainu language.
Ainu is apparently both written using the Latin and Katakana scripts, using these extensions.

According to UTS 39 Table 1[1], "Technical" is "Specialized usage: technical, liturgical, etc.",
which doesn't seem to fit with code points that are actively used in a primary script for a language.

Should we be changing this to Recommended?

 [1]: https://www.unicode.org/reports/tr39/#Identifier_Status_and_Type

Recommended UTC actions

1. Approve: Change the Identifier_Type of Ainu Katakana characters 31F0..31FF from Technical to
Obsolete.

2. AI: Change the Identifier_Type of Ainu Katakana characters 31F0..31FF from Technical to Obsolete.

Background information / discussion

UTS #39 describes the relevant Identifier_Type values like this:
● Obsolete: Characters that are no longer in modern use.
● Technical: Specialized usage: technical, liturgical, etc.
● Uncommon_Use: Characters whose status is uncertain, or that are not commonly used in modern text.
● Limited_Use: Characters from scripts that are in limited use: with Script_Extensions values containing

a script in Table 7, Limited Use Scripts in [UAX31], and no explicit script from Table 5, Recommended
Scripts.

https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts

● “Modern scripts that are in more limited use”
● “Recommended Scripts are generally recommended for use in identifiers. These are in widespread

modern customary use, or are regional scripts in modern customary use by large communities.”

https://en.wikipedia.org/wiki/Ainu_language “Only the Hokkaido variant survives … Hokkaido Ainu is moribund,
though attempts are being made to revive it.”

The Ainu letters fit the criteria for Obsolete but not for Technical nor Limited_Use.

Note: The Identifier_Status is for use in identifiers, not general text.

Note: We used to distinguish a particular class of Limited_Use as “Aspirational”. We dropped that distinction
when it became clear that there were no objective, measurable criteria for making that distinction.

F2: uppercase of U+0587 ARMENIAN SMALL LIGATURE ECH YIWN

Feedback (verbatim)

Date/Time: Thu Apr 23 13:30:44 CDT 2020
Name: Markus W Scherer
Report Type: Error Report
Opt Subject: uppercase of U+0587 ARMENIAN SMALL LIGATURE ECH YIWN

Maybe for the Script Ad Hoc?

https://www.unicode.org/reports/tr39/#Identifier_Status_and_Type
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://en.wikipedia.org/wiki/Ainu_language

We have received a bug report claiming that the uppercase form of U+0587 և
is wrong.

SpecialCasing.txt has
<code>; <lower> ; <title> ; <upper> ; (<condition_list> ;)? # <comment>
0587; 0587; 0535 0582; 0535 0552; # ARMENIAN SMALL LIGATURE ECH YIWN

This means that the ligature small ech-yiwn uppercases to ԵՒ=capital ech+yiwn=0535+0552.

The report says that it should uppercase to ԵՎ=capital ech+vew=0535+054E.

I have asked for an authoritative reference and will report when I receive something.

In the meantime, I found this:

https://en.wikipedia.org/wiki/Armenian_alphabet#endnote_h

“The ligature և has no majuscule form; when capitalized it is written as two
letters Եւ (classical) or Եվ (reformed).”

Can someone confirm this?

If true, should we change SpecialCasing.txt to use the "reformed" uppercasing?
Should implementers (e.g., ICU) offer both versions? Under what conditions?

Please advise.

Recommended UTC actions

1. Approve: Change SpecialCasing.txt for U+0587 ligature ech-yiwn to unconditionally titlecase and
uppercase to ech+vew. (Option 2 in L2/20-175 item F2, Discussion)

2. AI: Change SpecialCasing.txt for U+0587 ligature ech-yiwn to unconditionally titlecase and uppercase
to ech+vew: title=0535 057E, upper=0535 054E

3. AI: Add an annotation for U+0587 noting that the titlecase and uppercase mappings disagree with the
Decomposition_Mapping.

Expert feedback

L2/20-143 “Uppercase of U+0587 ARMENIAN SMALL LIGATURE ECH YIWN” via Deborah Anderson

Background information

Ligature ech-yiwn has a Decomposition_Mapping to ech+yiwn which cannot be changed: <compat> 0565
0582

UnicodeData.txt:

0535;ARMENIAN CAPITAL LETTER ECH;Lu;0;L;;;;;N;;;;0565;
054E;ARMENIAN CAPITAL LETTER VEW;Lu;0;L;;;;;N;;;;057E;

https://en.wikipedia.org/wiki/Armenian_alphabet#endnote_h
https://www.unicode.org/L2/L2020/20143-armenian-ech-yiwn.pdf

0552;ARMENIAN CAPITAL LETTER YIWN;Lu;0;L;;;;;N;;;;0582;
0565;ARMENIAN SMALL LETTER ECH;Ll;0;L;;;;;N;;;0535;;0535
057E;ARMENIAN SMALL LETTER VEW;Ll;0;L;;;;;N;;;054E;;054E
0582;ARMENIAN SMALL LETTER YIWN;Ll;0;L;;;;;N;;;0552;;0552
0587;ARMENIAN SMALL LIGATURE ECH YIWN;Ll;0;L;<compat> 0565 0582;;;;N;;;;;

SpecialCasing.txt:

0587; 0587; 0535 0582; 0535 0552; # ARMENIAN SMALL LIGATURE ECH YIWN

There are two language codes/subtags for Armenian:

Type: language
Subtag: hy
Description: Armenian
Added: 2005-10-16
Suppress-Script: Armn
Comments: see also hyw

Type: language
Subtag: hyw
Description: Western Armenian
Added: 2018-03-08
Comments: see also hy

https://en.wikipedia.org/wiki/Western_Armenian

Discussion

It appears that in Western Armenian (outside of what used to be USSR territories), the uppercase form is
ech+yiwn but the lowercase ligature is not in common use; while in Eastern Armenian (reformed in Soviet
times) the ligature continues to be used, the letter yiwn has mostly fallen out of use, and the ligature is
understood as standing for ech+vew with a corresponding uppercase form.

Options:

1. Do nothing.
a. Pro: Respects the original identity of the ech-yiwn ligature.
b. Con: Does not fit usage where the ligature is in common use.

2. Change SpecialCasing.txt to unconditionally map ech-yiwn to uppercase and titlecase ech+vew.
a. Pro: Simple change to fit common usage.
b. Pro: Does not impact most usage in Western Armenian.
c. Con: Does not fit rare usage of the ligature in Western Armenian.
d. Con: The default case mapping would disagree with the Decomposition_Mapping.

3. Change SpecialCasing.txt to conditionally map ech-yiwn to uppercase and titlecase ech+vew but only
for language hy.

a. Pro: Limits change to Eastern Armenian.
b. Con: Conditional case mappings are not generally data-driven, thus tend to require library code

changes.

https://en.wikipedia.org/wiki/Western_Armenian

c. Con: Does not fit common behavior “out of the box” as a default mapping, requires the language
to be specified for the case mapping function.

4. Change SpecialCasing.txt to un conditionally map ech-yiwn to ech+vew, and also conditionally map
ech-yiwn to ech+yiwn but only for language hyw.

a. Pro: Fits common behavior “out of the box”.
b. Con: Conditional case mappings are not generally data-driven, thus tend to require library code

changes.
c. Con: The default case mapping would disagree with the Decomposition_Mapping.

F3: IDNA test case error

Feedback (verbatim)

Date/Time: Wed May 20 01:31:04 CDT 2020
Name: Trevor
Report Type: Error Report
Opt Subject: IDNA test case error

Hello,

I believe I have found 2 tests in
https://www.unicode.org/Public/idna/13.0.0/IdnaTestV2.txt whose expected
result are not possible to represent when using the ToASCII operation with
Transitional_Processing = true, CheckJoiners = false, and VerifyDnsLength =
false.

This relates to tests whose source string is U+200C or U+200D. The U+200C
and U+200D get mapped to an empty string due to the use of Transitional
Processing and as a result, the expected ouput is an empty string. However,
it is not possible to represent an empty string as the expected output for
toAsciiT because an empty string means that toAsciiT "adopts" toAsciiN's
value, which in this case is either 'xn--1ug' or 'xn--0ug'.

Tests in question (source string escaped for readability):
\u200D; ; [C2]; xn--1ug; ; ; [A4_2] #
\u200C; ; [C1]; xn--0ug; ; ; [A4_2] #

Recommended UTC actions

1. AI for Markus: Revise the syntax of IdnaTestV2.txt, adding the ability to represent an explicitly empty
input or output string; and generate a new version of the data accordingly.

2. AI for Markus: Revise the generation of IdnaTestV2.txt, escaping certain characters like ZWJ and
ZWNJ to make them visible.

3. AI for Markus: In IdnaTestV2.txt, fix the URL .../tr46/proposed.html#Processing to point to the latest
version of UTS #46.

4. AI for Markus & the ed committee: Add a migration note to UTS #46 about incompatible changes to the
test file format and contents.

https://www.unicode.org/Public/idna/13.0.0/IdnaTestV2.txt

Background information / discussion

The test file format uses an abbreviation mechanism where several expected-output fields are documented
with “A blank value means the same as the toAsciiNStatus value.” or similar. There is no syntax for an
explicitly empty string.

The file format uses UTF-8, but “characters may be escaped using the \uXXXX or \x{XXXX} convention where
they could otherwise have a confusing display. These characters include control codes and combining marks.”
In the Unicode 13 version, no such escape sequences are used.

Markus: I suggest we use a pair of ASCII double quotes "" to indicate an explicitly empty string, and escape
certain control codes as documented (as well as leading & trailing spaces, if there are any).

F4: UTS#46 tests and URL delimiters

Feedback (verbatim)

Date/Time: Fri May 29 16:49:03 CDT 2020
Name: Trevor
Report Type: Error Report
Opt Subject: UTS#46 tests and URL delemiters

Hello,

There are a number of tests[1] that contain labels that have a U+003F "?"
question mark code point where the test expects the label containing the
U+003F "?" question mark to remain in its Unicode form when performing the
toASCII[2] operation on the domain. As far as I can tell, there is nothing
in the UTS#46 specification that prevents the label from being converted
into an ASCII label. The toASCII[2] operation converts all labels to ASCII
unless punycode returns an error. Going through the Punycode spec,
Punycode's encode[3] algorithm does not reject U+003F "?" question marks and
as a result labels containing U+003F "?" question marks get converted to
ASCII contrary to the test expectations.

I presume that that tests are trying to say that any label containing common
URL delimiters such as ":/@.?#[]" shouldn't be converted to an ASCII label,
but I'm not really sure what the expected results are supposed to be. I
suppose you could add a check for such common URL delimiters and skip
punycode encoding labels that contain one assuming the test expectations are
correct.

[1] https://www.unicode.org/Public/idna/13.0.0/IdnaTestV2.txt
[2] https://www.unicode.org/reports/tr46/#ToASCII
[3] https://tools.ietf.org/html/rfc3492#section-6.3

https://www.unicode.org/Public/idna/13.0.0/IdnaTestV2.txt
https://www.unicode.org/reports/tr46/#ToASCII
https://tools.ietf.org/html/rfc3492#section-6.3

- Trevor

Recommended UTC actions

1. AI for Markus: Re L2/20-175 item F4: Investigate revising the generation of IdnaTestV2.txt, writing
expected output strings computed with UseSTD3ASCIIRules=false but retaining the error flags for
when UseSTD3ASCIIRules=true is set.

Background information / discussion

https://www.unicode.org/Public/idna/13.0.0/IdnaMappingTable.txt
U+003F “?” is among
003A..0040 ; disallowed_STD3_valid # 1.1 COLON..COMMERCIAL AT

IdnaTestV2.txt contains 129 test cases where the source string contains a question mark.
The toASCII output strings are written using UseSTD3ASCIIRules=true.

The test instructions include this:

If the implementation converts illegal code points into U+FFFD [...] then the string comparisons need to
account for that by treating U+FFFD in the actual value as a wildcard when comparing to the expected
value in the test file.

However, Trevor’s situation is the reverse: He processes with UseSTD3ASCIIRules=false and gets a literal
question mark, while the test file’s expected output string contains U+FFFD instead.

F5: UAX #50 orientation of Bopomofo tone marks

Feedback (verbatim)

Date/Time: Fri Apr 24 17:59:22 CDT 2020
Name: Elika J. Etemad
Report Type: Error Report
Opt Subject: UTR50 orientation of Bopomofo tone marks

Hello UTC,

I'm writing regarding the four tone marks used in bopomofo:

 02C9 MODIFIER LETTER MACRON
 02CA MODIFIER LETTER ACUTE ACCENT
 02C7 CARON
 02CB MODIFIER LETTER GRAVE ACCENT
 02D9 DOT ABOVE

These are currently registered as R in UTR50, but they should probably
be adjusted to U, consistent with the rest of the Bopomofo letters.
(They're a bit more widely used than just within Bopomofo, but UTR50

https://www.unicode.org/Public/idna/13.0.0/IdnaMappingTable.txt

is primarily targetted at CJK context, and within this context these
modifier letters are much more likely to be used as Bopomofo tone
marks than otherwise.)

See discussion thread at https://lists.w3.org/Archives/Public/www-style/2015Aug/0315.html
for more context.

Thanks~

~fantasai

Recommended UTC actions

1. Approve: Change the Vertical_Orientation property of 02C7, 02C9, 02CA, 02CB, 02D9 from R to U.
2. AI for Ken Lunde: Change the Vertical_Orientation property of 02C7, 02C9, 02CA, 02CB, 02D9 from R

to U.

Copy of the referenced W3C email

On 08/26/2015 12:05 AM, Xidorn Quan wrote:
> On Wed, Aug 26, 2015 at 12:15 AM, fantasai
> <fantasai.lists@inkedblade.net> wrote:
>> On 08/25/2015 02:59 PM, Xidorn Quan wrote:
>>> I propose that we should add "text-orientation: upright" to the
>>> "rt:lang(zh-TW)" rule.
>>>
>>> The reason is that, all the tone marks in bopomofo (U+02CA, U+02C7,
>>> U+02CB, U+02D9) have Vertical_Orientation property "R" while the
>>> bopomofo characters are all "U". It means, without explicitly setting
>>> text-orientation to upright, the text run would break between them,
>>> which makes it impossible to use font feature to place the tone mark
>>> properly.
>>
>> I think it would make more sense to have Unicode update UTR50 to make
>> these characters upright in mixed-orientation text (or otherwise tailor
>> it within CSS as a whole). It's not just a problem with ruby.
>
> Well, that could be tricky, because those characters might also be
> used with latin scripts. I'm not sure anyway.

Latin mostly uses the combining-mark form, rather than the modifier
letter form. Also for mixed vertical text, we're biased mostly towards
CJK usage (which bopomofo counts as). So I think we're okay.

Still would like Unicode signoff, too, of course.

~fantasai

https://lists.w3.org/Archives/Public/www-style/2015Aug/0315.html

Background information / discussion

https://www.unicode.org/reports/tr50/#vo
● U: Characters which are displayed upright, with the same orientation that appears in the code charts.
● R: Characters which are displayed sideways, rotated 90 degrees clockwise compared to the code

charts.
● Tu: Characters which are not just upright or sideways, but generally require a different glyph than in the

code charts when used in vertical texts. In addition, as a fallback, the character can be displayed with
the code chart glyph upright.

● Tr: Same as Tu except that, as a fallback, the character can be displayed with the code chart glyph
rotated 90 degrees clockwise.

https://www.unicode.org/Public/UCD/latest/ucd/VerticalOrientation.txt
02B0..02C1 ; R # Lm [18] MODIFIER LETTER SMALL H..
 MODIFIER LETTER REVERSED GLOTTAL STOP
02C2..02C5 ; R # Sk [4] MODIFIER LETTER LEFT ARROWHEAD..
 MODIFIER LETTER DOWN ARROWHEAD
02C6..02D1 ; R # Lm [12] MODIFIER LETTER CIRCUMFLEX ACCENT..
 MODIFIER LETTER HALF TRIANGULAR COLON
02D2..02DF ; R # Sk [14] MODIFIER LETTER CENTRED RIGHT HALF RING..
 MODIFIER LETTER CROSS ACCENT
02E0..02E4 ; R # Lm [5] MODIFIER LETTER SMALL GAMMA..
 MODIFIER LETTER SMALL REVERSED GLOTTAL STOP
02E5..02E9 ; R # Sk [5] MODIFIER LETTER EXTRA-HIGH TONE BAR..
 MODIFIER LETTER EXTRA-LOW TONE BAR
02EA..02EB ; U # Sk [2] MODIFIER LETTER YIN DEPARTING TONE MARK..
 MODIFIER LETTER YANG DEPARTING TONE MARK
02EC ; R # Lm MODIFIER LETTER VOICING
02ED ; R # Sk MODIFIER LETTER UNASPIRATED
02EE ; R # Lm MODIFIER LETTER DOUBLE APOSTROPHE
02EF..02FF ; R # Sk [17] MODIFIER LETTER LOW DOWN ARROWHEAD..
 MODIFIER LETTER LOW LEFT ARROW

3105..3126 ; U # Lo [34] BOPOMOFO LETTER B..BOPOMOFO LETTER ER
3127 ; Tu # Lo BOPOMOFO LETTER I
3128..312F ; U # Lo [8] BOPOMOFO LETTER U..BOPOMOFO LETTER NN
31A0..31BF ; U # Lo [32] BOPOMOFO LETTER BU..BOPOMOFO LETTER AH

Ken Lunde writes : I agree with Elika that these should be U in UAX #50, which matches U+02EA and
U+02EB that are also used with Bopomofo. In other words, in a vertical context, their use with Bopomofo
outweighs other vertical uses, which should be somewhere between zero and none.

F6: Vertical Text in UAX9 Mostly Irrelevant

Feedback (verbatim)

Date/Time: Sat May 30 19:34:01 CDT 2020
Name: Elika J. Etemad

https://www.unicode.org/reports/tr50/#vo
https://www.unicode.org/Public/UCD/latest/ucd/VerticalOrientation.txt

Report Type: Error Report
Opt Subject: Vertical Text in UAX9 Mostly Irrelevant

The rules in UAX9 6.2 Vertical Text http://unicode.org/reports/tr9/#Vertical_Text
are presented as if this is what implementations are expected to do, but actually,
most of them don't. RTL text is rendered bottom-to-top instead. The section should
be removed, or rewritten to be an example of something that *could* be done with
UAX9's algorithms (but isn't necessarily).

Recommended UTC actions

1. Authorize a proposed update of UAX #9 for Unicode 14.0.
2. AI for Ken Whistler and the ed committee: Start a proposed update of UAX #9 for Unicode 14.0.
3. AI for Ken Whistler and the ed committee: Re L2/20-175 item F6: Update UAX #9 section 6.2 Vertical

Text according to feedback from Elika Etemad and incorporating a suggested revision from Koji Ishii.

Background information / discussion

From UAX #9:

6.2 Vertical Text

In the case of vertical line orientation, the Bidirectional Algorithm is still used to determine the levels of
the text. However, these levels are not used to reorder the text, because the characters are usually
ordered uniformly from top to bottom. Instead, the levels are used to determine the rotation of the text.
Sometimes vertical lines follow a vertical baseline in which each character is oriented as normal (with
no rotation), with characters ordered from top to bottom whether they are Hebrew, numbers, or Latin.
When setting text using the Arabic script in vertical lines, it is more common to employ a horizontal
baseline that is rotated by 90° counterclockwise so that the characters are ordered from top to bottom.
Latin text and numbers may be rotated 90° clockwise so that the characters are also ordered from top
to bottom.

The Bidirectional Algorithm is used when some characters are ordered from bottom to top. For
example, this happens with a mixture of Arabic and Latin glyphs when all the glyphs are rotated
uniformly 90° clockwise. The Unicode Standard does not specify whether text is presented horizontally
or vertically, or whether text is rotated. That is left up to higher-level protocols.

Koji Ishii : I think the current text is correct, leaving up to higher-level protocols, but it’s true that one may argue
that it is recommending one of the options which is not implemented in major browsers. I’m fine with any of
these options:

1. Remove. This is easiest for us. Unlike when this was written, CSS Writing Modes can provide one
possible implementation in detail.

2. Stay in UAX#9, with some modifications.
3. Move to UAX#50 with some modifications.

Here’s my try to modify this section:

http://unicode.org/reports/tr9/#Vertical_Text

In the case of vertical line orientation, there are multiple ways to represent bidirectional text. Some
methods use the Bidirectional Algorithm, some don’t. The Unicode Standard does not specify whether
text is presented horizontally or vertically, or whether text is rotated. It is left up to higher-level protocols.
For example, one of the common approaches is to rotate all the glyphs uniformly 90° clockwise. The
Bidirectional Algorithm is used with this method. While some characters are ordered from bottom to top,
this method can represent a mixture of Arabic and Latin glyphs in the same way as horizontal line
orientation.
Another possible approach is to render the text uniformly from top to bottom. This method has multiple
variations to determine the orientation of characters. One of them uses the Bidirectional Algorithm to
determine the level of the text, but these levels are not used to reorder the text. Instead, the levels are
used to determine the rotation of the text. Sometimes vertical lines follow a vertical baseline in which
each character is oriented as normal (with no rotation), with characters ordered from top to bottom
whether they are Hebrew, numbers, or Latin. When setting text using the Arabic script in vertical lines, it
is more common to employ a horizontal baseline that is rotated by 90° counterclockwise so that the
characters are ordered from top to bottom. Latin text and numbers may be rotated 90° clockwise so
that the characters are also ordered from top to bottom.

F7: UAX14 quotation marks vs ID

Feedback (verbatim)

Date/Time: Mon Jun 22 16:19:50 CDT 2020
Name: fantasai
Report Type: Error Report
Opt Subject: UAX14 quotation marks vs ID

The UAX14 rules concerning QU are too strict, and don't work for Chinese by
default, because they rely on spaces to be a reasonable default. This can
probably be solved by allowing breaks between ID + Pi and between Pf + ID.
See https://github.com/w3c/clreq/issues/245 for more info.

Recommended UTC actions

1. AI for the properties & algorithms group: Discuss L2/20-175 item F7 (line break quotation marks vs. ID)
further and make a recommendation in time for UTC #165.

Background information / discussion

Mark : I recommend putting out a PRI for this (and maybe other issues) to get feedback from a broader
community.

Andy : I don't know much about Chinese, so I'll take the description of the problem on faith.

Splitting the character class QU into Pf and Pi would carry a cost in data size.

The change would be to LB-19, currently

× QU

https://github.com/w3c/clreq/issues/245

QU ×
Something like

[^ID] × Pi
Pf × [^ID]

Which raises the question of whether any other character categories beyond ID would want to have this
behavior.

And what should be done with quotes that are neither Pf or Pi, like ASCII quotes?

In any event, I don't think anything should go into UAX-14 without first being implemented and released in ICU,
to see what unanticipated complications turn up. Maybe it could be put out as a CLDR tailoring.

Koji Ishii : Using ID doesn't solve the case presented in
https://github.com/unicode-org/icu/pull/223#issuecomment-435642278 as Andy pointed out above.

ASCII quotes are fine, they're not full-width in Chinese/Japanese and that authors will put spaces before or
after appropriately. The problem of U+201C/201D/etc. is that they're full-width in C/J fonts, and they have
embedded spacing in their glyphs, similar to full-width parenthesis (see http://unicode.org/reports/tr50/#table_2
for example glyphs of full-width parenthesis,) so we can't expect space characters to exist.

Given Andy's comment on the data size, maybe similar approach as LB30 can solve?

F8: ARABIC DATE SEPARATOR class error

Feedback (verbatim)

Date/Time: Tue Jun 2 06:23:29 CDT 2020
Name: Bahman Eslami
Report Type: Error Report
Opt Subject: ARABIC DATE SEPARATOR class error

Hello,

The error is that the charachter ARABIC DATE SEPARATOR is classified as
Bidi Category "AL" which would imply strong right-to-left direction.
This makes it's impossible to apply kerning between Arabic script numbers
and ADS. Please take a look at the following issue on github:

https://github.com/googlefonts/ufo2ft/issues/384

I think bi-directional type of the ADS should be LTR or Neutral.

Thanks,

Bahman

https://github.com/unicode-org/icu/pull/223#issuecomment-435642278
http://unicode.org/reports/tr50/#table_2
https://github.com/googlefonts/ufo2ft/issues/384

Recommended UTC actions

We recommend not to make any changes.

Background information / discussion

Mark : I am very leery of this, since it changes the bidi ordering. That incompatibility would be far more
destructive than lack of kerning. (Also, it sounds like there is a technical limitation imposed by OT, not intrinsic;
is there no way to relax that?)

Peter Constable : U+060D ARABIC DATE SEPARATOR (ADS) was proposed by Jonathan Kew in L2/01-425
and L2/01-426 , based on usage in Pakistan for Urdu, Balochi and other languages. Per Figure 1 in L2/01-426,
“In Pakistan Baluchistan… [d]ates are written from right to left: the numeral denoting the day of the month is
followed by [ADS], followed by the name of the month, and finally the year.” The following is an example (from
Figure 1 in L2/01-426):

The “Bidi Committee” that existed at that time reviewed this proposal and prepared recommendations to UTC
in L2/02-061 ; those recommendations included assigning Bidi Category = AL. Based on the example, AL isn’t
obviously unreasonable. For comparison, there are other Arabic punctuation characters that are AL (061B,
061E, 061F, 066D, 06D4), though some are not (e.g., 0609: ET, 060C: CS). The rationale given in the feedback
is that it “makes [it] impossible to apply kerning”. That seems to be a limitation either in certain rendering
implementations, font formats or font tooling: in principle, there’s no reason why character-level properties
should hinder ability to kern visually-adjacent glyphs.

F9: Missing Indic shaping properties for U+0300 and U+0301

Feedback (verbatim)

Date/Time: Fri Jun 26 19:06:23 CDT 2020
Name: Norbert Lindenberg
Report Type: Error Report
Opt Subject: Missing Indic shaping properties for U+0300 and U+0301

The Unicode Standard 13.0, page 466, recommends the characters U+0300
combining grave accent and U+0301 combining acute accent for use with the
Devanagari script. However, these characters do not have Indic syllabic
categories defined for them, so it’s not clear how they would be used and
where they would fit into Devanagari syllables.

Recommended UTC actions

1. AI for the ed committee: Re L2/20-175 item F9: In standard section 12.1 Devanagari, clarify use of
0953/0954/0300/0301 in Latin transliteration vs. in Devanagari text, and clarify that none of these 4
combining marks should be used in Devanagari text.

https://www.unicode.org/L2/L2001/01425-arabic_marks.pdf
https://www.unicode.org/L2/L2001/01426-arabic_marks_examples.pdf
https://www.unicode.org/L2/L2002/02061-bidi.pdf

Background information / discussion

Standard text referenced in the feedback (chapter 12 “South and Central Asia-I”, section “12.1 Devanagari”)

U+0953 DEVANAGARI GRAVE ACCENT and U+0954 DEVANAGARI ACUTE ACCENT were
originally encoded for Latin transliteration of Sanskrit text. However, such use is now discouraged, in
favor of the generic combining marks, U+0300 COMBINING GRAVE ACCENT and U+0301
COMBINING ACUTE ACCENT. U+0953 and U+0954 should not be used with the Devanagari script;
they have no Indic shaping properties.

The standard recommends using 0300/0301 “for Latin transliteration of Sanskrit text”. We need not define Indic
shaping properties for them.

Markus pointed this out to Norbert and asked him to elaborate. He responded:

I may have overlooked that specific subcontext within the context of a section on the Devanagari script
and on combining marks within that script. If none of the four characters is intended for use with the
Devanagari script, then that paragraph should be moved into a separate section “Deprecated
characters” at the end of section 12.1, and the last sentence should start with “None of the four
characters should be used with the Devanagari script.” Indic shaping properties indeed are not needed
in that case.

Peter Constable believes that the 0953/0954 marks were in ISCII for Latin transliteration and came into
Unicode that way, but without clarity on their purpose. The text in the standard is intended to address this lack
of clarity.

F10: Missing Indic shaping properties for Devanagari and Vedic characters

Feedback (verbatim)

Date/Time: Tue Jul 7 17:43:56 CDT 2020
Name: Norbert Lindenberg
Report Type: Error Report
Opt Subject: Missing Indic shaping properties for Devanagari and Vedic characters

A number of Devanagari and Vedic characters are missing Indic syllabic or
positional category definitions in the Unicode 13.0 data:

– 0950, 0971, A8F4..A8F7, A8FB, A8FD don’t have an Indic syllabic category
(as letters they don’t need a positional category).

– 1CE2..1CE8, 1CED don’t have syllabic categories (they do have positional
categories).

– 1CF8..1CF9 don’t have a positional category (they do have a syllabic category).

https://www.unicode.org/versions/Unicode13.0.0/ch12.pdf

For the first set, I can imagine that some of the characters don’t
participate in forming Devanagari syllables, and therefore the default value
Other for the syllabic category is actually correct. If that’s the case,
however, I think it would be preferable to explicitly provide the value,
both to make clear that it’s intentional and to remind users of the data
that this value can occur with Brahmic scripts (the specification of the
Universal Shaping Engine currently does not handle this case).

Recommended UTC actions

1. AI for Andrew Glass and other experts: Re L2/20-175 item F10: Investigate what the right Indic shaping
properties should be for certain Devanagari and Vedic characters.

Background information / discussion

Please discuss!

Documents

D1: Proposal to merge three Identifier_Types in UTS #39
L2/20-054 from Roozbeh Pournader

Summary

Proposal to merge Obsolete and Technical into Uncommon_Use

Full text

UTS #39 defines three different property values for Identifier_Type that are
neither well-defined nor followed properly in their assignments to
characters. On top of that, the text for version 13.0 of UTS #39 includes:

"For the qualifiers on usage, Obsolete, Uncommon_Use and Technical, the
distinctions among the Identifier_Type values is not strict and only one
might be given."

The author recently tried to determine the best property values for a few
characters new to Unicode 13.0, and had a hard time drawing the line between
these for some characters. Since there is no practical distinction among the
three property values for any algorithm defined by the Unicode Consortium,
the author suggests merging the two property values "Obsolete" and
"Technical" into "Uncommon_Use". The definition of "Uncommon_Use" can be
expanded to include the definitions of the other two property values.

https://www.unicode.org/L2/L2020/20054-id-type-merge.txt

Recommended UTC actions

1. AI for Roozbeh: Re L2/20-054 and L2/20-175 item D1: Analyze which characters are marked as
Identifier_Type=Technical but are only Obsolete, and vice versa.

Background information / discussion

https://www.unicode.org/reports/tr39/#Identifier_Status_and_Type
● …
● Obsolete: Characters that are no longer in modern use.
● Technical: Specialized usage: technical, liturgical, etc.
● Uncommon_Use: Characters whose status is uncertain, or that are not commonly used in modern text.
● Limited_Use: Characters from scripts that are in limited use …
● …

Mark : The advantage of separate categories is that customizations can use them to filter. Eg allow Technical
but not Obsolete. The only reason to merge is if we think the distinction can't be reliably maintained.

Asmus : Agree with Mark. We have external specs that now cite these distinctions. OK to fine tune if
something is major off-kilter, but generally it's better to know whether stuff is "in use, but for limited scope" vs.
"no longer in use".

D2: Proposal to fix Hebrew in UAX #14 by ruling out LB21a..b
L2/20-087 from Marcel Schneider

Summary

In L2/20-087 , the author argues that rule LB21a ("Do not break after Hebrew + Hyphen" "HL (HY | BA) ×") does
not match the original requirement to address the problem that "With <hebrew hyphen non-hebrew>, there is no
break on either side of the hyphen." He points out that the current rule prevents line breaking after the hyphen
when a Hebrew character follows the hyphen and notes that it is common to break there in Biblical Hebrew. He
also notes that the rule includes spaces in the BA class, which was not part of the original requirement.

The author provides a "pro forma solution" of changing the rule to "HL (HY | BA) × [^HL]" and removing spaces
from the BA class (which he covers in L2/20-088).

The author also provides an "actual solution" of removing rules LB21a and LB21b, merging the HL class back
into the AL class, and "fixing" spaces (which he covers in L2/20-088).

Recommended UTC actions

Wait for the author to provide a single, consolidated, final document to replace L2/20-005, L2/20-087, L2/20-088,
and the work-in-progress recent submissions.

https://www.unicode.org/reports/tr39/#Identifier_Status_and_Type
http://www.unicode.org/L2/L2020/20087-hebrew-uax14.pdf
http://www.unicode.org/L2/L2020/20087-hebrew-uax14.pdf
http://www.unicode.org/L2/L2020/20088-uax14-spaces.pdf
http://www.unicode.org/L2/L2020/20088-uax14-spaces.pdf

Background information / discussion

Note that the author of documents 087 & 088 has presented further documents on the same topic in 2020 July,
and has indicated that this topic is a work in progress.

Chris : It’s not clear to me how the “actual solution” solves the original problem of "With <hebrew hyphen
non-hebrew>, there is no break on either side of the hyphen." Do any of you see a way this would work?

D3: Proposal to adjust space characters in UAX #14
L2/20-088 from Marcel Schneider

Summary

The author began making a case for moving spaces out of the BA class in L2/20-087 and continues it in this
document (L2/20-088).

The author provides a "solution" of moving the space characters U+1680 and U+2000..U+2003 to the SP class
and the spaces U+2004..U+200A to the GL class. (Note that U+2007 is already in the GL class.)

Recommended UTC actions

Wait for the author to provide a single, consolidated, final document to replace L2/20-005, L2/20-087, L2/20-088,
and the work-in-progress recent submissions.

Background information / discussion

Note that the author of documents 087 & 088 has presented further documents on the same topic in 2020 July,
and has indicated that this topic is a work in progress.

Chris : The author asserts that "there are virtually zero existing documents that would be disrupted when
upgrading from Unicode 13.0.0 to Unicode 14.0.0 while the line breaking property values of fixed-width spaces
are changed for Unicode 14.0.0 as suggested". Do any of you have counterexamples to this?

Mark : I am very, very hesitant about these changes, since they change line breaks. We'd have to be sure that
either (a) they are so little used in text that it doesn't matter, or (b) that there is a strong reason for it.

Moreover, we run the risk that implementations would ignore this change. SP has special handling in
implementations because it occurs so often, and has special handling at the ends of lines.

Andy : I'd have to refresh myself on UAX#14, but if BA doesn't work, it may be better to pop a new class ? My
hunch is that Mark is right: Some classes, like SP, shouldn't acquire new members.

http://www.unicode.org/L2/L2020/20088-uax14-spaces.pdf
http://www.unicode.org/L2/L2020/20087-hebrew-uax14.pdf
http://www.unicode.org/L2/L2020/20088-uax14-spaces.pdf

D4: Identifier_Status of Limited_Use scripts in UTS #39
L2/20-164 from Manish Goregaokar

Summary

Move Identifier_Type=Limited_Use from Identifier_Status=Restricted to Identifier_Status=Allowed for
support-by-default of aspirational-use scripts; for example, Javanese and Balinese.

Manish had first proposed and discussed this on the Unicode members mailing list on 2020-jun-29/30 under
the subject “UTS 39: Inclusion of Identifier_Type=Limited_Use amongst Identifier_Status=Restricted”.

Recommended UTC actions

We recommend not to make any changes.

Background information / discussion

https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts

In the email discussion , Asmus Freytag argued for the status quo, worried about increasing the “attack
surface” for spoofing, skeptical about how widely used the Limited_Use scripts like Javanese are at this point,
and pointing out that certain hurdles for use (fonts, keyboards, etc.) are more important than domain names
and are not hindered by the Limited_Use classification. Mark agrees with that, and notes that implementations
are free to customize and add additional scripts to Allowed; the important feature is what Asmus noted, that this
is insignificant in comparison to lack of fonts, keyboards, core locale data, etc. Richard Wordingham also
seemed to agree with a cautious approach.

Manish recommends defaulting to permit Limited_Use scripts and “maybe have a cautionary thing saying that
you should be wary about confusables and that this increases the attack surface”, rather than keeping them
default-restricted and leaving it to products to discover (e.g., via bug reports) certain scripts that they may wish
to allow.

Side issue: Restoring Aspirational
Asmus : I think it was wrong to remove the "aspirational" scripts category. I'd favor evaluating a proposal to
bring that one back.

I am emphatically opposed to changing the status of limited_use away from restricted. If something isn't
limited_use, then it should get a new (revived) category (with "recommended to treat as restricted").

That way, we can flexibly handle scripts that are (or may be) in the middle of a status change from defunct to
actually in use. (That is, if people feel that there actually are aspirational scripts).

The key is to realize that there are external specifications that build on these classifications and a generic
watering down of the meaning of limited_use is more than unhelpful.

https://www.unicode.org/L2/L2020/20164-limited-use.pdf
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts

From a DNS perspective, recommendations would depend on the DNS zone. The root zone would be limited
to recommended scripts, while second and lower levels may be more flexible. Recommendations for the
second level are being formulated and it is in that area that it's conceivable that some country might allow a
zone with an aspirational script.

Having Unicode make that determination would be preferable, because in the other arena, there's no way to
really draw a boundary, and the minute some aspirational script has to be supported, if it is "limited_use" then it
undermines the case for restricting any other limited-use scripts.

Leaving things as they are is fine only as long as nobody succeeds in a real script revival to where a script
may actually be competing with Latin or Arabic. At that point, the pressure of overriding limited_use will be
there and having a third category would add a firewall.

Mark : I'm against restoring "Aspirational".

We used to distinguish a particular class of Limited_Use as “Aspirational”.

We dropped that distinction when it became clear that there were no objective, measurable criteria for making
that distinction.

We could only reinstate that if we were able to come up with such criteria, and a process for determining which
scripts meet them.

IMO the criteria would at least include that a script is in common daily use (reading and writing) by a significant
population — excluding scholars (think E. hieroglyphs) and hobbyists (think runes).

Then we would have to put in place a process for people to provide evidence that that is the case.

For all of that we would need a detailed proposal.

Asmus : Clarification: if we had some in-between classification for scripts in transition, where they don't meet
(yet) the criteria for a recommended script, but are with some probability expected to do so, then we could
resolve proposals like L/20-164 by focusing on whether the evidence is sufficient for assigning this third
category.

Consumers of the Unicode specifications, like those setting policy for various DNS zones, would benefit from
having a "watch list" of scripts that have a chance of becoming main-stream and also some guidance that
support for them may be appropriate in certain zones (but not, by default) everywhere.
——
I generally agree with the need for a definition, not just a label, for some "in-between" status like "aspirational".

"Daily common use (non-specialized)" is effectively what we used for the DNS Root Zone for further selecting
characters from the overall repertoire of recommended scripts.

Therefore, while a requirement like this would nicely differentiate a script from a limited-use one, it does make it
difficult to distinguish a script from a fully recommended one.

The distinction could come, perhaps from a sense of trajectory. An aspirational script would be one that is
experiencing significant changes in use, towards (or close to) a state where it is / will be in "daily common use".
Another aspect could be that the script is in competition with an existing script for the same language
community (or a recent development for a language community not well served by use of existing scripts).

With a definition like that, we would have a place for people like the current proposers to go to instead of
requesting wholesale changes to existing classifications.
——
"Significant population" is always tricky. For the DNS we tried to abstract away from mere size, but to use a
scale like EGIDS for the supported languages which describes how well a langues is being transmitted across
generations, resp. how close to extinction it is. Scripts that support native languages of low EGIDS values
would qualify, even if the number of people speaking them was "small" (think Iceland or the Maldives) but not
"miniscule" - after factoring in literacy rates.

