L2/21-234

2021-12-20

Universal Multiple-Octet Coded Character Set

International Organization for Standardization

Organisation Internationale de Normalisation

MesxtyHapoaHasi OpraHU3aIys M0 CTaHIaPTU3AINH

Doc Type: Working Group Document
Title: Proposal to add characters from Smalltalk to the UCS
Source: Terminals Working Group
Authors: Rebecca Bettencourt, Doug Ewell, Ricardo Banffy, Michael Everson, Jarkko

Hietaniemi, Eduardo Marin Silva, Elias Martenson, Mark Shoulson, Shawn
Steele, and Rebecca Turner

Status: Individual Contribution
Action: For consideration by JTC1/SC2/WG2 and UTC
Date: 2021-12-20

1. Introduction. This document proposes the addition to the UCS of 5 new characters to provide
compatibility with versions of the Smalltalk programming language originally developed
throughout the 1970s.

NOTE: Mapping tables between Smalltalk character sets and the allocations in this proposal
are attached to the PDF version of this document.

2. Precedent. Characters from the programming language APL were encoded in the UCS in
1993 (Unicode 1.1) for compatibility with established IBM character sets. One character
(U+23E8 DECIMAL EXPONENT SYMBOL) was encoded in 2009 (Unicode 5.2) for compatibility with
the ALGOL 60 programming language.

3. Smalltalk. Smalltalk is an object-oriented programming language designed and implemented
at Xerox PARC by Alan Kay, Dan Ingalls, Adele Goldberg, Ted Kaehler, Diana Merry, Scott
Wallace, and others during the 1970s. It is one of the most historically significant programming
languages: it has influenced the creation of Java, Objective-C, Python, Ruby, and many other
object-oriented languages, and Smalltalk environments were often the first to develop modern
software engineering concepts such as the model-view-controller (MVC) pattern, the graphical
user interface (GUI), and the modern integrated development environment (IDE). Many variants
of Smalltalk are still in active development and have gathered loyal communities of users.

Early versions of the Smalltalk language in development throughout the 1970s used several
novel characters, some of which are still not included in the UCS. Recently, Dan Ingalls has
written a paper covering the history of Smalltalk for the fourth History of Programming
Languages (HOPL) conference which includes these characters.

Smalltalk uses proportional fonts, and its symbols closely resemble mathematical operators.

rick
Text Box
L2/21-234

4. ZWJ sequences. Smalltalk included three atomic characters which resemble character
sequences that can already be represented. For round-trip compatibility, we recommend the use
of a zero-width joiner within the corresponding character sequence.

® ’s APOSTROPHE S OPERATOR is an identifier for “a generic accessor that you can think of as
foo’s value or foo’s caller.”” Smalltalk also included U+0027 APOSTROPHE, which began
and ended a character string or comment, and U+2019 RIGHT SINGLE QUOTATION MARK,
which was used as an apostrophe inside comments. Without the zero-width joiner, the
equivalent character sequence would be misinterpreted as a comment beginning with a
lowercase s, a premature end of comment followed by a token beginning with s, or a
syntax error (the apostrophe used in comments incorrectly appearing in code). For this
character we recommend the character sequence:
o U+2019 RIGHT SINGLE QUOTATION MARK
o U+200D ZERO WIDTH JOINER
o U+0073 LATIN SMALL LETTER S
e () LEFT AND RIGHT PARENTHESIS represents a suppressed subarray (a subarray with its
contents not displayed) within its containing array. U+0028 LEFT PARENTHESIS and
U+0029 RIGHT PARENTHESIS are used as one might expect for array notation. Without the
zero-width joiner, the equivalent character sequence would be misinterpreted as an empty
array, preventing the interpreter from correctly identifying the input of a suppressed
subarray (perhaps copied and pasted from output) as an error (missing information). For
this character we recommend the character sequence:
o U+0028 LEFT PARENTHESIS
o U+200D ZERO WIDTH JOINER
o U+0029 RIGHT PARENTHESIS
® —(RIGHTWARDS ARROW TO LEFT PARENTHESIS is used to inject literal objects into code. For
example, (3+—(28/7)) wouldbeparsedas (3+4) ;thenumber4 in this
example could just as easily be an array, image, or other object. Smalltalk did not include
U+2192 RIGHTWARDS ARROW as an independent character, so there is no round-tripping
issue in this case: a lone U+2192 RIGHTWARDS ARROW without U+0028 LEFT PARENTHESIS
would be an encoding error. However, for consistency, for this character we recommend
the character sequence:
o U+2192 RIGHTWARDS ARROW
o U+200D ZERO WIDTH JOINER
o U+0028 LEFT PARENTHESIS

Alternative 1: Encoding as the corresponding character sequence without a zero-width joiner.
This would not be acceptable due to the semantic differences between the atomic characters and
the character sequences they resemble as explained above.

Alternative 2: Encoding as atomic characters in Unicode. This has been repeatedly and
consistently rejected by the Script Ad Hoc during review of previous drafts of this proposal.

5. Characters not proposed. An earlier draft of this proposal included a character, ZERO WIDTH
ENCLOSING CIRCLE, which would overlay the following character (in contrast to U+20DD
COMBINING ENCLOSING CIRCLE which overlays the preceding character). This corresponded to
Smalltalk-72 character 0x26. The character could not have been encoded as it violates the
Unicode model for combining characters. It is suggested that U+20DD be used instead, with the
order of the characters swapped. An alternative is the use of existing mathematical operators
such as U+2295 cCIRCLED PLUS and U+229B CIRCLED ASTERISK OPERATOR in place of character
sequences starting with ZERO WIDTH ENCLOSING CIRCLE.

6. Character names. At least since the 1970s, international SDOs such as ECMA and national
bodies such as ANSI and BSI have assigned names to the elements of coded character sets. By
contrast, although the Smalltalk developers did assign names to most of the characters in the
Smalltalk character set, the names used are not necessarily conformant to the guidelines of the
present day, and a handful of other characters were left without names (Figure 3). We have
attempted to invent names for these characters that are meaningful, unique, and conformant to
WG2 and UTC guidelines.

7. Ordering and code point assignment. All characters (with the exception of an arrow which
seemed to fit logically within an existing block) are shown here with a suggested code point in a
new block (1CEBO..1CEFF) that is unassigned and adjacent to an existing symbol block,
according to the “Roadmap to the SMP,” revision 13.0.3. A placeholder block name,
“Miscellaneous Mathematical and Technical Symbols,” is listed in the summary form. However,
it is understood that final assignment of blocks, code points, and block and character names is
completely at the discretion of UTC and/or WG2.

8. Unicode character properties.

1CEBO; HORIZONTAL ZIGZAG LINE;S0;0;O0ON;;;;;N;;;:;

1CEB1;KEYHOLE; S0;0;0ON;;;;;N;;;;;

1CEB2;0LD PERSONAL COMPUTER WITH MONITOR IN PORTRAIT ORIENTATION;So0;0;ON;;;;:;N;;;;;
1CEB3;BLACK RIGHT TRIANGLE CARET;S0;0;0ON;;;;;N;;;;;

1F8B2; RIGHTWARDS ARROW WITH LOWER HOOK;So;0;ON;;;;;N;;;;;

9. References.

Goldberg, Adele and Kay, Alan. 1976. “Smalltalk-72 Instruction Manual.” Xerox Corporation.
http://www.textfiles.com/bitsavers/pdf/xerox/alto/Smalltalk72 Manual.pdf

Ingalls, Daniel. Proceedings of the ACM on Programming Languages volume 4 number HOPL.
June 2020. “The evolution of Smalltalk: from Smalltalk-72 through Squeak.”
https://dl.acm.org/doi/abs/10.1145/3386335

Wikipedia. 2020. “Smalltalk.” https://en.wikipedia.org/wiki/Smalltalk

10. Disclaimer. All trademarks and registered trademarks mentioned herein are the property of
their respective owners. The company and product names used in this document are for
identification purposes only.

http://www.textfiles.com/bitsavers/pdf/xerox/alto/Smalltalk72_Manual.pdf
https://dl.acm.org/doi/abs/10.1145/3386335
https://en.wikipedia.org/wiki/Smalltalk

1CEB0 Miscellaneous Mathematical and Technical Symbols 1CEFF

1CEB 1CEC 1CED 1CEE 1CEF

1CEBO

1CEB1

1CEB2

1CEB3

Printed using UniBook™ Printed: 29-Nov-2021 4
(http://’www.unicode.org/unibook/)

1CEB0 Miscellaneous Mathematical and Technical Symbols 1CEB3

Smalitalk
1CEBO ~~ HORIZONTAL ZIGZAG LINE

— 299A [0 vertical zigzag line
1CEB1 @ KEYHOLE

= peek

— 1F5DD [old key

1CEB2 £} OLD PERSONAL COMPUTER WITH MONITOR IN
PORTRAIT ORIENTATION

— 1F5B3 O old personal computer
1CEB3 _ BLACK RIGHT TRIANGLE CARET
« zero-advance character pointing between
two glyphs
— 2038 , caret
— 2333 = slope
— 1CC86 . white lower left pointer

Printed using UniBook™ Printed: 29-Nov-2021 5
(http.//www.unicode.org/unibook/)

1F800

Supplemental Arrows-C

1F80 1F81 1F82 1F83 1F84 1F85 1F86 1F87 1F88 1F89 1F8A 1F8B 1F8C 1F8D 1F8E 1F8F

1F8FF

1F8B2

Printed using UniBook™
(http://’www.unicode.org/unibook/)

Printed: 29-Nov-2021

1F8B2 Supplemental Arrows-C 1F8B2

Smalitalk
1F8B2 & RIGHTWARDS ARROW WITH LOWER HOOK
— 21AA o rightwards arrow with hook

Printed using UniBook™ Printed: 29-Nov-2021 7
(http.//www.unicode.org/unibook/)

Figures.

Figures showing code charts of Smalltalk fonts are presented first, followed by examples of
usage and other illustrations.

oooo 0ool | o002 | 0003 | oood | 0003 | oooe | 0007 | 0oog | 0009 | 000A | O0OE | 0Oooc | 0000 | OO0E | O00F

<[|s] |H|e] g [=]"

ooio o011 | oolz | oo01F | oold | 0013 | oole | 0017 | 001f | 0019 | 001 | O01E | 0O0ic | 0010 | 0O1E | OO01F

51

020 %

<

5

-

I¥
o [+ |
o

-l:z-::l-l'.-—n"::ci".l'j‘n':llimDQoH
£z oo = Ojo[| -

¥
E
U
c

U

oot Qo -~~~

=y
)
)
3
LY
|
|
v
Y
i
y

P

p

oovF

¥ |Z "

Figure 1. Code chart of a system font extracted from a Smalltalk-72 instance, with U+1CEB3
BLACK RIGHT TRIANGLE CARET, U+1CEB1 KEYHOLE, RIGHTWARDS ARROW TO LEFT PARENTHESIS,
APOSTROPHE S OPERATOR, U+1CEB2 OLD PERSONAL COMPUTER WITH MONITOR IN PORTRAIT
ORIENTATION, and LEFT AND RIGHT PARENTHESIS highlighted in red.

@

=S P PV PN S I U =" I
-t o t::'. (wy F::’ = t::’ o t‘;’ [‘iiih Sl =
Hmﬁﬁ“mnﬁhm A |
= | o =] || O] R | e
b | P | el | BT | B |oo| -~
n | k| —| | A

wa | B o —}:»EZ"'-.-"'VI

r-!-ﬁ —— :l:'. | [— F"q A n |-

G
M
]
]
11
i
¥

LLI

oooo 0ool | o002 | 0003 | oood | 0003 | ooog | 0007 | 0o0s | 0003 | 000A | O0OE | 0Oooc | 0000 | OO0E | O00F

ooio ooil | oolz | o013 | oold | 0013 | oolg | 0017 | 0015 | 0013 | 001 | O01E | 00ic | 0010 | 0O1E | OO01F

= |;|_|

novF

Ml

sl |4 |0[-]=
ooz || # 15| % | & C1L oy * |+ |, f
LM E %] [s+, .|
o112 (314|567 |89 Dl = = =P
Oi1|2|a|d4|5|6|7|a|9 ;<=7
@ | A[lB|C|IDIE[F{CS|{HI[T {4 [L[{M[MNI[OD
& (B D E|FSGIHT{ KL |B MO
PI QR[S TIU[Y |W[X]|Y |25 11~1|_
FIQIR|S|TIL|Y MW Y| 20N]]T]*
Clalbleldle | Flglh {1 | k]| L|{m|n]|o
Alb|lcldle|f|glh{i]i|k|lmin|o
st Julwv] w[x]y [z {[T T[]~
S1E v || x|y A

Pla]r

Figure 2. Code chart of a Smalltalk-78 system font extracted from a prototype Macintosh
system disk, with U+1F8B2 RIGHTWARDS ARROW WITH LOWER HOOK, APOSTROPHE S OPERATOR,
U+1CEBO HORIZONTAL ZIGZAG LINE, and U+1F8B6 NEGATIVE SQUARED RIGHTWARDS ARROW
highlighted in red.

WRITING SMALLTALK PROGRAMS

Koyboard Equivalents

(Note, there are usually several ways to type a special keyboard character.

presents the methods most commonly used.)

You Type
LF
{shift> '
<{shift> 6
<etrl><shift>;
Cetrl> k
<shift> /
{shift> 1
<shift> 2
{shift> 7
{ctrl> 1
<{ctrl> s
{etrl> d
<shift> -
{etrl> <
etrl> >
{ctrld> =
{etrl> v
{ctrl> 2
{etrl> 1
{etrl> o
Cetrl> 4

BT

<
=]
-]
-

A - TR AN

We Call It

hand
eyeball (look for)

keyhole, "peek"
if ... then
return

smiley

unary minus

less than or equal
greater than or equal
not equal

percent sign

"at" sign
explanation

double quote sign
dollar sign

Figure 3. Excerpt from the Smalltalk-72 Instruction Manual showing
U+1CEB1 KEYHOLE and APOSTROPHE S OPERATOR, highlighted in red.

10

Page 16

The following table

EXAMPLE SMALLTALK CLASS DEFINITIONS Page 93

to rectangle a b c [origin extent

(Fhas Is a point inside rectangle?
(G@Pc « :. Morigin c origin + extent)

“'sa(T 8 eval)

<fcomp=>
(dcomp origin x extent x origin y extent y)

<Jclears Expects bit patterns as a message
(dclear origin x extent x origin y extent y :)

=fintersect>
(@Pe « . Creatos a rectangle that is the intersection of ¢
G7a + origin max c¢’s origin. and SELF if they have common arca

@b «(origin + extent) min ¢'s(origin + extent). else, 'false’.

a € bs (Trectangle a b - a) Tfalse)

<finclude> Creates rectangle around SELF and c.
(@Pc « .
@"a « origin min c's origin.
@b «(origin + extent) max c’s(origin + extent).
frectanglea b - a)

“fmoveto » (@ origin + :) Move origin to a new point.
<fframe > Turtles understand how to go to a point as
{G?"a « turtle. well as two numeric coordinates.

@ penup goto origin turn 90 pendp’s width ¢ 2.
@ penup goto origin turn 90 pendp’s width ¢ 2.
do 2 (a go extent x turn 90 go extent y turn 90))
«fis >(ISIT eval)
«fprint >
(@ rectangle print sp origin print sp extent print)
«f paint » (CODE 41) This message was discussed in Chapter 11
section on Paint Brush.

isnew » (G origin ¢ :. GPextent « :))!

to waitnext x

(@’x « 38, Stay in this routine until
repeat (x eval » () done) x is First 'false’ and then finally
repeat (x eval » (done)))! "not-false' again.

to bug Wait to get the mouse point
(waitnext butlon. Tmp)! when button 1 is pressed.

Figure 4. Excerpt from the Smalltalk-72 Instruction Manual showing
two instances of APOSTROPHE S OPERATOR, highlighted in red.

11

to dispframe input : winx winwd winy winht frmx frowd frmy frmht last
mark Istln charx chary reply justify buf font editor @ sub frame dread reread
defont (:

'] »(n 8 eval)

ows access to instance variables. For example,
yourframds| (& winx«32)
will alter the value of window x in the instance of dispframe
called & yourframe

ses)

Figure 5. Smalltalk-72 code containing both U+0027 APOSTROPHE (highlighted in green)
and APOSTROPHE S OPERATOR (highlighted in red and blue).

[come to SMALLTALK [May 3
1

Control-B: _ as in ab@}ef
ampersand: O asin® ©

Figure 6. Example Smalltalk-72 session showing U+1CEB2 OLD PERSONAL COMPUTER WITH
MONITOR IN PORTRAIT ORIENTATION and U+1CEB3 BLACK RIGHT TRIANGLE CARET (between
lowercase ¢ and d), highlighted in red.

12

A. Administrative

1. Title

Proposal to add characters from Smalltalk to the UCS
2. Requester's name

Terminals Working Group (Rebecca Bettencourt et al.)
3. Requester type (Member body/Liaison/Individual contribution)
Individual contribution.

4. Submission date

2021-12-20

5. Requester’s reference (if applicable)

6. Choose one of the following:

6a. This is a complete proposal

Yes.

6b. More information will be provided later

No.

B. Technical - General

1. Choose one of the following:

la. This proposal is for a new script (set of characters)

Yes.

1b. Proposed name of script

Miscellaneous Mathematical and Technical Symbols.

lc. The proposal is for addition of character(s) to an existing block

No.

1d. Name of the existing block

2. Number of characters in proposal

5.

3. Proposed category (A-Contemporary; B.1-Specialized (small collection); B.2-Specialized (large collection); C-Major extinct;
D-Attested extinct; E-Minor extinct; F-Archaic Hieroglyphic or Ideographic; G-Obscure or questionable usage symbols)
Category B.1.

4a. Is a repertoire including character names provided?

Yes.

4b. If YES, are the names in accordance with the “character naming guidelines” in Annex L of P&P document?

Yes.

4c. Are the character shapes attached in a legible form suitable for review?

Yes.

5a. Who will provide the appropriate computerized font (ordered preference: TrueType, or PostScript format) for publishing the
standard?

Rebecca Bettencourt.

5b. If available now, identify source(s) for the font (include address, e-mail, ftp-site, etc.) and indicate the tools used:
Rebecca Bettencourt, FontForge.

6a. Are references (to other character sets, dictionaries, descriptive texts, etc.) provided?

Yes.

6b. Are published examples of use (such as samples from newspapers, magazines, or other sources) of proposed characters
attached?

Yes.

7. Does the proposal address other aspects of character data processing (if applicable) such as input, presentation, sorting,
searching, indexing, transliteration, etc. (if yes please enclose information)?

Yes.

8. Submitters are invited to provide any additional information about Properties of the proposed Character(s) or Script that will
assist in correct understanding of and correct linguistic processing of the proposed character(s) or script.

See above.

C. Technical - Justification

1. Has this proposal for addition of character(s) been submitted before? If YES, explain.
The characters were previously proposed in the first draft of “Proposal to add further characters from legacy computers
and teletext to the UCS.” They were moved to a separate proposal at the request of the Script Ad Hoc.

13

2a. Has contact been made to members of the user community (for example: National Body, user groups of the script or
characters, other experts, etc.)?

Yes.

2b. If YES, with whom?

Smalltalk user community (Vanessa Freudenberg, Dan Ingalls)

2c¢. If YES, available relevant documents

3. Information on the user community for the proposed characters (for example: size, demographics, information technology use,
or publishing use) is included?

Contemporary use by specialists and hobbyists.

4a. The context of use for the proposed characters (type of use; common or rare)

Rare.

4b. Reference

5a. Are the proposed characters in current use by the user community?

Yes.

5b. If YES, where?

Worldwide, but particularly in North America.

6a. After giving due considerations to the principles in the P&P document, must the proposed characters be entirely in the BMP?
No.

6b. If YES, is a rationale provided?

6¢. If YES, reference

7. Should the proposed characters be kept together in a contiguous range (rather than being scattered)?

Mostly yes, but this is not required.

8a. Can any of the proposed characters be considered a presentation form of an existing character or character sequence?
No.

8b. If YES, is a rationale for its inclusion provided?

8c. IFYES, reference

9a. Can any of the proposed characters be encoded using a composed character sequence of either existing characters or other
proposed characters?

No.

9b. If YES, is a rationale for its inclusion provided?

9c. I YES, reference

10a. Can any of the proposed character(s) be considered to be similar (in appearance or function) to an existing character?
No.

10b. If YES, is a rationale for its inclusion provided?

10c. If YES, reference

11a. Does the proposal include use of combining characters and/or the use of composite sequences (see clauses 4.12 and 4.14 in
ISO/IEC 10646-1:2000)?

No.

11b. If YES, is a rationale for such use provided?

11c. If YES, reference

11d. Is a list of composite sequences and their corresponding glyph images (graphic symbols) provided?

11e. IfYES, reference

12a. Does the proposal contain characters with any special properties such as control function or similar semantics?

No.

12b. If YES, describe in detail (include attachment if necessary)

13a. Does the proposal contain any Ideographic compatibility character(s)?

No.

13b. If YES, is the equivalent corresponding unified ideographic character(s) identified?

14

ReadMe.txt

This directory contains mappings of legacy character sets from 8-bit

and 16-bit microcomputers as well as teletext to Unicode. Most of

these mappings are made possible using characters from the new block

U+1FB00-1FBFF Symbols for Legacy Computing.

Some of these systems have two kinds of mappings: a "video" or "memory" mapping

that reflects how bytes in video memory are mapped to characters, and an

"interchange" or "CHR$()" mapping that reflects how keyboard input, the BASIC

CHR$() function, or external I/O maps code values to characters. Either kind of

mapping may be needed depending on the use case.

The following systems are represented here along with notes. All trademarks and

registered trademarks are the property of their respective owners. The company

and product names used here are for identification purposes only.

Coleco Adam

ADAMOS7.TXT: Coleco Adam OS7 character set.

ADAMSWTR.TXT: Coleco Adam SmartWRITER character set.

The OS7 character set includes characters at $05-$1C that compose a graphic

that spells COLECOVISION. These have been mapped to characters in the Private

Use Area.

Amstrad CPC

AMSCPCV.TXT: Amstrad CPC character set as mapped in memory.

AMSCPCI.TXT: Amstrad CPC character set without control characters.

AMSCPCV.TXT includes symbols for control characters at $00-$1F and $7F.

AMSCPCI.TXT does not include these symbols and leaves $00-$1F and $7F

mapped to control characters by default.

Amstrad CP/M Plus, PCW, and ZX Spectrum 3+

AMSCPM.TXT: Amstrad CP/M Plus, PCW, and ZX Spectrum 3+ character set.

The slashed zero at $30 is mapped to U+0030+FE00, the recently-added

standardized variation sequence for a slashed zero. The non-slashed

zero at $7F is mapped to U+0030.

Apple II series

APL2PRIM.TXT: Apple II primary character set as mapped in memory.

APL2ALT1.TXT: Apple II alternate character set, version 1, as mapped in memory.

APL2ALT2.TXT: Apple II alternate character set, version 2, as mapped in memory.

APL2ICHG.TXT: Apple II character set as mapped by CHR$().

Version 1 of the alternate character set has the "running man" characters where

version 2 of the alternate character set has the "inverse return arrow" and

"title bar" characters.

Both versions of the alternate character set include a solid Apple logo at $40

and an open Apple logo at $41. Since the Apple logo is trademarked and thus

cannot be encoded, these are mapped to characters in the Private Use Area.

Mattel Aquarius

AQUARIUS.TXT: Mattel Aquarius character set.

Character $8A can be mapped to either U+2660 BLACK SPADE SUIT or

U+1F6E7 UP-POINTING AIRPLANE. The first mapping is used here.

Atari 8-bit series (ATASCII)

ATARI8VG.TXT: ATASCII graphics character set, memory-mapped.

ATARI8IG.TXT: ATASCII graphics character set, CHR$()-mapped.

ATARI8VI.TXT: ATASCII international character set, memory-mapped.

ATARI8II.TXT: ATASCII international character set, CHR$()-mapped.

The graphics character set has symbols and semigraphics where the international

character set has precomposed Latin characters with diacritics.

The CHR$() mappings are in a different order and do not include the control

characters at $1B-$1F, $7D-$7F, $8B-$8F, and $FD-$FF.

Atari ST

ATARISTV.TXT: Atari ST character set, memory-mapped.

ATARISTI.TXT: Atari ST character set, CHR$()-mapped.

The Atari ST character set is based on and similar to IBM PC code page 437, but

has different characters in some locations, in particular $00-$1F and $B0-$DF.

The CHR$() mapping is identical to the memory mapping except it does not

include the control characters at $00-$1F and $7F.

The Atari ST character set includes an Atari logo at $0E-$0F and an image of

J.R. "Bob" Dobbs at $1C-$1F. Both are trademarked and unsuitable for encoding,

so these are mapped to characters in the Private Use Area.

Bildschirmtext (BTX)

BTXG0.TXT: Bildschirmtext G0 character set.

BTXG1.TXT: Bildschirmtext G1 character set.

BTXG2.TXT: Bildschirmtext G2 character set.

BTXG3.TXT: Bildschirmtext G3 character set.

The Bildschirmtext (BTX) character set is mostly

a permutation of the Teletext character set.

TRS-80 Color Computer

COCOICHG.TXT: TRS-80 Color Computer "Semigraphics 4" set as mapped by CHR$().

COCOSGR4.TXT: TRS-80 Color Computer "Semigraphics 4" set as mapped in memory.

COCOSGR6.TXT: TRS-80 Color Computer "Semigraphics 6" set as mapped in memory.

The Color Computer, despite being branded as a TRS-80, is a fundamentally

different computer. The "Semigraphics 4" mode, which is default, has a

character set organized thusly:

$00 - $1F - light-on-dark ASCII-1983 uppercase

$20 - $3F - light-on-dark ASCII-1983 punctuation

$40 - $5F - dark-on-light ASCII-1983 uppercase

$60 - $7F - dark-on-light ASCII-1983 punctuation

$80 - $FF - 2x2 block graphics in 8 colors

(The 8 colors are, in order: green, yellow, blue, red, buff, cyan, magenta,

and orange.)

The CHR$() function uses this mapping:

Interchange => Video

$00 - $1F => (control characters)

$20 - $3F => $60 - $7F (dark-on-light punctuation)

$40 - $5F => $40 - $5F (dark-on-light uppercase)

$60 - $7F => $00 - $1F (light-on-dark uppercase)

$80 - $FF => $80 - $FF (2x2 block graphics in 8 colors)

The "Semigraphics 6" mode has 2x3 block graphics at $80-$FF in two colors (blue

and red), although in a different order from Teletext and the TRS-80. ($00-$7F

displays as binary vertical line garbage, which is pretty much useless and

unworthy of encoding.)

Commodore PET (PETSCII)

CPETVPRI.TXT: Commodore PET primary character set as mapped in memory.

CPETVALT.TXT: Commodore PET alternate character set as mapped in memory.

CPETIPRI.TXT: Commodore PET primary character set as mapped by CHR$().

CPETIALT.TXT: Commodore PET alternate character set as mapped by CHR$().

The PET has REVERSE SOLIDUS where the VIC-20, C64, and C128 have POUND SIGN.

The PET and VIC-20 have CHECKER BOARD FILL where the C64 and C128 have

INVERSE CHECKER BOARD FILL, and vice-versa.

The primary character set has uppercase letters where the alternate character

set has lowercase letters. The primary character set has semigraphics

characters where the alternate character set has uppercase letters.

The CHR$() function mapping (or "interchange" mapping) maps to the in-memory

mapping (or "video" mapping) as follows:

Interchange => Video

$00 - $1F => (control characters)

$20 - $3F => $20 - $3F

$40 - $5F => $00 - $1F

$60 - $7F => $40 - $5F

$80 - $9F => (control characters)

$A0 - $BF => $60 - $7F

$C0 - $DF => $40 - $5F

$E0 - $FF => $60 - $7F

Commodore VIC-20 (PETSCII)

CVICVPRI.TXT: Commodore VIC-20 primary character set as mapped in memory.

CVICVALT.TXT: Commodore VIC-20 alternate character set as mapped in memory.

CVICIPRI.TXT: Commodore VIC-20 primary character set as mapped by CHR$().

CVICIALT.TXT: Commodore VIC-20 alternate character set as mapped by CHR$().

The same notes that apply to the Commodore PET apply to the Commodore VIC-20.

Commodore 64 and Commodore 128 (PETSCII)

C64VPRI.TXT: Commodore 64 and 128 primary character set as mapped in memory.

C64VALT.TXT: Commodore 64 and 128 alternate character set as mapped in memory.

C64IPRI.TXT: Commodore 64 and 128 primary character set as mapped by CHR$().

C64IALT.TXT: Commodore 64 and 128 alternate character set as mapped by CHR$().

The same notes that apply to the Commodore PET apply to the Commodore 64 and

Commodore 128.

HP 264x

HP264XUC.TXT: HP 264x Roman uppercase character set.

HP264XLC.TXT: HP 264x Roman lowercase character set.

HP264XMA.TXT: HP 264x math character set.

HP264XLN.TXT: HP 264x line drawing character set.

HP264XLG.TXT: HP 264x large text character set.

Each individual character generator ROM in the HP 264x contained 64 characters.

Characters $00-$3F of the uppercase ROM correspond to ASCII characters $20-$5F.

Characters $00-$1F of the lowercase ROM correspond to ASCII characters $00-$1F.

Characters $20-$3F of the lowercase ROM correspond to ASCII characters $60-$7F.

All mapping files use a straight mapping to $00-$3F.

IBM PC (code page 437)

IBMPCVID.TXT: IBM PC code page 437 as mapped in memory.

IBMPCICH.TXT: IBM PC code page 437 without control characters.

IBMPCVID.TXT includes the graphics characters at $00-$1F and $7F that are

instead mapped to control characters in the mapping provided by Microsoft.

IBMPCICH.TXT is identical to the mapping provided by Microsoft but does not

explicitly list the control characters.

Kaypro

KAYPRONV.TXT: Kaypro normal video character set.

KAYPRORV.TXT: Kaypro reverse video character set.

These include the extra characters at $00-$1F and the 2x4 block

mosaic characters at $80-$FF. The reverse video version is included

to provide a full set of 2x4 block mosaic characters.

Minitel

MINITLG0.TXT: Minitel G0/G2 text character set.

MINITLG1.TXT: Minitel G1 graphics character set.

The G0 mapping also includes G2 characters using the SS2 (single shift 2)

control character ($19). The G1 character set is similar to the Teletext G1

character set.

MSX

MSXVID.TXT: MSX international character set as mapped in memory.

MSXICH.TXT: MSX international character set as mapped using control sequences.

MSXVIDAE.TXT: MSX Arabic character set as mapped in memory.

MSXICHAE.TXT: MSX Arabic character set as mapped using control sequences.

MSXVIDAR.TXT: MSX Arabic character set as mapped in memory.

MSXICHAR.TXT: MSX Arabic character set as mapped using control sequences.

MSXVIDBG.TXT: MSX Brazilian character set as mapped in memory.

MSXICHBG.TXT: MSX Brazilian character set as mapped using control sequences.

MSXVIDBH.TXT: MSX Brazilian character set as mapped in memory.

MSXICHBH.TXT: MSX Brazilian character set as mapped using control sequences.

MSXVIDBR.TXT: MSX Brazilian character set as mapped in memory.

MSXICHBR.TXT: MSX Brazilian character set as mapped using control sequences.

MSXVIDJP.TXT: MSX Japanese character set as mapped in memory.

MSXICHJP.TXT: MSX Japanese character set as mapped using control sequences.

MSXVIDKR.TXT: MSX Korean character set as mapped in memory.

MSXICHKR.TXT: MSX Korean character set as mapped using control sequences.

MSXVIDRU.TXT: MSX Russian character set as mapped in memory.

MSXICHRU.TXT: MSX Russian character set as mapped using control sequences.

SVI328.TXT: Spectravideo SVI-328 character set as mapped in memory.

National character sets were taken from the following MSX models:

AE: Al Alamiah AX-170 (Arabic with some European characters)

AR: Bawareth Perfect MSX1, Yamaha AX500 (Arabic with box drawing characters)

BG: Gradiente Expert XP-800 (Brazilian)

BH: Sharp Hotbit HB-8000 1.1 (Brazilian)

BR: Gradiente Expert DDPlus, Sharp Hotbit HB-8000 1.2 (Brazilian)

JP: Panasonic FS-A1GT, Sony HB-F900 (Japanese)

KR: Daewoo CPC-400S (Korean)

RU: Yamaha YIS-503IIIR, Yamaha YIS-805/128R2 (Russian)

The MSX international character set is based on CP437 but has some additional

punctuation and precomposed letters and a different set of box drawing and

block element characters. The Japanese character set is based on JIS X 0201

but also includes hiragana, a handful of kanji, and some symbols and basic

box drawing characters. The Arabic character set encodes multiple forms with

a single character to make the most of the limited code space, so correct

conversion of Arabic text will require use of the Arabic shaping algorithm.

The memory mapping includes the graphics characters at $00-$1F that are

accessed with double-byte sequences starting with $01 in the interchange

mapping. The memory mapping also includes the character at $7F that is

inaccessible without writing to video memory directly.

The character $FF (or sometimes $7F) is used for the cursor and displays as

the reverse video variant of the character stored at a designated location in

RAM. The BIOS keeps the original character under the cursor at this location.

Since this behavior is not interchangeable, it is left unmapped.

The Spectravideo SVI-328 is a predecessor to the MSX standard. However,

it is not MSX-compatible and uses a different character set.

Sharp MZ series (SharpSCII)

MZ80VJPN.TXT: Sharp MZ-80 Japanese character set by "display code".

MZ80VEUR.TXT: Sharp MZ-80 European character set by "display code".

MZ700VJP.TXT: Sharp MZ-700 Japanese primary character set by "display code".

MZ700VJA.TXT: Sharp MZ-700 Japanese alternate character set by "display code".

MZ700VEP.TXT: Sharp MZ-700 European primary character set by "display code".

MZ700VEA.TXT: Sharp MZ-700 European alternate character set by "display code".

MZ700IJP.TXT: Sharp MZ-700 Japanese primary character set by "ASCII code".

MZ700IEU.TXT: Sharp MZ-700 European primary character set by "ASCII code".

The Sharp MZ-80 character sets and Sharp MZ-700 primary character sets are

very similar but differ at certain "display codes" ($40 and $80 in the

Japanese version and $40, $80, $A4, $A5, $BC, $BE, $BF, and $E5 in the

European version).

The mapping between "ASCII codes" and "display codes" is nontrivial and rather

disorganized. For example, although digits and uppercase letters in both

versions are in order in either mapping, katakana in the Japanese version are

in order when sorted by "ASCII code" but scrambled when sorted by "display

code", and lowercase letters in the European version are scrambled when sorted

by "ASCII code" but in order when sorted by "display code". The mapping is very

similar between the Japanese and European versions, but differ at "ASCII codes"

$6C, $6D, $80, $C0, and $C6 (and yet they left the lowercase letters scrambled).

The Sharp MZ-700 actually had 512 characters, with the alternate set made

accessible on a character-by-character basis by setting a bit in the attribute

RAM where the background and foreground color were also stored. In the Japanese

version, the primary set contained katakana where the alternate set contained

hiragana. In the European version, Japanese characters in the primary set were

replaced with additional block elements and box drawing characters, whereas the

entire alternate set was replaced with a rather large assortment of video game

sprites. The alternate character set was not accessible from BASIC.

The characters unique to the Sharp MZ series are placed in a new block

U+1CC00-1CEAF Symbols for Legacy Computing Supplement. Characters $36-$39

in the European alternate character set, which resemble the ghosts from

Pac-Man, are mapped to Private Use Area characters due to copyright and

trademark restrictions.

Tangerine Oric series (OricSCII)

ORICG0.TXT: Tangerine Oric G0 text character set.

ORICG1.TXT: Tangerine Oric G1 graphics character set.

The G1 character set includes user-defined characters at $60-$7F which have

been mapped to the Private Use Area. The user-defined characters at $70-$7F

are normally unusable due to the character generator RAM overlapping the

text screen RAM.

Ohio Scientific Superboard II / Challenger series

OSI.TXT: Ohio Scientific character set.

There are some unusual characters in the $00-$1F range.

RISC OS

RISCOSI.TXT: RISC OS Latin-1 character set.

RISCOSV.TXT: RISC OS Latin-1 character set with RISC OS-specific characters.

RISCOSB.TXT: RISC OS BFont character set.

RISCEFF.TXT: RISC OS Latin-1 character set used by Electronic Font Foundry.

The RISC OS character set is based on ISO Latin-1 with extra characters at

$80-$9F. RISCOSV.TXT includes characters specific to the RISC OS user interface

not included in RISCOSI.TXT. RISCEFF.TXT is similar to RISCOSI.TXT but with

additional characters and a different mapping used by Electronic Font Foundry,

a third-party supplier of RISC OS fonts.

RISCOSB.TXT is a separate encoding not based on ISO Latin-1 called the BFont

encoding. According to the RISC OS Programmer's Reference Manual it was used

in the BBC Master microcomputer and is retained in RISC OS for compatibility.

Robotron Z9001

ROBOTRON.TXT: Robotron Z9001 character set.

There are duplicate pairs of pseudographics characters at $7F/$FF, $B7/$FB,

$D0/$EB, $D3/$F1, $DC/$E5, $DF/$F7, and $E2/$F9 that have been mapped to the

same characters.

Sharp X1

SHARPX1V.TXT: Sharp X1 8-bit character set as mapped in video memory.

SHARPX1I.TXT: Sharp X1 8-bit character set as output by CHR$().

The video mapping includes characters in the range $00-$1F that cannot be

output through the BIOS, only through manipulating video memory directly.

Notably, the character at $7F can be output through the BIOS.

Sinclair QL

SINCLRQL.TXT: Sinclair QL character set.

Several of the Sinclair QL character set's glyphs featured raised small capital

letters. These have been mapped to MODIFIER LETTER SMALL A-F due to the absence

of *MODIFIER LETTER CAPITAL C and *MODIFIER LETTER CAPITAL F.

There is a strange character at $B5 that looks like a small capital letter Q

with a V shape underneath. I've mapped this to a capital letter Q with a

combining caron below as the closest possible match.

Smalltalk

SMLTLK72.TXT: Smalltalk-72 character set.

SMLTLK78.TXT: Smalltalk-78 character set.

Characters unique to Smalltalk are placed in a new block

U+1CEB0-1CEFF Miscellaneous Mathematical and Technical Symbols.

Teletext

TELTXTG0.TXT: Teletext G0 English alphanumerics character set.

TELTXTG1.TXT: Teletext G1 English graphics character set.

TELTXTG2.TXT: Teletext G2 Latin Supplementary Set.

TELTXTG3.TXT: Teletext G3 Smooth Mosaics and Line Drawing Set.

See European Telecommunication Standard 300 706 for details.

Texas Instruments TI-99/4a

TI994A.TXT: TI-99/4a character set.

The TI-99/4a character set is mostly US-ASCII, except it includes two special

characters at $1E and $1F and user-defined characters at $7F-$9F. $1E is the

cursor character, which is mapped to FULL BLOCK. $1F is a block the color of

the screen border, which, because of how the TI-99/4a's video actually works,

is best mapped to NO-BREAK SPACE. $7F-$9F are mapped to the Private Use Area.

TRS-80 Model I

TRSM1ORG.TXT: TRS-80 Model I, original version, as mapped in memory.

TRSM1REV.TXT: TRS-80 Model I, revised version, as mapped in memory.

TRSM1ICH.TXT: TRS-80 Model I as mapped by CHR$() (same for both revisions).

The original version has an opening quotation mark, lowercase letters without

descenders, and a tilde where the revised version has a pound sign, lowercase

letters with descenders, and a yen sign. The CHR$() mapping does not have these

characters at all; it duplicates the uppercase region of the character set

instead.

TRS-80 Model III and Model 4

TRSM3VIN.TXT: TRS-80 Model III/4 international set as mapped in memory.

TRSM3VJP.TXT: TRS-80 Model III/4 katakana set as mapped in memory.

TRSM3VRV.TXT: TRS-80 Model III/4 reverse video set as mapped in memory.

TRSM3IIN.TXT: TRS-80 Model III/4 international set as mapped by CHR$().

TRSM3IJP.TXT: TRS-80 Model III/4 katakana set as mapped by CHR$().

TRSM3IRV.TXT: TRS-80 Model III/4 reverse video set as mapped by CHR$().

The IN and JP sets both have semigraphics at $80-$BF, but the IN set has

miscellaneous symbols at $C0-$FF whereas the JP set has halfwidth katakana.

The RV set has no semigraphics at all, but instead has reverse-video versions

of $00-$7F at $80-$FF. The CHR$() mapping of each set is nearly identical to

the corresponding memory mapping but has control characters at $00-$1F instead

of graphics characters.

The Model III and Model 4 include an unidentified character at $FB which has

been mapped to a character in the Private Use Area.

TRS-80 Model 4a

TRSM4AVP.TXT: TRS-80 Model 4a primary character set as mapped in memory.

TRSM4AVA.TXT: TRS-80 Model 4a alternate character set as mapped in memory.

TRSM4AVR.TXT: TRS-80 Model 4a reverse video set as mapped in memory.

TRSM4AIP.TXT: TRS-80 Model 4a primary character set as mapped by CHR$().

TRSM4AIA.TXT: TRS-80 Model 4a alternate character set as mapped by CHR$().

TRSM4AIR.TXT: TRS-80 Model 4a reverse video set as mapped by CHR$().

The Model 4 and Model 4a have completely different characters at $00-$1F.

Otherwise, the primary character set of the Model 4a is identical to the

international set of the Model 4; however, the Model 4a does not have a

katakana set and instead has an alternate character set with some Latin-1

characters and a completely different set of miscellaneous symbols.

The Model 4a includes two unidentified characters at $1D and $FB which have

been mapped to characters in the Private Use Area.

Sinclair ZX80, ZX81, and ZX Spectrum

ZX80.TXT: Sinclair ZX80 character set.

ZX81.TXT: Sinclair ZX81 character set.

ZXSPCTRM.TXT: Sinclair ZX Spectrum character set.

ZXDESKTP.TXT: Sinclair ZX Spectrum "Desktop" character set.

ZXFZXPUA.TXT: "FZX" character set with $80-$FF mapped to the Private Use Area.

ZXFZXLT1.TXT: "FZX" character set with $A0-$FF mapped to Latin-1 (ISO 8859-1).

ZXFZXLT5.TXT: "FZX" character set with $A0-$FF mapped to Latin-5 (ISO 8859-9).

ZXFZXKOI.TXT: "FZX" character set with $A0-$FF mapped to KOI-8.

ZXFZXSLT.TXT: "FZX" character set with $80-$FF mapped to CP1252.

The ZX80 and ZX81 character sets are only defined over $00-$3F and $80-$BF.

Other code values are used for control characters or BASIC tokens and have no

mapping to any visible character. The ZX80 and ZX81 have the same printable

characters but in a different order.

The ZX Spectrum character set, unlike the ZX80 and ZX81 character sets, is

based on ASCII. It includes semigraphics at $80-$8F and user-defined characters

at $90-$A4. Characters beyond $A4 are used for BASIC tokens and have no mapping

to any visible character. The user-defined characters have been mapped to the

Private Use Area.

"Desktop" is a word processing program for the ZX Spectrum published in 1991

by Proxima Software. It uses its own font files with precomposed characters at

$80-$9D to support Czech.

"FZX" is a royalty-free font format for the ZX Spectrum released in 2013 by

Andrew Owen and Einar Saukas. The FZX specification supports but does not

define the encoding for characters $80-$FF. Most FZX fonts that include these

characters use Latin-1 (ISO 8859-1), Latin-5 (ISO 8859-9), or KOI-8.

SMLTLK72.TXT

			#			Name: Map from Smalltalk-72 character set to Unicode

			#			Date: 2021 November 29

			#			Author: Rebecca Bettencourt <support@kreativekorp.com>

			

			0x01			0x2264			# LESS-THAN OR EQUAL TO

			0x02			0x1CEB3			# BLACK RIGHT TRIANGLE CARET

			0x03			0x2982			# Z NOTATION TYPE COLON

			

			0x05			0x22A1			# SQUARED DOT OPERATOR

			0x06			0x0040			# COMMERCIAL AT

			0x07			0x2219			# BULLET OPERATOR

			

			0x0B			0x1CEB1			# KEYHOLE

			

			0x0E			0x2260			# NOT EQUAL TO

			0x0F			0x0022			# QUOTATION MARK

			0x10			0x2192+0x200D+0x0028			# RIGHTWARDS ARROW TO LEFT PARENTHESIS

			0x11			0x0021			# EXCLAMATION MARK

			0x12			0x2218			# RING OPERATOR

			0x13			0x2019+0x200D+0x0073			# APOSTROPHE S OPERATOR

			0x14			0x1CEB2			# OLD PERSONAL COMPUTER WITH MONITOR IN PORTRAIT ORIENTATION

			0x15			0x207B			# SUPERSCRIPT MINUS

			0x16			0x0025			# PERCENT SIGN

			0x17			0x2228			# LOGICAL OR

			0x18			0x2227			# LOGICAL AND

			0x19			0x27BD			# HEAVY WEDGE-TAILED RIGHTWARDS ARROW

			0x1A			0x2265			# GREATER-THAN OR EQUAL TO

			0x1B			0x0024			# DOLLAR SIGN

			0x1C			0x0026			# AMPERSAND

			0x1D			0x00A7			# SECTION SIGN

			0x1E			0x2757			# HEAVY EXCLAMATION MARK SYMBOL

			0x1F			0x25A0			# BLACK SQUARE

			0x20			0x0020			# SPACE

			0x21			0x21D1			# UPWARDS DOUBLE ARROW

			0x22			0x261E			# WHITE RIGHT POINTING INDEX

			0x23			0x0023			# NUMBER SIGN

			0x24			0x0028+0x200D+0x0029			# LEFT AND RIGHT PARENTHESIS

			0x25			0x23FF			# OBSERVER EYE SYMBOL

			

			0x2607			0x2299			# CIRCLED DOT OPERATOR

			0x2612			0x229A			# CIRCLED RING OPERATOR

			0x262A			0x229B			# CIRCLED ASTERISK OPERATOR

			0x262B			0x2295			# CIRCLED PLUS

			0x262D			0x2296			# CIRCLED MINUS

			0x262F			0x2298			# CIRCLED DIVISION SLASH

			0x263D			0x229C			# CIRCLED EQUALS

			

			0x27			0x0027			# APOSTROPHE

			0x28			0x0028			# LEFT PARENTHESIS

			0x29			0x0029			# RIGHT PARENTHESIS

			0x2A			0x002A			# ASTERISK

			0x2B			0x002B			# PLUS SIGN

			0x2C			0x002C			# COMMA

			0x2D			0x002D			# HYPHEN-MINUS

			0x2E			0x002E			# FULL STOP

			0x2F			0x002F			# SOLIDUS

			0x30			0x0030			# DIGIT ZERO

			0x31			0x0031			# DIGIT ONE

			0x32			0x0032			# DIGIT TWO

			0x33			0x0033			# DIGIT THREE

			0x34			0x0034			# DIGIT FOUR

			0x35			0x0035			# DIGIT FIVE

			0x36			0x0036			# DIGIT SIX

			0x37			0x0037			# DIGIT SEVEN

			0x38			0x0038			# DIGIT EIGHT

			0x39			0x0039			# DIGIT NINE

			0x3A			0x003A			# COLON

			0x3B			0x003B			# SEMICOLON

			0x3C			0x003C			# LESS-THAN SIGN

			0x3D			0x003D			# EQUALS SIGN

			0x3E			0x003E			# GREATER-THAN SIGN

			0x3F			0x21D2			# RIGHTWARDS DOUBLE ARROW

			0x40			0x263A			# WHITE SMILING FACE

			0x41			0x0041			# LATIN CAPITAL LETTER A

			0x42			0x0042			# LATIN CAPITAL LETTER B

			0x43			0x0043			# LATIN CAPITAL LETTER C

			0x44			0x0044			# LATIN CAPITAL LETTER D

			0x45			0x0045			# LATIN CAPITAL LETTER E

			0x46			0x0046			# LATIN CAPITAL LETTER F

			0x47			0x0047			# LATIN CAPITAL LETTER G

			0x48			0x0048			# LATIN CAPITAL LETTER H

			0x49			0x0049			# LATIN CAPITAL LETTER I

			0x4A			0x004A			# LATIN CAPITAL LETTER J

			0x4B			0x004B			# LATIN CAPITAL LETTER K

			0x4C			0x004C			# LATIN CAPITAL LETTER L

			0x4D			0x004D			# LATIN CAPITAL LETTER M

			0x4E			0x004E			# LATIN CAPITAL LETTER N

			0x4F			0x004F			# LATIN CAPITAL LETTER O

			0x50			0x0050			# LATIN CAPITAL LETTER P

			0x51			0x0051			# LATIN CAPITAL LETTER Q

			0x52			0x0052			# LATIN CAPITAL LETTER R

			0x53			0x0053			# LATIN CAPITAL LETTER S

			0x54			0x0054			# LATIN CAPITAL LETTER T

			0x55			0x0055			# LATIN CAPITAL LETTER U

			0x56			0x0056			# LATIN CAPITAL LETTER V

			0x57			0x0057			# LATIN CAPITAL LETTER W

			0x58			0x0058			# LATIN CAPITAL LETTER X

			0x59			0x0059			# LATIN CAPITAL LETTER Y

			0x5A			0x005A			# LATIN CAPITAL LETTER Z

			0x5B			0x005B			# LEFT SQUARE BRACKET

			0x5C			0x005C			# REVERSE SOLIDUS

			0x5D			0x005D			# RIGHT SQUARE BRACKET

			0x5E			0x2191			# UPWARDS ARROW

			0x5F			0x2190			# LEFTWARDS ARROW

			

			0x61			0x0061			# LATIN SMALL LETTER A

			0x62			0x0062			# LATIN SMALL LETTER B

			0x63			0x0063			# LATIN SMALL LETTER C

			0x64			0x0064			# LATIN SMALL LETTER D

			0x65			0x0065			# LATIN SMALL LETTER E

			0x66			0x0066			# LATIN SMALL LETTER F

			0x67			0x0067			# LATIN SMALL LETTER G

			0x68			0x0068			# LATIN SMALL LETTER H

			0x69			0x0069			# LATIN SMALL LETTER I

			0x6A			0x006A			# LATIN SMALL LETTER J

			0x6B			0x006B			# LATIN SMALL LETTER K

			0x6C			0x006C			# LATIN SMALL LETTER L

			0x6D			0x006D			# LATIN SMALL LETTER M

			0x6E			0x006E			# LATIN SMALL LETTER N

			0x6F			0x006F			# LATIN SMALL LETTER O

			0x70			0x0070			# LATIN SMALL LETTER P

			0x71			0x0071			# LATIN SMALL LETTER Q

			0x72			0x0072			# LATIN SMALL LETTER R

			0x73			0x0073			# LATIN SMALL LETTER S

			0x74			0x0074			# LATIN SMALL LETTER T

			0x75			0x0075			# LATIN SMALL LETTER U

			0x76			0x0076			# LATIN SMALL LETTER V

			0x77			0x0077			# LATIN SMALL LETTER W

			0x78			0x0078			# LATIN SMALL LETTER X

			0x79			0x0079			# LATIN SMALL LETTER Y

			0x7A			0x007A			# LATIN SMALL LETTER Z

			0x7B			0x007B			# LEFT CURLY BRACKET

			0x7C			0x2019			# RIGHT SINGLE QUOTATION MARK

			0x7D			0x007D			# RIGHT CURLY BRACKET

			0x7E			0x003F			# QUESTION MARK

			0x7F			0x2301			# ELECTRIC ARROW

SMLTLK78.TXT

			#			Name: Map from Smalltalk-78 character set to Unicode

			#			Date: 2021 November 29

			#			Author: Rebecca Bettencourt <support@kreativekorp.com>

			

			0x01			0x2264			# LESS-THAN OR EQUAL TO

			

			0x03			0x2982			# Z NOTATION TYPE COLON

			

			0x05			0x2301			# ELECTRIC ARROW

			0x06			0x2261			# IDENTICAL TO

			0x07			0x2218			# RING OPERATOR

			

			0x0E			0x2260			# NOT EQUAL TO

			0x0F			0x1F8B2			# RIGHTWARDS ARROW WITH LOWER HOOK

			

			0x11			0x21D1			# UPWARDS DOUBLE ARROW

			0x12			0x2265			# GREATER-THAN OR EQUAL TO

			0x13			0x2019+0x200D+0x0073			# APOSTROPHE S OPERATOR

			0x14			0x1FB7C			# LEFT AND LOWER ONE EIGHTH BLOCK

			0x15			0x207B			# SUPERSCRIPT MINUS

			0x16			0x23FF			# OBSERVER EYE SYMBOL

			0x17			0x2299			# CIRCLED DOT OPERATOR

			0x18			0x1CEB0			# HORIZONTAL ZIGZAG LINE

			0x19			0x1F8B6			# NEGATIVE SQUARED RIGHTWARDS ARROW

			

			0x1B			0x21D2			# RIGHTWARDS DOUBLE ARROW

			

			0x1D			0x25A1			# WHITE SQUARE

			0x1E			0x1FB7F			# RIGHT AND LOWER ONE EIGHTH BLOCK

			

			0x20			0x0020			# SPACE

			0x21			0x0021			# EXCLAMATION MARK

			0x22			0x0022			# QUOTATION MARK

			0x23			0x0023			# NUMBER SIGN

			0x24			0x0024			# DOLLAR SIGN

			0x25			0x0025			# PERCENT SIGN

			0x26			0x0026			# AMPERSAND

			0x27			0x0027			# APOSTROPHE

			0x28			0x0028			# LEFT PARENTHESIS

			0x29			0x0029			# RIGHT PARENTHESIS

			0x2A			0x002A			# ASTERISK

			0x2B			0x002B			# PLUS SIGN

			0x2C			0x002C			# COMMA

			0x2D			0x002D			# HYPHEN-MINUS

			0x2E			0x002E			# FULL STOP

			0x2F			0x002F			# SOLIDUS

			0x30			0x0030			# DIGIT ZERO

			0x31			0x0031			# DIGIT ONE

			0x32			0x0032			# DIGIT TWO

			0x33			0x0033			# DIGIT THREE

			0x34			0x0034			# DIGIT FOUR

			0x35			0x0035			# DIGIT FIVE

			0x36			0x0036			# DIGIT SIX

			0x37			0x0037			# DIGIT SEVEN

			0x38			0x0038			# DIGIT EIGHT

			0x39			0x0039			# DIGIT NINE

			0x3A			0x003A			# COLON

			0x3B			0x003B			# SEMICOLON

			0x3C			0x003C			# LESS-THAN SIGN

			0x3D			0x003D			# EQUALS SIGN

			0x3E			0x003E			# GREATER-THAN SIGN

			0x3F			0x003F			# QUESTION MARK

			0x40			0x0040			# COMMERCIAL AT

			0x41			0x0041			# LATIN CAPITAL LETTER A

			0x42			0x0042			# LATIN CAPITAL LETTER B

			0x43			0x0043			# LATIN CAPITAL LETTER C

			0x44			0x0044			# LATIN CAPITAL LETTER D

			0x45			0x0045			# LATIN CAPITAL LETTER E

			0x46			0x0046			# LATIN CAPITAL LETTER F

			0x47			0x0047			# LATIN CAPITAL LETTER G

			0x48			0x0048			# LATIN CAPITAL LETTER H

			0x49			0x0049			# LATIN CAPITAL LETTER I

			0x4A			0x004A			# LATIN CAPITAL LETTER J

			0x4B			0x004B			# LATIN CAPITAL LETTER K

			0x4C			0x004C			# LATIN CAPITAL LETTER L

			0x4D			0x004D			# LATIN CAPITAL LETTER M

			0x4E			0x004E			# LATIN CAPITAL LETTER N

			0x4F			0x004F			# LATIN CAPITAL LETTER O

			0x50			0x0050			# LATIN CAPITAL LETTER P

			0x51			0x0051			# LATIN CAPITAL LETTER Q

			0x52			0x0052			# LATIN CAPITAL LETTER R

			0x53			0x0053			# LATIN CAPITAL LETTER S

			0x54			0x0054			# LATIN CAPITAL LETTER T

			0x55			0x0055			# LATIN CAPITAL LETTER U

			0x56			0x0056			# LATIN CAPITAL LETTER V

			0x57			0x0057			# LATIN CAPITAL LETTER W

			0x58			0x0058			# LATIN CAPITAL LETTER X

			0x59			0x0059			# LATIN CAPITAL LETTER Y

			0x5A			0x005A			# LATIN CAPITAL LETTER Z

			0x5B			0x005B			# LEFT SQUARE BRACKET

			0x5C			0x005C			# REVERSE SOLIDUS

			0x5D			0x005D			# RIGHT SQUARE BRACKET

			0x5E			0x2191			# UPWARDS ARROW

			0x5F			0x2190			# LEFTWARDS ARROW

			

			0x61			0x0061			# LATIN SMALL LETTER A

			0x62			0x0062			# LATIN SMALL LETTER B

			0x63			0x0063			# LATIN SMALL LETTER C

			0x64			0x0064			# LATIN SMALL LETTER D

			0x65			0x0065			# LATIN SMALL LETTER E

			0x66			0x0066			# LATIN SMALL LETTER F

			0x67			0x0067			# LATIN SMALL LETTER G

			0x68			0x0068			# LATIN SMALL LETTER H

			0x69			0x0069			# LATIN SMALL LETTER I

			0x6A			0x006A			# LATIN SMALL LETTER J

			0x6B			0x006B			# LATIN SMALL LETTER K

			0x6C			0x006C			# LATIN SMALL LETTER L

			0x6D			0x006D			# LATIN SMALL LETTER M

			0x6E			0x006E			# LATIN SMALL LETTER N

			0x6F			0x006F			# LATIN SMALL LETTER O

			0x70			0x0070			# LATIN SMALL LETTER P

			0x71			0x0071			# LATIN SMALL LETTER Q

			0x72			0x0072			# LATIN SMALL LETTER R

			0x73			0x0073			# LATIN SMALL LETTER S

			0x74			0x0074			# LATIN SMALL LETTER T

			0x75			0x0075			# LATIN SMALL LETTER U

			0x76			0x0076			# LATIN SMALL LETTER V

			0x77			0x0077			# LATIN SMALL LETTER W

			0x78			0x0078			# LATIN SMALL LETTER X

			0x79			0x0079			# LATIN SMALL LETTER Y

			0x7A			0x007A			# LATIN SMALL LETTER Z

			0x7B			0x007B			# LEFT CURLY BRACKET

			0x7C			0x007C			# VERTICAL LINE

			0x7D			0x007D			# RIGHT CURLY BRACKET

			0x7E			0x007E			# TILDE

Code
O0AT
2019
207B
2190
2191
21D1
21D2
2218
2219
2227
2228
2260
2261
2264
2265
2299
22A1
2301
23FF
25A0
25A1
261E
263A
2757
27BD
2982

1CEBO

1CEB1
1CEB2
1CEB3
1F8B2
1F8B6
1FB7C
1FB7F

Glyph

§

451

©o g ¢ @ o v Anm W< >

@:]:3 g oo !

LI’

Name
SECTION SIGN
RIGHT SINGLE QUOTATION MARK
SUPERSCRIPT MINUS
LEFTWARDS ARROW
UPWARDS ARROW
UPWARDS DOUBLE ARROW
RIGHTWARDS DOUBLE ARROW
RING OPERATOR
BULLET OPERATOR
LOGICAL AND
LOGICAL OR
NOT EQUAL TO
IDENTICAL TO
LESS-THAN OR EQUAL TO
GREATER-THAN OR EQUAL TO
CIRCLED DOT OPERATOR
SQUARED DOT OPERATOR
ELECTRIC ARROW
OBSERVER EYE SYMBOL
BLACK SQUARE
WHITE SQUARE
WHITE RIGHT POINTING INDEX
WHITE SMILING FACE
HEAVY EXCLAMATION MARK SYMBOL
HEAVY WEDGE-TAILED RIGHTWARDS ARROW
Z NOTATION TYPE COLON
HORIZONTAL ZIGZAG LINE

KEYHOLE

OLD PERSONAL COMPUTER WITH MONITOR IN PORTRAIT ORIENTATION

BLACK RIGHT TRIANGLE CARET
RIGHTWARDS ARROW WITH LOWER HOOK
NEGATIVE SQUARED RIGHTWARDS ARROW
LEFT AND LOWER ONE EIGHTH BLOCK

RIGHT AND LOWER ONE EIGHTH BLOCK

Smalltalk
SsT-72 1D
sT-72 7C
ST-72 15
ST-72 5F
ST-72 5E
ST-72 21
ST-72 3F
ST-72 12
ST-72 07
ST-72 18
ST-72 17
ST-72 OE
ST-78 06
ST-72 01
ST-72 1A
ST-78 17
ST-72 05
ST-72 7TF
ST-72 25
ST-72 1F
ST-78 1D
ST-72 22
ST-72 40
ST-72 1E
ST-72 19
ST-72 03
ST-78 18
ST-72 OB
ST-72 14
ST-72 02
ST-78 OF
ST-78 19
ST-78 14
ST-78 1E

o U =2 = 7

Ik

B i 0o =@ FOMN > \= 0 W

Lre ar

