
 L2/22-102

 A survey of non-XID identi�er usage in program text
 To: Source code ad hoc working group
 From: Robin Leroy
 Date: 2022-06-07

 Summary

 This is an informational document which may be used as material to guide proposals by the source code ad
 hoc working group for standard répertoire extensions for default identi�ers.

 We �nd, based on attested usage, that the space outside XID_Continue contains two main types of
 characters that have potential use in programming language identi�ers: characters used in mathematical
 notation, and emoji.

 This document is not a proposal; as such, it does not consider the potential issues with including these
 characters in identi�ers (security, potential use as operators, etc.), nor does it discuss the needs that these
 characters �ll. These issues will be discussed in the relevant proposals.

 Background

 Unicode Standard Annex #31 de�nes two identi�er syntaxes which generalize ASCII identi�er syntaxes that
 use the répertoire [A-Za-z0-9_] .

 Requirement UAX31-R1 Default Identifiers , used by many programming languages, de�nes an
 alphanumeric identi�er syntax based on General Categories, extending the classic 1 ASCII Start-Continue
 pattern [A-Za-z][A-Za-z0-9_]* . It makes no attempt at seeking out other Unicode characters which may be
 useful in programming language identi�er syntaxes. While it allows for the use of pro�les to extend identi�er
 syntaxes, very few language designers are willing to tailor Unicode defaults.

 Conversely, requirement UAX31-R2 Immutable Identifiers , designed to address compatibility concerns,
 allows all but some selected syntax and spacing characters in identi�ers. As a result immutable identi�ers can
 contain many characters—such as punctuation—that look like they should be disallowed if one extrapolates
 the ASCII de�nition. Relatively few programming languages (as opposed to markup languages such as
 XML) have used this kind of de�nition.

 Nevertheless, some major programming languages have adopted something similar to UAX31-R2; notably,
 this is the case of C, C++, and Swift. Other programming languages, such as Julia, have de�ned syntaxes
 based on additional general categories beyond those underlying [:XID_Continue:] . Looking at usage in
 these programming languages allows us to see which characters beyond the set [:XID_Continue:] are useful
 in programming language identi�ers.

 1 On the history of that syntax leading up to UAX #31, see Appendix C.

 I. Mathematical notation

 Note that the subscript and superscript letters , being (modi�er) letters, are part of default identi�ers already,
 so identi�ers suchs as Σᵢ_bᵢ_kᵢ (with a capital letter sigma, not a summation sign ∑) that use these without
 non-XID digits or signs are outside the scope of this survey. Likewise, identi�ers using the alphanumeric
 characters from the Mathematical Alphanumeric Symbols block, such as 𝒑 , are already default identi�ers.

 I.1 Répertoire

 As we were not able to comprehensively search modern Swift and C++ codebases (see Appendix A), we
 surveyed repositories written in Julia: in that language, the practice of non-ASCII mathematical notation is
 more established. It turns out that the non-XID characters in use are similar there, even though the set
 allowed is di�erent.

 I.1.1 Subscripts and superscripts

 The subscript and superscript digits stand out: one �nds Swift and C++ identi�ers such as y² , σ² , t² , p₀ , y₁ ,
 but also length² , sumX² , etc. One also �nds identi�ers that use the subscript and superscript signs, in
 identi�ers such as σₖγₖ⁻¹pₖᵀpₖ or φₖ₊₁ .

 The same patterns of use are found in Julia: one commonly �nds identi�ers such as D⁻¹ , V₊ , x₀ , etc. The
 superscript parentheses are also used, primarily to denote derivatives, in identi�ers such as 𝒑⁽ⁿ⁾ .

 I.1.2 Nabla and partial di�erential

 Many mathematical symbols (and punctuation characters with mathematical use) are Pattern_Syntax, and
 thus are not allowed in identi�ers by Swift and C++. Two of them however (∇ and ∂) have bold or italic
 variants in the Mathematical Alphanumeric Symbols block of the SMP, which is allowed in identi�ers by
 these languages. These variants see use in Swift and C++ identi�ers, both in the case of nabla (either used
 with single letters, e.g. , 𝛁p , or with a word, 𝛁outputs) or in that of the partial di�erential sign (in identi�ers
 such as 𝟃E𝟃h or 𝜕Ω).

 In Julia, many characters in the general category of mathematical symbols are allowed in identi�ers, as well as
 most of those in the general category of other symbols . Despite this signi�cantly larger répertoire, only a
 handful of mathematical symbols are in common use in identi�ers; there too nabla and the partial
 di�erential (this time the non-bold ones) stand out.

 I.1.3 In�nity

 Another mathematical symbol commonly seen in Julia identi�ers is the in�nity sign, either alone or in
 identi�ers such as V∞ or c∞ ; that one has no non-Pattern_Syntax equivalent.

 I.1.4 Prime

 Julia also allows prime (′) and related characters (multiples ″ , ‴ , and ⁗ , reversed ‵ , ‶ , and ‷) in identi�ers.
 The prime and double prime characters are in widespread use, in identi�ers such as B′ , m′ , γ″ , etc. We did
 not �nd the triple, quadruple, or reversed primes.

 Note that XID_Continue contains the modifier letters prime and double prime; these can be found in
 mathematical use in many programming languages that do not allow their punctuation counterparts: xʹ , fʺ
 (Swift) , xʺ (JavaScript) , etc.

https://github.com/apple/swift-numerics/blob/9596f40d3b34569afd2ec971cb8b4ad92d984a4d/Sources/ComplexModule/Complex%2BElementaryFunctions.swift#L358-L359
https://github.com/RNCan/WeatherBasedSimulationFramework/blob/5fa3f650fba604d942c7a38cc10580992d8a1781/wbsModels/SpruceBudworm/SpruceBudwormLaboratoryEquations.cpp#L329
https://github.com/CodingMeSwiftly/UIBezierPath-Superpowers/blob/46ce4f8efeb8240b057495a70b6a050a10c1af38/UIBezierPath%2BSuperpowers.swift#L742
https://github.com/axadam/Numerical/blob/88680a8fb7b17d7a22caa0bb9706eee297a58795/Sources/Numerical/SpecialFunctions/MarcumQ.swift#L318-L322
https://github.com/CryptoCoinSwift/ECurve/blob/8ac09c6e40d95b6e5624b89a1ab6bf8a157bcee5/Classes/ECurve.swift#L137
https://github.com/laszlokorte/reform-swift/blob/ee0380dae249111cb7bfba764ad80723a4deb16e/ReformMath/ReformMath/Vec2d.swift#L55
https://github.com/LoopKit/LoopKit/blob/ac51fc2f4c18170fafa0bb0ea3c69e2964247cd7/LoopKit/GlucoseKit/GlucoseMath.swift#L27
https://github.com/kul-optec/alpaqa/blob/2937ecdeadf023430e633a165b54fcd47099de1b/src/include/alpaqa/inner/second-order-panoc.hpp#L259-L261
https://github.com/JuliaSmoothOptimizers/Krylov.jl/blob/0351bb13fad099f6b5d5cffabc762e895c3cc5b2/test/test_lsmr.jl#L58
https://github.com/JuliaHolomorphic/RiemannHilbert.jl/blob/0dd1b41b85f836967e0cbae66ba1f4b1e99be31e/src/KdV.jl#L12-L13
https://github.com/JuliaMath/Roots.jl/blob/01f4ec4306cb05952092733bfcadd6b10089a913/src/Bracketing/bracketing.jl#L3-L6
https://github.com/JuliaMath/Polynomials.jl/blob/e64e5424700511d7dcd67469f7174c845dd7b7e3/src/polynomials/factored_polynomial.jl#L346-L351
https://github.com/fastai/course-v3/blob/7fceebfd14d4f3bc7e0ec649834309b8cb786e40/nbs/swift/FastaiNotebook_10_mixup_ls/Sources/FastaiNotebook_10_mixup_ls/09_optimizer.swift#L20
https://github.com/tensorflow/swift-apis/blob/f51ee4618d652a2419e998bf9418ad80bda67454/Sources/TensorFlow/Layers/Recurrent.swift#L429-L443
https://github.com/KevinCoble/AIToolbox/blob/280d2cd8c3047053c87a9347b431990493897a41/Package/NeuralNetwork.swift#L92-L94
https://github.com/llvm/llvm-project/issues/54732#issuecomment-1115477676
https://github.com/JuliaLang/julia/blob/87ded5a9aa502cfc4e03cbf230cb9bba86c85cc1/src/flisp/julia_extensions.c#L79-L117
https://github.com/JuliaLang/julia/blob/87ded5a9aa502cfc4e03cbf230cb9bba86c85cc1/src/flisp/julia_extensions.c#L73-L77
https://github.com/JuliaApproximation/SpectralMeasures.jl/blob/dfd5f2986eeea91dff17ed5635bf985a15177ea9/src/RatFun.jl#L51
https://github.com/ma-laforge/InspectDR.jl/blob/b9c88bb0fae9a57aa959ec5b56040852d9fd8f2e/sample/demo11.jl#L41
https://github.com/JuliaApproximation/SpectralMeasures.jl/blob/b7e299cf3c88f9116faeba19233567d1b647adad/src/HessenbergUnitary.jl#L112
https://github.com/JuliaLang/julia/blob/87ded5a9aa502cfc4e03cbf230cb9bba86c85cc1/src/flisp/julia_extensions.c#L149-L150
https://github.com/FRBNY-DSGE/DSGE.jl/blob/bcd8ed296653e42d5e56f06c5eda22d55ba47147/src/models/heterogeneous/het_dsge_lag/jacobian.jl#L267
https://github.com/JuliaMath/Polynomials.jl/blob/6153edc221081498f79d59827b2fc5551ef9dd2d/src/polynomials/LaurentPolynomial.jl#L90
https://github.com/PtFEM/NumericalMethodsforEngineers.jl/blob/eb3f9b5f4eb8317d0bd96dd6803604360dabfc1c/src/ch02/bicgstabl.jl#L53
https://github.com/sslnjz/geodesy/blob/a9b697025cc0258f178279450096053482753705/src/vector/nvector_cartesian.cpp#L65
https://github.com/axadam/Numerical/blob/f0af588504e1692bd867f84285a948dce05da6c8/Tests/NumericalTests/RootFindingTests.swift#L16
https://github.com/axadam/Numerical/blob/f0af588504e1692bd867f84285a948dce05da6c8/Tests/NumericalTests/RootFindingTests.swift#L16
https://github.com/reinventing-wheels/cam16/blob/8d761b18f3955dfb9145270885f65a0d22b336fa/dist/esm/util.js#L4

 I.1.5 Sums and products

 Julia allows the 𝑛 -ary summation (∑) and product (∏) characters in identi�ers. These characters are
 occasionally used, e.g. , we �nd an identi�er ∑PQ for a sum of the P .* Q . However, far more common is the
 use of the letter sigma (Σ) for sums: Σ , ΣM , Σσ² , etc. The situation is similar with the letter pi (Π) for
 products.

 I.1.6 Integrals

 Julia allows the integral sign and variants thereof in identi�ers. We were able to �nd a few occurrences of
 these signs; however, they were only used on their own, as the names of integration functions, rather than in
 variables representing an expression: e.g. , ∫ for integrate, ⨜ for cum[ulative]sum ; this usage is thus more
 akin to that of an operator.

 I.1.7 Other symbols (excluding emoji)

 We were able to �nd references to one astronomical codebase in Julia which used the astronomical symbols;
 however their use appears to be anecdotal overall.

 I.1.8 Fractions

 Fractions are allowed in identi�ers by C++ and Swift (in the Start set), and Julia (in the Continue set). Their
 use was exceedingly rare in Julia, being essentially limited to various occurrences of the identi�er Σ½ (for
 Σ 1/2 , where Σ is a covariance matrix). In Swift and C++, they were sometimes used to represent the relevant
 quotients, e.g. , ⅔ for 2.0 / 3.0 .

 I.2 Notability

 Mathematical notation obviously does not occur in all codebases; one would not expect the identi�er y² in a
 networking stack. It is common in Julia, a language designed for scienti�c computing. However, as that
 notation is used in many technical �elds, we �nd it in C++ and Swift in a broad variety of �elds beyond the
 expected numerical analysis and physics, from machine learning to cryptography , forestry , or UI toolkits .

 Its use is not con�ned to obscure individual projects: we �nd it in repositories managed by major
 organizations, such as Apple (Swift) , TensorFlow (Swift) or Natural Resources Canada (C++) .

 II. Emoji

 Many Swift codebases—and some C++ codebases—were found to contain emoji in identi�ers.

 Two main patterns arise:

 1. logographic use, e.g. , a function 🖨 “print”, a function disconnect 😈 “disconnect dæmon”,
 functions 🔒 and 🔓 “lock” and “unlock”, etc.

 2. use as placeholder names, e.g. , mock errors named 💣, 🔥, 🧨 , etc.

 Emoji usage appeared less frequently in Julia, but it is attested, e.g. , we found some 🐢 “turtle” graphics .

https://github.com/JuliaQuant/MarketTechnicals.jl/blob/9e09b8fc7b1f324725f83a3edff8117cffc455f1/src/volume.jl#L61-L63
https://github.com/JuliaMath/Polynomials.jl/blob/6153edc221081498f79d59827b2fc5551ef9dd2d/src/polynomials/standard-basis.jl#L96
https://github.com/JuliaReach/Reachability.jl/blob/04532369ed8ddf50d4d1c994c7087947d7165ff9/src/ReachSets/discretize.jl#L803-L825
https://github.com/pluskid/Mocha.jl/blob/5e15b882d7dd615b0c5159bb6fde2cc040b2d8ee/src/cuda/layers/gaussian-kl-loss.jl#L26
https://github.com/JuliaApproximation/ApproxFun.jl/blob/5ee6bf2388521a6784d7ef3ff2371defe2b283dd/src/Extras/poetry.jl#L32-L33
https://github.com/search?l=Julia&q=%CE%A3%C2%BD&type=code
https://github.com/lrtitze/Swift-VectorBoolean/blob/8c170b90a4f7ce5c3a402f2032ef4e5dc341c11b/Swift%20VectorBoolean/VectorBoolean/FBBezierGraph.swift#L103-L108
https://github.com/KevinCoble/AIToolbox/blob/280d2cd8c3047053c87a9347b431990493897a41/Package/NeuralNetwork.swift#L92-L94
https://github.com/CryptoCoinSwift/RIPEMD-Swift/blob/7a2176a4e46f32247f643fb5610e81ccea95df1a/Classes/RIPEMD%2BBlock.swift#L15-L74
https://github.com/RNCan/WeatherBasedSimulationFramework/blob/5fa3f650fba604d942c7a38cc10580992d8a1781/wbsModels/SpruceBudworm/SpruceBudwormLaboratoryEquations.cpp#L329
https://github.com/CodingMeSwiftly/UIBezierPath-Superpowers/blob/46ce4f8efeb8240b057495a70b6a050a10c1af38/UIBezierPath%2BSuperpowers.swift#L742
https://github.com/apple/swift-numerics/blob/9596f40d3b34569afd2ec971cb8b4ad92d984a4d/Sources/ComplexModule/Complex%2BElementaryFunctions.swift#L358-L359
https://github.com/tensorflow/swift-apis/blob/f51ee4618d652a2419e998bf9418ad80bda67454/Sources/TensorFlow/Layers/Recurrent.swift#L429-L443
https://github.com/RNCan/WeatherBasedSimulationFramework/blob/ab06a6ad1ff252715c1c6baac6ac5303c45e4b89/wbs/src/Simulation/WeatherGradient.h#L64
https://github.com/PureSwift/Bluetooth/blob/78e016838e71de5567cf2f7c7ec5a73b4e0c7954/Tests/BluetoothTests/DarwinTests.swift#L128-L147
https://github.com/typcn/bilibili-mac-client/blob/59ad0c8aeaf0b516031aa61602f7cafe260b10eb/bilibili/LiveChat/Socket.cpp#L145
https://github.com/raulriera/Bike-Compass/blob/30fa6a075f5808eeb6223eab88a2bb71e3f2aec8/App/Bike%20Compass/Storage.swift#L17-L21
https://github.com/Mindera/Alicerce/search?q=mockerror
https://github.com/JuliaGraphics/Luxor.jl/blob/3d6b98348a1b7ba852c801d6ef205773fb6e454c/test/turtle-test.jl#L33-L49

 II.1 Répertoire

 We made no attempt at classifying the kinds of emoji used; for more on emoji see UTS #51 .

 II.2 Notability

 While we found fewer major institutional users than for mathematical notation, we note that the mock
 errors mentioned above are in a repository managed by an international company.

 Appendix A. Methods

 We document the two methods used to �nd non-XID identi�ers; their limitations mean that, while we are
 able to document the nature of non-XID identi�er usage, we cannot usefully report on its extent, besides
 the comments made in the Notability sections above.

 A.1 BigQuery

 Google BigQuery was used to perform queries on the contents of the github-repos dataset. We looked for
 occurences outside of comments and character or string literals of characters outside XID_Continue (the
 exact set is described in appendix B).

 It was quickly found that, while large and up-to-date for the repositories it covers, the dataset is missing
 many repositories. For instance, the dataset contains none of the Unicode Consortium’s open-source
 repositories . Manually searching GitHub for speci�c C++ identi�ers making use of mathematical notation
 (as was done in the rationale for L2/22-087 Profile Changes in UAX #31 / UTS #39) found �ve nontrivial
 repositories, only one of which was in the dataset (other C++ codebases were found in the dataset, as the
 BigQuery approach does not require guessing the exact identi�ers). The set of repositories seems to be
 restricted to those that existed when the dataset was created, in 2016; this is a problem for assessing the
 extent of usage, as more modern codebases (created in the past �ve years) are excluded.

 Nevertheless, the dataset is useful for getting an overview of patterns of use, which is the aim of this
 document. Excluding the Swift repository itself (which has tests for Unicode identi�er support), 111
 distinct Swift repositories exceeding 1000 lines of code were found. About a tenth of those use them for
 mathematical notation; however, codebases using mathematical notation made up half of the top eight
 heaviest Swift users of non-XID identi�ers.

 The situation was messier for C++, as we found many encoding issues masquerading as non-XID identi�ers.
 An attempt was made at excluding UTF-8 interpreted as Latin-1, but that left code written in other
 codepages interpreted as Latin-1. Sifting through the results nevertheless found usage that seemed consistent
 with the patterns found in Swift.

 A.2 Manual searches

 Additional results were found by guessing plausible identi�ers and using GitHub’s search function. While
 this technique is not limited to repositories created prior to 2016, it has the downside of requiring a lucky
 guess of what identi�ers might have been used; further, GitHub’s search function is not exhaustive;
 attempts at recovering the results found using BigQuery occasionally failed even for large institutional
 repositories.

https://unicode.org/reports/tr51/
https://console.cloud.google.com/marketplace/details/github/github-repos
https://github.com/unicode-org
https://github.com/unicode-org
https://www.unicode.org/L2/L2022/22087-uax31-uts39-profile-chg.pdf

 Appendix B. Swift operators

 The Swift programming language allows for user-de�ned operators in Pattern_Syntax (somewhat famously ,
 this means that ⚽ is an operator in Swift, whereas 🏀 is an identi�er).

 This could be a concern for a principled extension of the identi�er space: if ⚽ sees widespread use as an
 operator, making it an identi�er character poses compatibility issues, and retaining the di�erent status of
 🏀 and ⚽ is confusing. Perhaps more plausibly, if ∇ sees widespread use as an operator, making it an
 identi�er poses compatibility issues, and retaining the di�erent status of 𝛁 and ∇ is confusing.

 However, the operators actually de�ned in Swift code overwhelmingly tend to be in�x rather than pre�x,
 with various symbols for binary operations and relations: ≈ approximately equals, ± plus or minus, ∩ and ∪
 intersection and union, etc., which are not natural generalizations of characters found in identi�ers.

 While we found some usage of pre�x operators, such as √ for the square root or ∑ for summation over a
 container , ∇ and ∂ were not among those.

 Appendix C. Historical note on Start-Continue identi�er syntaxes

 As best we can tell, Start-Continue identi�ers originate 2 with the “IBM Mathematical Formula Translating
 System Fortran” (1956), wherein variables consisted of “1 to six alphabetic or numeric characters (not
 special characters) of which the �rst is alphabetic”. That syntax was meant to mimic mathematical notation:
 “the Fortran language closely [resembles] the ordinary language of mathematics”. Indeed, this resemblance
 went so far as to making the �rst letter of a variable determine its type, with [I-N][A-Z0-9]* being integers. 3

 While the practice of having types determined by the �rst letter promptly went out of fashion, later
 programming languages syntaxes generalized the Start-Continue syntax beyond the 47-character space of the
 IBM 704; in ASCII, this became the familiar [A-Za-z][A-Za-z0-9_] , with the low line typically used for
 word separation, as disregarding spaces had likewise fallen out of fashion.

 These syntaxes were further generalized to 8-bit character sets; note for instance Ada 95, which extended the
 ASCII syntax 4 of Ada 83 to the Latin-1 Supplement, and used character names 5 to determine what a letter
 was within that character set.

 This syntax was �nally generalized 6 by Unicode in 1996, expressed using 7 the familiar set of General
 Categories since 2000, incorporating 8 provisions for backward compatibility since 2003, and ultimately
 moving to its current location 9 in 2005.

 We cannot fail to note that the practice of mimicking “the ordinary language of mathematics” in
 programming language identi�ers is alive and well sixty-�ve years later, with a character set three thousand
 times larger.

 9 Unicode Standard Annex #31: Identifier and Pattern Syntax, Version 4.1.0 , Section 2 Default Identifier Syntax .

 8 The Unicode Standard, Version 4.0 , p. 131 .

 7 The Unicode Standard, Version 3.0 , p. 135 .

 6 The Unicode Standard, Version 2.0 , p. 5-25 .

 5 Ada 95 Reference Manual , Section 2.1 Character Set .

 4 Ada 83 Language Reference Manual , Section 2.1 Character Set .

 3 Fortran Automatic Coding System for the IBM 704: Programmer’s Reference Manual , pp. 2 & 10 .

 2 Contrast FLOW-MATIC, the predecessor to COBOL, wherein names consist of “twelve or fewer non-space digits”
 (where “digit” means character). See FLOW-MATIC Programming System , p. 30 .

https://twitter.com/ManishEarth/status/1372671991887532035
https://github.com/Quick/Nimble/blob/c69d8cb2b1cffde9b18f62c4c4e846051e511c19/Sources/Nimble/Matchers/BeCloseTo.swift#L124
https://github.com/Quick/Nimble/blob/c69d8cb2b1cffde9b18f62c4c4e846051e511c19/Sources/Nimble/Matchers/BeCloseTo.swift#L171
https://github.com/taketo1024/swm-core/blob/683f9f3537d5a26ad0cdc8b6aeb472578944d025/Sources/SwmCore/Misc/Operators.swift#L18-L19
https://github.com/SwifterSwift/SwifterSwift/blob/6cb897700a43f9498987d952e79902258b41e71a/Sources/SwifterSwift/SwiftStdlib/FloatingPointExtensions.swift#L80-L89
https://github.com/UniversityOfPlymouth-Electronics/iOS-FastTrack-2014-2015/blob/4534de3df061d6738f086f3eebb283d74c34331e/04-App%20Architecture/Swift%202/4-3%20Playgrounds/Functions%202.playground/Pages/Section%201%20-%20First%20Class%20Types.xcplaygroundpage/Contents.swift#L175-L182
https://github.com/UniversityOfPlymouth-Electronics/iOS-FastTrack-2014-2015/blob/4534de3df061d6738f086f3eebb283d74c34331e/04-App%20Architecture/Swift%202/4-3%20Playgrounds/Functions%202.playground/Pages/Section%201%20-%20First%20Class%20Types.xcplaygroundpage/Contents.swift#L175-L182
https://www.unicode.org/reports/tr31/tr31-5.html#Default_Identifier_Syntax
https://www.unicode.org/versions/Unicode4.0.0/ch05.pdf#page=26
https://www.unicode.org/versions/Unicode3.0.0/ch05.pdf#page=31
http://www.unicode.org/versions/Unicode2.0.0/ch05.pdf#page=25
https://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-2-1.html
http://archive.adaic.com/standards/83lrm/html/lrm-02-01.html#2.1
https://archive.computerhistory.org/resources/text/Fortran/102649787.05.01.acc.pdf#page=4
https://archive.computerhistory.org/resources/text/Fortran/102649787.05.01.acc.pdf#page=12
http://www.bitsavers.org/pdf/univac/flow-matic/U1518_FLOW-MATIC_Programming_System_1958.pdf#page=39

