
L2/21-069R  
UTC   #167   properties   feedback   &   recommendations  

Markus   Scherer   /   Unicode   properties   &   algorithms   group,   2021-apr-26  

Properties   &   algorithms  
We   are   a   group   of   Unicode   contributors   who   take   an   interest   in   properties   and   algorithms.  
We   look   at   relevant   feedback   reports   and   documents   that   Unicode   receives,   do   some   research,   and   submit  
UTC   documents   with   recommendations   as   input   to   UTC   meetings.  
 
This   group   started   with   the   UCD   file   and   production   tool   maintainers,   and   with   Markus   Scherer   as   the   chair.  
Several   UTC   participants   have   requested   and   received   invitations   to   join.   We   discuss   via   email,   shared  
documents,   and   sometimes   video   meetings.  

Participants  
The   following   people   have   contributed   to   this   document:  
 
Markus   Scherer   (chair),   Mark   Davis,   Asmus   Freytag,   Christopher   Chapman,   Ken   Whistler,   Peter   Constable  

Public   feedback  
Feedback   received   via   the   Unicode   reporting   form,   see    L2/21-068    “Comments   on   Public   Review   Issues  
(January   8,   2021   -   April   22,   2021)”.  

F1:   Contradictory   requirements   for   U+2044   and   default   ignorable   code  
points  

Recommended   UTC   actions  

1. AI   for   Markus   Scherer:   Provide   small   edits   for   chapters   5   &   23   to   clarify   that   default   ignorable   code  
points   can   have   effects   on   display   beside   their   intended   function.   Include   an   example   or   two,   such   as  
fraction   slash   sequences,   and/or   sequences   with   U+0600   ARABIC   NUMBER   SIGN   followed   by   one   or  
more   Arabic   digits.   For   Unicode   14.   Reference:   L2/21-069   item   F1.  

Feedback   (verbatim)  

Date/Time:   Mon    Feb   1    10:58:28   CST   2021  
Name:   David   Corbett  
Report   Type:   Error   Report  
Opt   Subject:   Contradictory   requirements   for   U+2044   and   default   ignorable   code   points  
 
Chapter   6   says   that   the    fraction   slash    creates   fractions   only   in   the  
environment   ̀\p{Nd}+\u2044\p{Nd}+`.   However,   chapter   5   says   that   default  

1  

https://www.unicode.org/L2/L2021/21068-pubrev.html


ignorable   code   points   should   sometimes   be   ignored   for   display,   with   the  
example   that   “U+200B   ZERO   WIDTH   SPACE   affects   word   segmentation,   but   has   no  
visible   display”,   and   chapter   23   says   that   outside   of   a   defined   variation  
sequence,   “use   of   a   variation   selector   character   does   not   change   the   visual  
appearance   of   the   preceding   base   character   from   what   it   would   have   had   in  
the   absence   of   the   variation   selector.”   How   should   these   contradictory  
requirements   be   resolved?   For   example,   should   <digit,   variation   selector,  
slash,   digit>   and   <digit,   ZWSP,   slash,   digit>   be   displayed   as  
fractions   or   not?  
 
Date/Time:   Sat    Apr   24    13:03:04   CDT   2021  
Name:   David   Corbett  
Report   Type:   Other   Question,   Problem,   or   Feedback  
Opt   Subject:   Response   to   L2/21-069  
 
>   David   does   not   include   a   use   case   for   combinations   of   fractions   with   default   
>   ignorable   code   points   in   his   submission.  
 
The   use   case   is   the   slashed   zero   in   fractions.   L2/21-069’s   recommendation   in   F1   
implies   that   <zero,   VS1,   fraction   slash,   one>   should   be   rendered   as   
<full-sized   slashed   zero,   slash,   full-sized   one>,   but   that   <one,   fraction   
slash,   zero,   VS1>   may   be   rendered   <numerator   one,   fraction   slash,   denominator   
slashed   zero>.  

Background   information   /   discussion  

https://www.unicode.org/versions/Unicode13.0.0/ch05.pdf  
● p.   246   “Format   characters   also   typically   have   no   visible   display   of   their   own,   but   may   impact   the   display  

of   neighboring   graphic   characters.”  
● p.   249   “...   However,   it   is   not   unusual   for   format   characters   and   variation   selectors   to   have   a   visible  

effect   on   other   characters   in   their   vicinity.   …   Finally,   there   are   some   format   characters   whose   function  
is   not   intended   to   affect   display.   U+200B   zero   width   space   affects   word   segmentation,   but   has   no  
visible   display.”  

https://www.unicode.org/versions/Unicode13.0.0/ch06.pdf    p.   271  
https://www.unicode.org/versions/Unicode13.0.0/ch23.pdf    p.   899  
 
Markus:  

● Looks   like   chapters   5   &   23   do   not   foresee   the   use   of   variation   selectors   or   format   controls   in   fraction  
sequences.  

● The   Standard   says   “have   no   visible   display   of   their   own”   but   does   not   promise   that   default   ignorable  
characters   have   no   effect   at   all   on   display   or   other   processing.  

○ The   Standard   gives   specific   examples   of   intended   effects   on   display   (e.g.,   for   ZWJ,   bidi  
controls,   and   SHY).  

○ We    could    add   a   more   explicit   statement   about   possible   effects   on   display   that   are   not   related   to  
the   character’s   intended   function,   and   in   particular   clarify   the   “not   intended   to   affect   display”   and  
“not   change   the   visual   appearance”   statements.   The   fraction   slash   display   could   be   an   example;  
a   processing   example   could   be   collation   contraction   matching.  

2  

https://www.unicode.org/versions/Unicode13.0.0/ch05.pdf
https://www.unicode.org/versions/Unicode13.0.0/ch06.pdf
https://www.unicode.org/versions/Unicode13.0.0/ch23.pdf


● David   does   not   include   a   use   case   for   combinations   of   fractions   with   default   ignorable   code   points   in   his  
submission.  

○ 2021-apr-26:   See   David’s   second   submission   in   response   to   an   earlier   version   of   this  
document.  

 
Asmus:   Reaffirm   that   the   fraction   slash   spec   is   a   specific   code   point   sequence,   and   additional   characters  
should   not   be   inserted.   Markus:   Fraction   slash   spec   is   already   very   precise.  
 
Asmus:   Format   characters   are    intended    to   have    some    effect.  
 
Peter:   Another   example   would   be   U+0600   ARABIC   NUMBER   SIGN,   which   is   discussed   in   ch.   9.2   (pg   372)  
and   described   as   being   “followed   by   a   sequence   of   one   or   more   Arabic   digits...   The   sequence   terminates   with  
the   occurrence   of   any   non-digit   character.”  

F2:   Fix   ambiguous   statement   in   #51   Unicode   Emoji  

Recommended   UTC   actions  

1. AI   for   Mark   Davis   and   the   editorial   committee,   for   UTS   #51   version   14:   
Change   the   phrase:    
This   set   (i.e.   Basic_Emoji)   excludes   all   instances   of   an   emoji   component,   which   are   not   intended   for  
independent,   direct   input"…   
to   
This   set   (i.e.   Basic_Emoji)   excludes   all    those    instances   of   an   emoji   component    that    are   not   intended   for  
independent,   direct   input"…   
and   add   explanatory   text   based   on   the   Background   information   below,   including   an   example  

2. AI   for   Mark   Davis:   Review   differences   between   RGI_Emoji   and   emoji-test.txt.   Reference:   L2/21-069  
item   F2.  

Feedback   (verbatim)  

A   Googler   sent   the   following   via   email:  

1. https://github.com/node-unicode/node-unicode-data/blob/b41fc8e7048376d4c673abeb62a0d039637d 
d3df/data/13.0.0-emoji-sequences.txt#L282    includes   U+1F9B0   in   Basic_Emoji,   which   in   turn   means  
\u{1F9B0}   is   an   RGI_Emoji   string.  

2. However,    https://unicode.org/reports/tr51/#def_basic_emoji_set    says   "This   set   (i.e.   Basic_Emoji)  
excludes   all   instances   of   an   emoji   component,   which   are   not   intended   for   independent,   direct   input"…  

3. …and  
https://github.com/node-unicode/node-unicode-data/blob/3d0934638c5028feb54073f418a19f7a61bdb 
83c/data/13.0.0-emoji.txt#L757    explicitly   lists   U+1F9B0   as   an   Emoji_Component.  

It   sounds   like   the   intention   is   for   standalone   emoji   components   to   NOT   be   RGI_Emoji   strings,   but   the   latest  
emoji-sequences.txt   includes   U+1F9B0   nonetheless.  
 
For   context,   this   is   causing   a   bug   for   us   on   the   XXX   project.   It   would   help   us   decide   how   to   proceed   if   you   could  
answer   this   question:  
 

3  

https://github.com/node-unicode/node-unicode-data/blob/b41fc8e7048376d4c673abeb62a0d039637dd3df/data/13.0.0-emoji-sequences.txt#L282
https://github.com/node-unicode/node-unicode-data/blob/b41fc8e7048376d4c673abeb62a0d039637dd3df/data/13.0.0-emoji-sequences.txt#L282
https://unicode.org/reports/tr51/#def_basic_emoji_set
https://github.com/node-unicode/node-unicode-data/blob/3d0934638c5028feb54073f418a19f7a61bdb83c/data/13.0.0-emoji.txt#L757
https://github.com/node-unicode/node-unicode-data/blob/3d0934638c5028feb54073f418a19f7a61bdb83c/data/13.0.0-emoji.txt#L757


Is   U+1F9B0   RGI_Emoji   or   not?  
In   other   words,   is   there   a   bug   in    https://unicode.org/reports/tr51/ ,   or   in   emoji-sequences.txt?   Or   did   I  
misunderstand   what's   going   on?  

Background   information   /   discussion  

Mark   replied   (and   Jennifer   agreed):  
There   are   really   two   kinds   of   components:  

1. The   intent   is   for   the   skin   tones   and   hair   styles   to   be    displayed    even   in   isolation,   but   they   should   not  
(typically)   be   on   the   keyboard   palette.    These   are   included   in   Basic_Emoji  

2. The   others   should   never   have   an   emoji   presentation   in   isolation,   but   do   occur   as   part   of   emoji   sequences.  
These   are   not   included.  

So   here   is   the   breakdown:  
 
EMOJI_COMPONENT   &&   BASIC_EMOJI: [�-�🦰-🦳]   
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%F0%9F%8F%BB-%F0%9F%8F%BF%F0%9F%A6%B0-%F0%9F%A6%B3%5D  
[9   code   points:   skin   tone   modifiers   +   hair   components]  
 
EMOJI_COMPONENT   --   BASIC_EMOJI: [#*0-9 � 🇦-🇿 - ]   
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%23*0-9%E2%80%8D%E2%83%A3%EF%B8%8F%F0%9F%87%A6-%F0%9F%87 
%BF%F3%A0%80%A0-%F3%A0%81%BF%5D&g=&i=  
[137   code   points:   keypad   components,   regional   indicators,   tag   characters,   ZWJ,   VS16]  

Documents  

D1:   Clarify   guidance   for   use   of   a   BOM   as   a   UTF-8   encoding   signature  
L2/21-038    from   Tom   Honermann  

Recommended   UTC   actions  

1. AI   for   Markus   Scherer   and   the   properties   &   algorithms   group:   Provide   small   edits   for   relevant   sections  
of   the   core   specfication   to   update   guidance   for   the   UTF-8   BOM,   given   that   UTF-8   has   become   the  
predominant   text   encoding   and   that   therefore   more   tools   can   assume   that   text   is   in   UTF-8.   In   terms   of  
the   standard,   this   effectively   constitutes   an   external   protocol.   Also,   we   might   add   that   more   tools   check  
for   well-formed   UTF-8   instead   of,   or   in   addition   to,   the   signature   byte   sequence.   For   Unicode   14.  
Reference:   L2/21-069   item   D1.  

Summary  

“The   Unicode   standard   is   clear   that   a   BOM   may   be   used   as   an   encoding   signature   for   UTF-8   encoded  
data,   but   its   guidance   regarding   when   a   BOM   is   or   is   not   recommended   for   such   use   is   not   consistently  
interpreted.  
 
This   paper   seeks   to   clarify   the   guidance   offered   by   the   Unicode   standard   for   use   of   a   BOM   as   an  
encoding   signature   and   proposes   several   possible   resolutions   ranging   from   removal   of   existing  

4  

https://unicode.org/reports/tr51/#:~:text=This%20set%20excludes%20all%20instances%20of,not%20intended%20for%20independent%2C%20direct%20input
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%F0%9F%8F%BB-%F0%9F%8F%BF%F0%9F%A6%B0-%F0%9F%A6%B3%5D
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%23*0-9%E2%80%8D%E2%83%A3%EF%B8%8F%F0%9F%87%A6-%F0%9F%87%BF%F3%A0%80%A0-%F3%A0%81%BF%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%23*0-9%E2%80%8D%E2%83%A3%EF%B8%8F%F0%9F%87%A6-%F0%9F%87%BF%F3%A0%80%A0-%F3%A0%81%BF%5D&g=&i=
https://www.unicode.org/L2/L2021/21038-bom-guidance.pdf


guidance   to   expanding   guidance   tailored   to   protocol   designers,   software   developers,   and   text   authors.”  

Background   information   /   discussion  

Markus:  
● In   my   view,   the   text   in   the   standard   continues   to   be   good   and   correct,   and   necessarily   vague.  
● We   could   update   it   slightly,   given   that   UTF-8   has   become   the   predominant   text   encoding   and   that  

therefore   more   tools   can   assume   that   text   is   in   UTF-8.   In   terms   of   the   standard,   this   effectively  
constitutes   an   external   protocol.   Also,   we   might   add   that   more   tools   check   for   well-formed   UTF-8  
instead   of,   or   in   addition   to,   the   signature   byte   sequence.  

● I   disagree   with   adding   a   statement   like   “In   situations   where   text   is   known   to   be   encoded   as   UTF-8,   a  
BOM   consumes   storage   space   unnecessarily.”   —   because   where   text   is   known   to   be   in   UTF-8,   there  
is   external   information,   and   the   signature   is   dis-recommended   anyway.  

D2:   Stability   policy:   Property   of   characters   must   not   become   property   of  
strings  
L2/21-091    from   Mathias   Bynens,   Markus   Scherer,   Mark   Davis  

Recommended   UTC   actions  

1. Recommend   to   the   officers   the   proposal   in   L2/21-069   item   D2   for   a   new   encoding   stability   policy  
regarding   the   stability   of   the   domains   of   properties.  

Summary  

Add   a   new   Unicode   Character   Encoding   Stability   Policy   ( https://www.unicode.org/policies/stability_policy.html ).  
 
Summary:   A   property   of   characters   must   not   become   a   property   of   strings,   or   vice   versa.   Applies   to   normative  
and   informative   properties.  

Background   information   /   discussion  

Important   for   stability   of   processing   (not   breaking   assumptions   made   by   implementers).  
 
Important   for   stability   of   validation   of   regular   expressions,   and   other   standards   using   Unicode   properties,   via  
property   metadata.  

Public   Review   Issues  
https://www.unicode.org/review/  

PRI   #417:   Proposed   Update   UAX   #29,   Unicode   Text   Segmentation  
https://www.unicode.org/review/pri417/  

5  

https://www.unicode.org/L2/L2021/21091-stability-prop-domain.pdf
https://www.unicode.org/policies/stability_policy.html
https://www.unicode.org/review/
https://www.unicode.org/review/pri417/


PRI417a:   Korean   word   boundary   example   in   UAX#29  

Recommended   UTC   actions  

1. AI   for   Rick   McGowan   to   respond   to   Steven   Luscher   along   the   lines   of:  
a. According   to   our   analysis,   solely   under   the   UAX   #29   rules   “나는”   should   not   be   separated.   
b. Good   word   segmentation   of   CJK   and   certain   other   languages   requires   additional   mechanisms,  

often   involving   dictionaries.   With   such   an   implementation,   the   separation   into   “나,    는”   may   be   
appropriate.  

c. The   point   of   the   example   is   illustrating   the   separation   between   the   Latin   “Chicago”   and   the  
Korean   suffix   “에”.   

d. Reference:   L2/21-069   item   P417a.  

Feedback   (verbatim)  

Date/Time:   Thu   Jan   21   18:02:00   CST   2021  
Name:   Steven   Luscher  
Report   Type:   Error   Report  
Opt   Subject:   Korean   word   boundary   example   in   UAX#29  
 
Hi   folks,  
 
In   the   UAX   #29   document   ( https://www.unicode.org/reports/tr29/#Word_Boundaries )   it   is   written:  
 
>   According   to   Korean   standards,   the   grammatical   suffixes,   such   as   “에”   meaning   “in”,     
are   considered   separate   words.   Thus   the   above   sentence   would   be   broken   into   the   following   five   words:  
>   
>   나,    는,    Chicago,    에,   and    산다.   
 
A   Korean   speaking   colleague   of   mine   tells   me   that   he,   in   fact,   considers   ‘나는’   to   be   one   word.     
In   Mac   OS,   placing   the   cursor   to   the   left   of   ‘나는’   and   pressing   Command-RightArrow   moves   you     
rightward   past   both   graphemes.  
 
Could   the   spec   be   wrong   where   it   claims   that   나   and   는   are   two   words?   
 
Thank   you,  
Steven…  

PRI417b:   Unicode   Standard   Annex   #29   -   3   Grapheme   Cluster   Boundaries   -  
SpacingMark  

Recommended   UTC   actions  

1. AI   for   Markus   Scherer   and   Deborah   Anderson:   Consider   whether   to   remove   the   assignment   of  
GCB=SpacingMark   for   U+11720..11721   AHOM   VOWEL   SIGN   A   &   AA,   in   light   of   feedback   and  
discussions   over   time.   Reference:   L2/21-069   item   P417b.  

6  

https://www.unicode.org/reports/tr29/#Word_Boundaries


Feedback   (verbatim)  

Date/Time:   Fri   Jan   29   18:14:29   CST   2021  
Contact:   johnsoneal@gmail.com  
Name:   Neal   Johnson  
Report   Type:   Error   Report  
Opt   Subject:   Unicode   Standard   Annex   #29   -   3   Grapheme   Cluster   Boundaries   -   SpacingMark  
 
Unicode   Standard   Annex   #29   -   3   Grapheme   Cluster   Boundaries   -   SpacingMark   
( https://www.unicode.org/reports/tr29/#SpacingMark )   states   that   U+11720   and   
U+11721   should   be   specifically   excluded.   However   "GraphemeBreakProperty.txt"   
list   both   as   included   and   as   such   {{UCharacter.getIntPropertyValue(0x11721,   
UProperty.GRAPHEME_CLUSTER_BREAK)   }}   return   10   "SPACING_MARK".  
 
I   am   not   sure   if   this   an   issue   in   the   "GraphemeBreakProperty.txt"   data   file   
or   an   issue   in   Annex   #29.  
 
(submitted   by   Markus   on   behalf   of   Neal   who   mis-reported   this   as   
https://unicode-org.atlassian.net/browse/ICU-21438 )  

Background   information   /   discussion  

https://www.unicode.org/reports/tr29/#SpacingMark  
 

 
 
https://www.unicode.org/Public/UCD/latest/ucd/auxiliary/GraphemeBreakProperty.txt  
116AE..116AF    ;   SpacingMark   #   Mc     [2]   TAKRI   VOWEL   SIGN   I..TAKRI   VOWEL   SIGN   II  
116B6           ;   SpacingMark   #   Mc         TAKRI   SIGN   VIRAMA  
11720..11721    ;   SpacingMark   #   Mc     [2]   AHOM   VOWEL   SIGN   A..AHOM   VOWEL   SIGN   AA  
11726           ;   SpacingMark   #   Mc         AHOM   VOWEL   SIGN   E  
1182C..1182E    ;   SpacingMark   #   Mc     [3]   DOGRA   VOWEL   SIGN   AA..DOGRA   VOWEL   SIGN   II  
11838           ;   SpacingMark   #   Mc         DOGRA   SIGN   VISARGA  

7  

SpacingMark  Grapheme_Cluster_Break   ≠   Extend,    and  
General_Category   =   Spacing_Mark ,   or  
any   of   the   following   (which   have    General_Category   =   Other_Letter ):  
U+0E33   (   ํา   )   THAI   CHARACTER   SARA   AM   
U+0EB3   (   ຳ   )   LAO   VOWEL   SIGN   AM   
 
Exceptions:   The   following   (which   have    General_Category   =   Spacing_Mark  
and   would   otherwise   be   included)   are   specifically   excluded:  
U+102B   (   ◌ါ   )   MYANMAR   VOWEL   SIGN   TALL   AA   
...  
U+AA7B   (   ◌ꩻ   )   MYANMAR   SIGN   PAO   KAREN   TONE   
U+AA7D   (   ◌ꩽ   )   MYANMAR   SIGN   TAI   LAING   TONE-5   
U+11720   (   �   )   AHOM   VOWEL   SIGN   A  
U+11721   (   �   )   AHOM   VOWEL   SIGN   AA  

https://www.unicode.org/reports/tr29/#SpacingMark
https://unicode-org.atlassian.net/browse/ICU-21438
https://www.unicode.org/reports/tr29/#SpacingMark
https://www.unicode.org/Public/UCD/latest/ucd/auxiliary/GraphemeBreakProperty.txt
https://www.unicode.org/reports/tr29/#SpacingMark


 
 
The   Ahom   vowel   signs   A   &   AA   were   added   to   the   exceptions   list   for   SpacingMark   in   this   draft:    tr29-26.html   
 
with   this   review   note:   

  
Review   Note:  
The   additional   exceptions   proposed   for   Ahom   [ L2/12-309R ]   were   inferred   by   extrapolating   the   former  
list   of   exclusions   to   the   new   repertoire   in   Unicode   8.0,   following   the   rationale   given   in   [ L2/11-114 ]  
which   was   applied   in   [ tr29-18.html ]   for   Unicode   6.1.   Careful   review   is   advised.   If   the   proposed  
exceptions   are   accepted,   then   U+11720..U+11721   will   also   be   excluded   from   the   list   of   SpacingMark  
characters   in   GraphemeBreakProperty.txt   for   Unicode   8.0.  
 
References:  
[ L2/12-309R ]   Martin   Hosken,   Stephen   Morey,    Revised   Proposal   to   add   the   Ahom   Script   in   the   SMP   of  
the   UCS  
[ L2/11-114 ]   Martin   Hosken,    Proposal   to   change   grapheme   extending   properties   of   various   characters  
[ tr29-18.html ]   Mark   Davis,    Proposed   Update   UAX   #29   for   Unicode   6.1   
 
Excluding   these   characters   from   SpacingMark   means   that   their   WB   values   change   to   Other.  
 
Recommended   UTC   action:   AI:   Remove   the   assignment   of   GCB=SpacingMark   for   U+11720..11721   AHOM  
VOWEL   SIGN   A   &   AA,   letting   them   default   to   GCB=Other.   For   Unicode   14.   Reference:   L2/21-069   item   P417b.  
 
Peter:   On   investigation   I   believe   it   is   correct   to   change   the   data   to   exclude   11720..11721   from  
SPACING_MARK.  

PRI   #427:   Proposed   Update   UTS   #18,   Unicode   Regular   Expressions  
https://www.unicode.org/review/pri427/  

PRI427a:   Misuse   of   subscripts  

Recommended   UTC   actions  

1. AI   for   Mark   Davis:   Revise   the   text   of   the   proposed   update   for   UTS   #18   to   use   ̀∁<sub>𝕊</sub>`   and   
`∁<sub>ℙ</sub>`   instead   of   subscript   letter   forms.   Reference:   L2/21-069   item   P427a.   

Feedback   (verbatim)  

Date/Time:   Sun   Mar   21   16:48:51   CDT   2021  
Name:   David   Corbett  
Report   Type:   Public   Review   Issue  
Opt   Subject:   PRI   #427:   Misuse   of   subscripts  
 
The   proposed   update   introduces   the   notations   ∁ₛ   and   ∁ₚ   for   the   complements   

8  

https://www.unicode.org/reports/tr29/tr29-26.html
http://www.unicode.org/L2/L2012/12309r-n4321r.pdf
http://www.unicode.org/L2/L2011/11114-uax29-changes.pdf
http://www.unicode.org/reports/tr29/tr29-18.html
http://www.unicode.org/L2/L2012/12309r-n4321r.pdf
http://www.unicode.org/L2/L2011/11114-uax29-changes.pdf
http://www.unicode.org/reports/tr29/tr29-18.html
https://www.unicode.org/review/pri427/


of   𝕊   and   ℙ,   using   subscript   plain   lowercase   letters   in   place   of   subscript   
double-struck   capital   letters.   This   use   of   U+209B   and   U+209A   goes   against  
Unicode’s   general   principle   of   subscripts,   as   described   in   section   22.4,  
that   “style   or   markup   in   rich   text”   is   preferred   when   possible,   except   in  
phonetic   alphabets.   Because   UTS   #18   is   written   in   HTML,   it   should   use  
`∁<sub>𝕊</sub>`   and   ̀∁<sub>ℙ</sub>`.   

PRI427b:   UTS   #18   Unicode   Regular   Expressions  

Recommended   UTC   actions  

1. Update   the   proposed   draft   as   per   L2/21-094   “Update   proposed   draft   UTS   18”  
2. Keep   the   PRI   open   for   now.  

PRI   #428:   Unicode   14.0.0   Alpha   Review  
https://www.unicode.org/review/pri428/  

PRI428a:   Diacritical   Marks   Extended:   Rotate   code   points   U+1AC9..1ACE  

Recommended   UTC   actions  

1. Consensus:   For   Unicode   14:   Rotate   six   code   points   U+1AC9..1ACE   as   noted   in   L2/21-069   item  
PRI428a.  

2. AI   for   Ken   Whistler   and   Michel   Suignard,   for   Unicode   14:   
Rotate   six   code   points   as   follows   (shown   in   new   order):  

a. Used   in   extended   IPA  
b. 1ACD   →   1AC9    COMBINING   DOUBLE   PLUS   SIGN   ABOVE  
c. 1ACE   →   1ACA    COMBINING   DOUBLE   PLUS   SIGN   BELOW  
d. Used   in   Middle   English   Ormulum  
e. 1AC9   →   1ACB    COMBINING   TRIPLE   ACUTE   ACCENT  
f. 1ACA   →   1ACC    COMBINING   LATIN   SMALL   LETTER   INSULAR   G  
g. 1ACB   →   1ACD    COMBINING   LATIN   SMALL   LETTER   INSULAR   R  
h. 1ACC   →   1ACE    COMBINING   LATIN   SMALL   LETTER   INSULAR   T  

3. AI   for   Ken   Whistler:   Update   the   pipeline   with   rotated   code   points   U+1AC9..1ACE   as   noted   in   L2/21-069  
item   PRI428a.  

Feedback   (verbatim)  

Date/Time:   Mon   Feb   15   19:56:28   CST   2021  
Name:    Eduardo   Marín   Silva  
Report   Type:   Public   Review   Issue  
Opt   Subject:   Suggestions   on   the   alpha   code   chart   of   Diacritical   Marks   Extended  
 
1.   Whenever   a   header   says   "Used   in..."   It   should   read   instead   "Marks   for..."  
 

9  

https://www.unicode.org/review/pri428/


2.   The   header   above   1AC1   should   say   (after   the   current   header)   "...   Do   not   use   
pairs   of   these   marks   as   replacement   for   1ABB   or   1ABD"  
 
3.   The   two   marks   "combining   double   plus   above   and   below"   should   be   moved   up,   
to   be   next   to   the   single   "plus   sign   above"   and   the   Ormulum   marks   shifted   
down   two   spots.  
 
4.   The   bullet   note   above   the   "number   sign   above"   currently   reads   "used   
extensively   in   J.P.   Harrington’s   transcriptional   notation"   I   suggest   
for   it   to   read   "Used   by   J.P.   Harrington   to   indicate   heavy   or   contrastive   stress"  
 
5.   The   "combining   triple   acute   accent"   should   have   a   mutual   cross   reference   
to   the   "combining   double   acute   accent"  
 
Date/Time:   Mon   Apr   12   16:47:19   CDT   2021  
Name:    Michael   Everson  
Report   Type:   Public   Review   Issue  
Opt   Subject:   Combining   Diacritical   Marks   Extended  
 
Move   COMBINING   DOUBLE   PLUS   SIGN   ABOVE   and   COMBINING   DOUBLE   
PLUS   SIGN   BELOW   to   immediately   after   COMBINING   PLUS   SIGN   ABOVE.  

PRI428b:   U+1CF42   and   U+1CF43   have   nonconformant   names  

Recommended   UTC   actions  

1. Consensus:   For   Unicode   14:   Insert   required   hyphens   into   the   names   of   U+1CF42   &   U+1CF43.  
2. AI   for   Ken   Whistler   and   Michel   Suignard,   for   Unicode   14:   Insert   required   hyphens   into   the   names   of  

U+1CF42   &   U+1CF43.   Reference:   L2/21-069   item   P428b.  
3. AI   for   Ken   Whistler:   Update   the   pipeline   with   fixed   names   of   U+1CF42   &   U+1CF43,   see   L2/21-069   item  

P428b.  

Feedback   (verbatim)  

Date/Time:   Sun   Feb   14   09:29:15   CST   2021  
Name:   Charlotte   Buff  
Report   Type:   Public   Review   Issue  
Opt   Subject:   PRI   #428:   U+1CF42   and   U+1CF43   have   nonconformant   names  
 
The   names   of   proposed   characters   U+1CF42   (ZNAMENNY   PRIZNAK   MODIFIER   LEVEL   2)  
and   U+1CF43   (ZNAMENNY   PRIZNAK   MODIFIER   LEVEL   3)   currently   do   not   conform   to  
section   4.8   of   the   Unicode   Standard.   A   hyphen-minus   needs   to   be   inserted  
before   the   final   digit   in   both   names   because   a   digit   must   not   immediately  
follow   a   space.  

10  



PRI428c:   General   category   of   U+1DF0A  

Recommended   UTC   actions  

1. AI   for   Ken   Whistler,   for   Unicode   14:   Change   U+1DF0A   LATIN   LETTER   RETROFLEX   CLICK   WITH  
RETROFLEX   HOOK   from   gc=Ll   to   Lo.  

Feedback   (verbatim)  

Date/Time:   Sun   Feb   14   09:42:18   CST   2021  
Name:   Charlotte   Buff  
Report   Type:   Public   Review   Issue  
Opt   Subject:   PRI   #428:   General   category   of   U+1DF0A  
 
Proposed   character   U+1DF0A   LATIN   LETTER   RETROFLEX   CLICK   WITH   RETROFLEX   HOOK  
currently   has   general   category   Ll   (Lowercase_Letter).   A   more   appropriate  
value   would   be   Lo   (Other_Letter)   which   is   shared   by   most   other   click  
letters,   including   its   hook‐less   counterpart   U+01C3   LATIN   LETTER   RETROFLEX  
CLICK.  

PRI428d:   Names   of   U+1FAF1   and   U+1FAF2  

Recommended   UTC   actions  

1. Request   the   ESC   to   consider   both   feedback   items   in   L2/21-069   item   PRI428d.  

Feedback   (verbatim)  

Date/Time:   Sun   Feb   14   09:58:07   CST   2021  
Name:    Charlotte   Buff  
Report   Type:   Public   Review   Issue  
Opt   Subject:   PRI   #428:   Names   of   U+1FAF1   and   U+1FAF2  
 
The   names   of   proposed   characters   U+1FAF1   RIGHTWARD   BACKHAND   and   U+1FAF2  
LEFTWARD   HAND   could   potentially   be   changed   to   RIGHTWARDS   BACKHAND   and  
LEFTWARDS   HAND   respectively.   The   words   “rightward”   and   “leftward”   do   not  
occur   in   any   other   Unicode   character   names;   instead   the   spellings  
“rightwards”   and   “leftwards”   are   used   every   single   time.  
 
Date/Time:   Fri   Apr   16   17:37:02   CDT   2021  
Name:    Michael   Everson  
Report   Type:   Public   Review   Issue  
Opt   Subject:   Symbols   and   Pictographs   Extended-A  
 
1FAF1   RIGHTWARD   BACKHAND   and   1FAF2   LEFTWARD   HAND   are   misnamed.   "Backhand"  
refers   to   a   kind   of   tennis   swing;   it   does   not   refer   to   the   back   of   a   hand.  
Handedness   is   something   the   UCS   should   have   dealt   with   long   ago.  

11  



RIGHT-POINTING   BACK   OF   HAND   is   what   the   first   one   is,   and   LEFT-POINTING  
FRONT   OF   HAND   is   what   the   other   one   is.   All   of   the   existing   hands   should   be  
looked   at   with   regard   to   this.   
 
Note   that   the   THUMBS   UP   and   THUMBS   DOWN   hands   are   not   completely   encoded.  
Users   should   be   able   to   select   whether   they   wish   to   show   hands   with   thumbs  
up   or   down   based   on   how   the   would   see   it   if   they   were   holding   their   hands  
out   in   front   of   them.   When   I   look   at   my   right   hand   thumbs   up   I   see   the   palm.  
When   I   look   at   ny   right   hand   thumbs   down,   I   see   the   back.  
 
This   is   Alpha,   so   if   there   is   a   wish   to   make   some   of   these   hands   make   sense,  
now   is   the   time   to   complete   the   set   logically.   I   would   help   between   now   and  
beta   if   asked.  

PRI428e:   Names   of   dezh   and   tesh   digraphs   with   hooks  

Recommended   UTC   actions  

1. Consensus:   For   Unicode   14:   Insert   the   word   “digraph”   into   the   names   of   four   dezh   and   tesh   digraphs  
with   hooks:   U+1DF12,   1DF17,   1DF19,   1DF1C.  

2. AI   for   Ken   Whistler   and   Michel   Suignard,   for   Unicode   14:   Insert   the   word   “digraph”   into   the   names   of  
four   dezh   and   tesh   digraphs   with   hooks:   U+1DF12,   1DF17,   1DF19,   1DF1C.   Reference:   L2/21-069   item  
P428e.  

3. AI   for   Ken   Whistler:   Update   the   pipeline   with   modified   names   of   four   dezh   and   tesh   digraphs   with   hooks,  
see   L2/21-069   item   P428e.  

Feedback   (verbatim)  

Date/Time:   Sun   Feb   14   10:25:15   CST   2021  
Name:   Charlotte   Buff  
Report   Type:   Public   Review   Issue  
Opt   Subject:   PRI   #428:   Names   of   dezh   and   tesh   digraphs   with   hooks  
 
The   names   of   the   following   proposed   characters   should   be   adjusted   to   include  
the   word   “digraph”   for   consistency   with   their   respective   hook‐less  
counterparts   (U+02A4   LATIN   SMALL   LETTER   DEZH   DIGRAPH   and   U+02A7   LATIN   SMALL  
LETTER   TESH   DIGRAPH):  
 
U+1DF12:   LATIN   SMALL   LETTER   DEZH   WITH   PALATAL   HOOK   →   LATIN   SMALL   LETTER   DEZH  
DIGRAPH   WITH   PALATAL   HOOK  
U+1DF17:   LATIN   SMALL   LETTER   TESH   WITH   PALATAL   HOOK   →   LATIN   SMALL   LETTER   TESH  
DIGRAPH   WITH   PALATAL   HOOK  
U+1DF19:   LATIN   SMALL   LETTER   DEZH   WITH   RETROFLEX   HOOK   →   LATIN   SMALL   LETTER   DEZH  
DIGRAPH   WITH   RETROFLEX   HOOK  
U+1DF1C:   LATIN   SMALL   LETTER   TESH   WITH   RETROFLEX   HOOK   →   LATIN   SMALL   LETTER   TESH  
DIGRAPH   WITH   RETROFLEX   HOOK  

12  



PRI428f:   General   category   of   Znamenny   priznak   modifiers  

Recommended   UTC   actions  

1. AI   for   Ken   Whistler,   for   Unicode   14:   Change   the   Znamenny   priznak   modifiers   U+1CF42..U+1CF46   from  
gc=Cf   to   Mn.  

Feedback   (verbatim)  

Date/Time:   Sun   Feb   14   10:57:51   CST   2021  
Name:   Charlotte   Buff  
Report   Type:   Public   Review   Issue  
Opt   Subject:   PRI   #428:   General   category   of   Znamenny   priznak   modifiers  
 
The   Znamenny   priznak   modifiers   (U+1CF42..U+1CF46)   were   given   the   general  
category   Cf   (Format).   A   more   appropriate   value   would   be   Mn   (Nonspacing_Mark)  
because   they   apply   directly   to   the   preceding   character,   comparable   to  
variation   selectors   for   instance.   Other   properties   like   bidi   class   and  
grapheme   cluster   break   would   need   to   be   adjusted   accordingly   as   well.  

Background   information   /   discussion  

Looks   ok,   like   in   Miao,   better   GCB   behavior.  

PRI428g:   Script   Extensions   for   Arabic   Punct   used   for   N'ko   and   Adlam  

Recommended   UTC   actions  

1. AI   for   Mark   Davis,   for   Unicode   14   Script_Extensions:  
a. Add   Nkoo   for   U+060C   ARABIC   COMMA   &   U+061B   ARABIC   SEMICOLON.  
b. Add   Nkoo   &   Adlm   for   U+061F   ARABIC   QUESTION   MARK.  
c. Reference:   L2/21-069   item   PRI428g.  

Feedback   (verbatim)  

Date/Time:   Mon   Feb   15   15:51:33   CST   2021  
Name:   Neil   S   Patel  
Report   Type:   Public   Review   Issue  
Opt   Subject:   Script   Extensions   for   Arabic   Punct   used   for   N'ko   and   Adlam  
 
Hello,  
 
Recently,   I   have   been   working   with   a   couple   of   W3C   groups   to   look   into  
script   itemization   issues.   We   have   noticed   that   with   both   Adlam   and   N'ko  
when   Arabic   punctuation,   typically   used   with   both   scripts,   appears   in   a  
string   of   text   it   triggers   unexpected   fall   backs.   This   occurs   even   when   the  
tested   font   includes   the   appropriate   Arabic   punctuation.   After   some  

13  



discussion   it   was   suggested   that   the   script   extensions   could   be   responsible.  
 
Reference:    https://github.com/w3c/afrlreq/issues/18  
 
Currently   the   script   extensions   for   Arabic   punctuation   is   listed   as   follows.   There   are   no   references   to   African  
scripts.  
 
#   ================================================  
#   Script_Extensions=Arab   Rohg   Syrc   Thaa   Yezi  
 
060C            ;   Arab   Rohg   Syrc   Thaa   Yezi   #   Po         ARABIC   COMMA  
061B            ;   Arab   Rohg   Syrc   Thaa   Yezi   #   Po         ARABIC   SEMICOLON  
061F            ;   Arab   Rohg   Syrc   Thaa   Yezi   #   Po         ARABIC   QUESTION   MARK  
 
#   Total   code   points:   3  
#   ================================================  
 
 
I   would   like   to   propose   the   following   update   to   include   Adlam   and   N'ko.  
 
#   ================================================  
#   Script_Extensions=Arab   Nko   Rohg   Syrc   Thaa   Yezi  
 
060C            ;   Arab   Nko   Rohg   Syrc   Thaa   Yezi   #   Po         ARABIC   COMMA  
061B            ;   Arab   Nko   Rohg   Syrc   Thaa   Yezi   #   Po         ARABIC   SEMICOLON  
 
#   Total   code   points:   2  
#   ================================================  
 
#   ================================================  
#   Script_Extensions=Adlm   Arab   Nko   Rohg   Syrc   Thaa   Yezi  
 
061F            ;   Adlm   Arab   Nko   Rohg   Syrc   Thaa   Yezi   #   Po         ARABIC   QUESTION   MARK  
 
#   Total   code   points:   1  
#   ================================================  
 
Thanks.  

PRI428h:   Inconsistent   identifier   types   for   Komi   letters  

Recommended   UTC   actions  

1. AI   for   Mark   Davis,   for   Unicode   14:   Change   Komi   letters   U+0500..U+050F   to   Identifier_Type=Obsolete.  
2. AI   for   Ken   Whistler   and   Michel   Suignard,   for   Unicode   14:   Add   a   NamesList   annotation   to   mark   Komi  

letters   U+0500..U+050F   and   U+052A..U+052D   as   for   an   obsolete   alphabet.  

14  

https://github.com/w3c/afrlreq/issues/18


Feedback   (verbatim)  

Date/Time:   Fri   Mar   19   19:46:34   CDT   2021  
Name:   David   Corbett  
Report   Type:   Error   Report  
Opt   Subject:   Inconsistent   identifer   types   for   Komi   letters  
 
The   obsolete   Komi   letters   U+052A..U+052D   have   Identifier_Type=Obsolete   but  
the   other   obsolete   Komi   letters   U+0500..U+050F   have  
Identifier_Type=Recommended.  

Background   information   /   discussion  

Obsolete   alphabet   from   1920s:    https://en.wikipedia.org/wiki/Komi_language  

PRI428i:   U+08C8   ArabicShaping   name  

Recommended   UTC   actions  

1. AI   for   Ken   Whistler,   for   Unicode   14:   Change   ArabicShaping.txt   for   U+08C8   to   use   “KEHEH   WITH  
EXTENDED   HAMZA   ABOVE”.   Reference:   L2/21-069   item   PRI428i.  

Feedback   (verbatim)  

Date/Time:   Wed   Mar   24   16:19:46   CDT   2021  
Name:   Lorna   Evans  
Report   Type:   Error   Report  
Opt   Subject:   U+08C8   ArabicShaping   name  
 
While   I   did   laugh   at   this   name   in   ArabicShaping,   I   think   we   could   
come   up   with   a   better   name:  
 
08C8;   KEHEH   WITH   DOOHICKEY   ABOVE;   D;   GAF  
 
It   seems   that   the   Arabic   Shaping   name   was   never   discussed   as   far   as   
I   can   tell   from   script-adhoc   notes,   nor   from   UTC   minutes.  
 
L2/19-077   originally   requested   the   character   to   be   ARABIC   LETTER   
KEHEH   WITH   HAMZA   ABOVE   which   indicates   to   me   there   is   some   association   
with   a   hamza.  
 
This   was   later   changed   to   ARABIC   LETTER   GRAF   in   L2/19-252  
 
I   would   suggest   something   like   this:  
 
08C8;   KEHEH   WITH   EXTENDED   HAMZA   ABOVE;   D;   GAF  
 

15  

https://en.wikipedia.org/wiki/Komi_language


Lorna  

PRI428j:   Chinese   numerals   are   not   classified   as   numerals  

Recommended   UTC   actions  

1. AI   for   Rick   McGowan:   Respond   to   “r00ster”   along   the   lines   of:  
a. The   ideographs   used   for   numerals   are   not   exclusively   numeric.  
b. The   numeric   types   of   all   relevant   characters   are   listed   in  

https://www.unicode.org/Public/UCD/latest/ucd/extracted/DerivedNumericType.txt  
c. Reference:   L2/21-069   item   PRI428j.  

Feedback   (verbatim)  

Date/Time:   Sat   Apr   10   11:49:32   CDT   2021  
Name:   r00ster  
Report   Type:   Error   Report  
Opt   Subject:   Chinese   numerals   are   not   classified   as   numerals  
 
Hello   Unicode,  
 
I   noticed   that   you   classify   Chinese   numerals   as   Lo   (other   letters)   which  
does   not   seem   very   correct   to   me   because   I   believe   Chinese   numerals   should  
be   classified   as   numerals   and   not   as   other   letters.  
 
If   I   go   to   articles   listed   on   the   right   of  
https://en.wikipedia.org/wiki/Numeral_system   and   try   out   a   few   characters  
listed   on   these   articles,   they   mostly   work   (except   for   some   rather   outdated  
scripts   such   as   Tangut   numerals)   and   they   are   detected   by   Unicode   as  
numeric,   but   for   Chinese   numerals,   this   is   not   the   case.   None   of   the  
numerals   are   detected   as   numeric.   Especially   for   such   a   widely   spoken  
language   I   would   expect   Unicode   to   correctly   classify   the   numerals   of   that  
language.   It   is   true   that   in   Chinese   there   is   an   overwhelmingly   large   amount  
of   (single)   numeral   characters,   but   I   believe   it   is   possible   to   maybe   just  
classify   at   least   the   very   basic   零 / 〇、 ⼀、 ⼆、 三、 四、 五、 六、 七、 ⼋、 九   (0-9)   as   numerals,   
and   leave   all   other   numerals   beyond   that   classified   as   other   letters.  
 
Is   it   possible   for   you   to   reclassify   them   as   numerals   in   a   future   version?  
See   also:   https://github.com/rust-lang/rust/issues/84056.   Classifying  
Chinese   numerals   as   numerals   will   of   course   mean   support   for   other   East  
Asian   languages   too,   such   as   Japanese   and   Hokkien.  
 
Thank   you   in   advance.  

16  

https://www.unicode.org/Public/UCD/latest/ucd/extracted/DerivedNumericType.txt


PRI428k:   kana   letters   proposed   at   1B11F-1B122  

Recommended   UTC   actions  

1. Request   the   Script   Ad   Hoc   group   to   consider   the   feedback   from   Mikoto   Ohtsuki   questioning   whether  
the   kana   letters   proposed   at   1B11F-1B122   should   be   encoded.   Reference:   L2/21-069   item   PRI428k.  

Feedback   (verbatim)  

Date/Time:   Sat   Apr   10   18:49:00   CDT   2021  
Name:   Mikoto   Ohtsuki  
Report   Type:   Public   Review   Issue  
Opt   Subject:   1B11F-1B122   in   Unicode   14.0   Alpha   (PRI   #428:   Unicode   14.0   Alpha   Review)  
 
If   kana   letters   proposed   at   1B11F-1B122   became   candidate   for   Unicode   14  
based   on   L2/19-381,   rationale   seem   insufficient.    AFAIK,   they   are   assumed   to  
be   just   inventions   primarily   to   fill   up   empty   cells   in   syllabary   chart  
called   gojuonzu   (50   sound   chart).    Usually   they   appear   in   some   gojuonzu  
compiled   in   around   late   19th   century-early   20th   century   and   lack   examples   in  
text   actually   used   to   spell   words   in   accordance   with   proposed  
characteristics.  
 
Existing   of   YI   syllable   separate   from   I   syllable,   and   of   WU   syllable  
separate   from   U   syllable   has   not   been   attested   in   history   of   Japanese  
phonology   or   orthography.    Therefore   it   is   not   possible   to   happen   that  
native   Japanese   words   such   as   い も う と,   ま う す,   よ う べ   in   page   6   of   L2/19-381,   and   
や い ば,   つ い た ち,   ち ひ さ い   in   page   10   were   written   using   kana   intended   for   WU   or   YI   
syllable.    Note   that   standard   う   (U)   was   used   in   corresponding   hiragana   forms   
of   them   in   page   6   instead   of   kana   intended   for   WU.    Chart   contradicts  
itself.  
 
Pages   2   and   7   show   ⾐   (U+8863)   as   Kanji   Derivation   for   1B12D,   now   shifted   to   
1B121,   KATAKANA   LETTER   ARCHAIC   YE.    However   ⾐   is   origin   of   1B000   KATAKANA   
LETTER   ARCHAIC   E.    It   is   inconsistent   evidently.    Rather   than   thinking   this  
kana   was   derivation   from   single   kanji,   thinking   it   was   compound   form   of   イ   
(I)   and   エ   (E)   would   be   more   appropriate   as   mentioned   in   footnote.    It   would   
be   KATAKANA   LETTER   LIGATURE   IE.  
 
It   is   strongly   suspected   that   referenced   books   were   written   without  
scholarly   knowledge.    Including   them   with   current   characteristics   in   Unicode  
14   is   questionable.    I'd   like   UTC   to   consider   two   matters.  
 
First,   please   postpone   inclusion   of   them   to   Unicode   Standard   till   their  
characteristics   are   confirmed   by   expert   input   or   examples   actually   in   use  
with   proposed   characteristics   are   provided.    If   such   input   is   unavailable,  
please   consider   another   way   like   encoding   them   as   itaigana   (kana   variant)  
for   standard   I   and   U   kana   letters.  
 

17  



Second,   please   reconsider   their   names.    Using   same   ARCHAIC   prefix   to   both  
kana   dating   from   Heian   era   (8th-12th   century)   and   kana   invented   by   ̀there  
should   be   to   fill   up   gojuonzu`   attempt   in   early   modern   period   gives   odd  
feeling.    Please   don't   call   latter   kana   ARCHAIC.  

PRI428L:   Soft_Dotted   property   of   U+1DF1A  

Recommended   UTC   actions  

1. AI   for   Ken   Whistler,   for   Unicode   14:   For   U+1DF1A   LATIN   SMALL   LETTER   I   WITH   STROKE   AND  
RETROFLEX   HOOK   set   Soft_Dotted=True.  

a. Note:   This   has   already   been   taken   care   of.  

Feedback   (verbatim)  

Date/Time:   Fri   Apr   16   09:40:46   CDT   2021  
Name:   Charlotte   Buff  
Report   Type:   Public   Review   Issue  
Opt   Subject:   PRI   #428:   Soft_Dotted   property   of   U+1DF1A  
 
Proposed   character   U+1DF1A   LATIN   SMALL   LETTER   I   WITH   STROKE   AND   RETROFLEX   HOOK   
should   have   the   Soft_Dotted   property   like   other   variants   of   the   letter   i.  

18  


