
7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 1/36

Technical Reports

Proposed Update Unicode® Standard Annex #31

UNICODE IDENTIFIER AND PATTERN SYNTAX

Version Unicode 15.0.0 (draft 6)

Editors Mark Davis (markdavis@google.com)

Date 2022-07-21

This Version https://www.unicode.org/reports/tr31/tr31-36.html

Previous
Version

https://www.unicode.org/reports/tr31/tr31-35.html

Latest
Version

https://www.unicode.org/reports/tr31/

Latest
Proposed
Update

https://www.unicode.org/reports/tr31/proposed.html

Revision 36

Summary

This annex describes specifications for recommended defaults for the use of Unicode in
the definitions of general-purpose identifiers, immutable identifiers, hashtag identifiers, and
in pattern-based syntax. It also supplies guidelines for use of normalization with identifiers.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard,
but is published online as a separate document. The Unicode Standard may require
conformance to normative content in a Unicode Standard Annex, if so specified in the
Conformance chapter of that version of the Unicode Standard. The version number
of a UAX document corresponds to the version of the Unicode Standard of which it
forms a part.

https://www.unicode.org/
https://www.unicode.org/reports/
mailto:markdavis@google.com
https://www.unicode.org/reports/tr31/tr31-36.html
https://www.unicode.org/reports/tr31/tr31-35.html
https://www.unicode.org/reports/tr31/
https://www.unicode.org/reports/tr31/proposed.html

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 2/36

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode Standard
Annex #41, “Common References for Unicode Standard Annexes.” For the latest version
of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports,
see [Reports]. For more information about versions of the Unicode Standard, see
[Versions]. For any errata which may apply to this annex, see [Errata].

Contents

1 Introduction
Figure 1. Code Point Categories for Identifier Parsing
1.1 Stability

Table 1. Permitted Changes in Future Versions
1.2 Customization
1.3 Display Format
1.4 Conformance
1.5 Notation

2 Default Identifiers
Table 2. Properties for Lexical Classes for Identifiers
2.1 Combining Marks
2.2 Modifier Letters
2.3 Layout and Format Control Characters

Figure 2. Persian Example with ZWNJ
Figure 3. Malayalam Example with ZWNJ
Figure 4. Sinhala Example with ZWJ
2.3.1 Limitations

2.4 Specific Character Adjustments
Table 3. Optional Characters for Start
Table 3a. Optional Characters for Medial
Table 3b. Optional Characters for Continue
Table 4. Excluded Scripts
Table 5. Recommended Scripts
Table 6. Aspirational Use Scripts (Withdrawn)
Table 7. Limited Use Scripts

2.5 Backward Compatibility
3 Immutable Identifiers
4 Pattern Syntax
5 Normalization and Case

5.1 NFKC Modifications
5.1.1 Modifications for Characters that Behave Like Combining
Marks
5.1.2 Modifications for Irregularly Decomposing Characters
5.1.3 Identifier Closure Under Normalization

Figure 5. Normalization Closure
Figure 6. Case Closure
Figure 7. Reverse Normalization Closure
Table 8. Compatibility Equivalents to Letters or Decimal
Numbers
Table 9. Canonical Equivalence Exceptions Prior to
Unicode 5.1

5.2 Case and Stability
5.2.1 Edge Cases for Folding

6 Hashtag Identifiers
Acknowledgments

https://www.unicode.org/reporting.html
https://www.unicode.org/reports/tr41/tr41-28.html
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/
https://www.unicode.org/versions/
https://www.unicode.org/errata/

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 3/36

References
Migration
Modifications

1 Introduction

A common task facing an implementer of the Unicode Standard is the provision of a
parsing and/or lexing engine for identifiers, such as programming language variables or
domain names. There are also realms where identifiers need to be defined with an
extended set of characters to align better with what end users expect, such as in hashtags.

To assist in the standard treatment of identifiers in Unicode character-based parsers and
lexical analyzers, a set of specifications is provided here as a basis for parsing identifiers
that contain Unicode characters. These specifications include:

Default Identifiers: a recommended default for the definition of identifiers.
Immutable Identifiers: for environments that need an definition of identifiers that does
not change across versions of Unicode.
Hashtag Identifiers: for identifiers that need a broader set of characters, principally for
hashtags.

These guidelines follow the typical pattern of identifier syntax rules in common
programming languages, by defining an ID_Start class and an ID_Continue class and
using a simple BNF rule for identifiers based on those classes; however, the composition
of those classes is more complex and contains additional types of characters, due to the
universal scope of the Unicode Standard.

This annex also provides guidelines for the use of normalization and case insensitivity with
identifiers, expanding on a section that was originally in Unicode Standard Annex #15,
“Unicode Normalization Forms” [UAX15].

The specification in this annex provides a definition of identifiers that is guaranteed to be
backward compatible with each successive release of Unicode, but also allows any
appropriate new Unicode characters to become available in identifiers. In addition, Unicode
character properties for stable pattern syntax are provided. The resulting pattern syntax is
backward compatible and forward compatible over future versions of the Unicode
Standard. These properties can either be used alone or in conjunction with the identifier
characters.

Figure 1 shows the disjoint categories of code points defined in this annex. (The sizes of
the boxes are not to scale.)

Figure 1. Code Point Categories for Identifier Parsing

ID_Start
 Characters

Pattern_Syntax
 Characters

Unassigned Code Points

ID_Nonstart
 Characters

Pattern_White_Space
 Characters

Other Assigned
 Code Points

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UAX15

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 4/36

The set consisting of the union of ID_Start and ID_Nonstart characters is known as
Identifier Characters and has the property ID_Continue. The ID_Nonstart set is defined as
the set difference ID_Continue minus ID_Start: it is not a formal Unicode property. While
lexical rules are traditionally expressed in terms of the latter, the discussion here is
simplified by referring to disjoint categories.

1.1 Stability

There are certain features that developers can depend on for stability:

Identifier characters, Pattern_Syntax characters, and Pattern_White_Space are
disjoint: they will never overlap.
By definition, the Identifier characters are always a superset of the ID_Start
characters.
The Pattern_Syntax characters and Pattern_White_Space characters are immutable
and will not change over successive versions of Unicode.
The ID_Start and ID_Nonstart characters may grow over time, either by the addition
of new characters provided in a future version of Unicode or (in rare cases) by the
addition of characters that were in Other.

In successive versions of Unicode, the only allowed changes of characters from one of the
above classes to another are those listed with a plus sign (+) in Table 1.

Table 1. Permitted Changes in Future Versions

 ID_Start ID_Nonstart Other Assigned

Unassigned + + +

Other Assigned + +

ID_Nonstart +

The Unicode Consortium has formally adopted a stability policy on identifiers. For more
information, see [Stability].

1.2 Customization

Each programming language standard has its own identifier syntax; different programming
languages have different conventions for the use of certain characters such as $, @, #,
and _ in identifiers. To extend such a syntax to cover the full behavior of a Unicode
implementation, implementers may combine those specific rules with the syntax and
properties provided here.

Each programming language can define its identifier syntax as relative to the Unicode
identifier syntax, such as saying that identifiers are defined by the Unicode properties, with
the addition of “$”. By addition or subtraction of a small set of language specific characters,
a programming language standard can easily track a growing repertoire of Unicode
characters in a compatible way. See also Section 2.5, Backward Compatibility.

Similarly, each programming language can define its own whitespace characters or syntax
characters relative to the Unicode Pattern_White_Space or Pattern_Syntax characters,

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#Stability

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 5/36

with some specified set of additions or subtractions.

Systems that want to extend identifiers to encompass words used in natural languages, or
narrow identifiers for security may do so as described in Section 2.3, Layout and Format
Control Characters, Section 2.4, Specific Character Adjustments, and Section 5,
Normalization and Case.

To preserve the disjoint nature of the categories illustrated in Figure 1, any character
added to one of the categories must be subtracted from the others.

Note: In many cases there are important security implications that may require
additional constraints on identifiers. For more information, see [UTR36].

1.3 Display Format

Implementations may use a format for displaying identifiers that differs from the internal
form used to compare identifiers. For example, an implementation might display what the
user has entered, but use a normalized format for comparison. Examples of this include:

Case. The display format retains case differences, but the comparison format erases
them by using Case_Folding. Thus “A” and its lowercase variant “a” would be treated
as the same identifier internally, even though they may have been input differently
and may display differently.

Variants. The display format retains variant distinctions, such as halfwidth versus
fullwidth forms, or between variation sequences and their base characters, but the
comparison format erases them by using NFKC_Case_Folding. Thus “A” and its full-
width variant “Ａ” would be treated as the same identifier internally, even though they
may have been input differently and may display differently.

For an example of the use of display versus comparison formats see UTS #46: Unicode
IDNA Compatibility Processing [UTS46]. For more information about normalization and
case in identifiers see Section 5, Normalization and Case.

1.4 Conformance

The following describes the possible ways that an implementation can claim conformance
to this specification.

UAX31-C1. An implementation claiming conformance to this specification shall identify the
version of this specification.

UAX31-C2. An implementation claiming conformance to this specification shall describe
which of the following requirements it observes:

R1. Default Identifiers
R1a. Restricted Format Characters
R1b. Stable Identifiers
R2. Immutable Identifiers
R3. Pattern_White_Space and Pattern_Syntax Characters
R4. Equivalent Normalized Identifiers
R5. Equivalent Case-Insensitive Identifiers
R6. Filtered Normalized Identifiers

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTR36
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS46

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 6/36

R7. Filtered Case-Insensitive Identifiers
R8. Hashtag Identifiers

1.5 Notation

This annex uses UnicodeSet notation to illustrate the derivation of some properties or sets
of characters. This notation is defined in the “Unicode Sets” section of UTS #35, Unicode
Locale Data Markup Language [UTS35].

2 Default Identifiers

The formal syntax provided here captures the general intent that an identifier consists of a
string of characters beginning with a letter or an ideograph, and followed by any number of
letters, ideographs, digits, or underscores. It provides a definition of identifiers that is
guaranteed to be backward compatible with each successive release of Unicode, but also
adds any appropriate new Unicode characters.

The formulations allow for extensions, also known as profiles. That is, the particular set of
code points for each category used by the syntax can be customized according to the
requirements of the environment.

If such extensions include characters from Pattern_White_Space or Pattern_Syntax, then
such identifiers do not conform to an unmodified UAX31-R3 Pattern_White_Space and
Pattern_Syntax Characters. However, such extensions may often be necessary. For
example, Java and C++ identifiers include ‘$’, which is a Pattern_Syntax character.

UAX31-D1. Default Identifier Syntax:

<Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*

Identifiers are defined by assigning the sets of lexical classes defined as properties in the
Unicode Character Database [UAX44]. These properties are shown in Table 2. The first
column shows the property name, whose values are defined in the UCD. The second
column provides a general description of the coverage for the associated class, the
derivational relationship between the ID properties and the XID properties, and an
associated UnicodeSet notation for the class.

Table 2. Properties for Lexical Classes for Identifiers

Properties General Description of Coverage

ID_Start ID_Start characters are derived from the Unicode General_Category
of uppercase letters, lowercase letters, titlecase letters, modifier
letters, other letters, letter numbers, plus Other_ID_Start, minus
Pattern_Syntax and Pattern_White_Space code points.

In UnicodeSet notation:
[\p{L}\p{Nl}\p{Other_ID_Start}-\p{Pattern_Syntax}-
\p{Pattern_White_Space}]

XID_Start XID_Start characters are derived from ID_Start as per Section 5.1,

https://www.unicode.org/reports/tr35/#Unicode_Sets
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS35
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UAX44

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 7/36

NFKC Modifications.

ID_Continue ID_Continue characters include ID_Start characters, plus characters
having the Unicode General_Category of nonspacing marks, spacing
combining marks, decimal number, connector punctuation, plus
Other_ID_Continue, minus Pattern_Syntax and Pattern_White_Space
code points.

In UnicodeSet notation:
[\p{ID_Start}\p{Mn}\p{Mc}\p{Nd}\p{Pc}\p{Other_ID_Continue}-
\p{Pattern_Syntax}-\p{Pattern_White_Space}]

XID_Continue XID_Continue characters are derived from ID_Continue as per Section
5.1, NFKC Modifications.

XID_Continue characters are also known simply as Identifier
Characters, because they are a superset of the XID_Start characters.

Note that “other letters” includes ideographs. For more about the stability extensions, see
Section 2.5 Backward Compatibility.

The innovations in the identifier syntax to cover the Unicode Standard include the
following:

Incorporation of proper handling of combining marks.
Allowance for layout and format control characters, which should be ignored when
parsing identifiers.

The XID_Start and XID_Continue properties are improved lexical classes that incorporate
the changes described in Section 5.1, NFKC Modifications. They are recommended for
most purposes, especially for security, over the original ID_Start and ID_Continue
properties.

UAX31-R1. Default Identifiers: To meet this requirement, to determine whether a string is
an identifier an implementation shall use definition UAX31-D1, setting Start and Continue
to the properties XID_Start and XID_Continue, respectively, and leaving Medial empty.

Alternatively, it shall declare that it uses a profile and define that profile with a
precise specification of the characters that are added to or removed from Start,
Continue, and Medial and/or provide a list of additional constraints on identifiers.

One such profile may be to use the contents of ID_Start and ID_Continue in place of
XID_Start and XID_Continue, for backward compatibility.

Another such profile would be to include some set of the optional characters, for example:

Start := XID_Start, plus some characters from Table 3
Continue := Start + XID_Continue, plus some characters from Table 3b
Medial := some characters from Table 3a

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 8/36

Note: Characters in the Medial class must not overlap with those in either the Start or
Continue classes. Thus, any characters added to the Medial class from Table 3a
must be be checked to ensure they do not also occur in either the newly defined Start
class or Continue class.

Beyond such minor modifications, profiles could also be used to significantly extend the
character set available in identifiers. In so doing, care must be taken not to unintentionally
include undesired characters, or to violate important invariants.

An implementation should be careful when adding a property-based set to a profile.

For example, consider a profile that adds subscript and superscript digits and operators in
order to support technical notations (for example, identifiers such as the Assyriological
dun₃⁺, the chemical Ca²⁺_concentration, the mathematical xₖ₊₁ or f⁽⁴⁾, or the phonetic
daan⁶). That profile may be described as adding the following set to XID_Continue:

[⁽₍⁾₎⁺₊⁼₌⁻₋⁰₀¹₁²₂³₃⁴₄⁵₅⁶₆⁷₇⁸₈⁹₉].

If instead of listing these characters explicitly, the profile had chosen to use properties or
combinations of properties, that might result in including undesired characters.

For example, \p{General_Category=Other_Number} is the general category set containing the
subscript and superscript digits. But it also includes the compatibility characters [⑴🄂⒈],
which are not needed for technical notations, and are very likely inappropriate for
identifiers—on multiple counts.

On the other hand, a language that allows currency symbols in identifiers could have
\p{General_Category=Currency_Symbol} as a profile, since that property matches the intent.

Similarly, a profile based on adding entire blocks is likely to include unintended characters,
or to miss ones that are desired. For the use of blocks see Annex A, Character Blocks, in
[UTS18].

Defining a profile by use of a property also needs to take account of the fact that unless
the property is designed to be stable (such as XID_Continue), code points could be
removed in a future version of Unicode. If the profile also needs stable identifiers
(backwards compatible), then it must take additional measures. See UAX31-R1b Stable
Identifiers.

When defining a profile, it is also critical to ensure that it is compatible with the
normalization form chosen for the identifiers. The example cited above regarding
subscripts and superscripts preserves identifier closure under Normalization Forms C and
D, but not under Forms KC and KD. Under NFKC and NFKD, the subscript and
superscript parentheses and operators normalize to their ASCII counterparts. A language
using that profile should conform to UAX31-R4 using NFC, not NFKC.

Implementations defining a profile that includes the ZERO WIDTH JOINER or ZERO
WIDTH NON-JOINER characters should implement the requirement UAX31-R1a.

UAX31-R1a. Restricted Format Characters: To meet this requirement, an
implementation shall define a profile for UAX31-R1 which allows format characters, but
shall restrict their use to the contexts A1, A2, and B defined as described in Section 2.3,
Layout and Format Control Characters.

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS18

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 9/36

An implementation may further restrict the context for ZWJ or ZWNJ, such as by
limiting the scripts allowed or limiting the occurrence of ZWJ or ZWNJ to specific
character combinations, if a clear specification for such a further restriction is
supplied.

Note: The ZWJ and ZWNJ characters in UAX31-R1a are not in XID_Continue; as a
result, meeting the requirement UAX31-R1 Default Identifiers does not require
supporting UAX31-R1a Restricted Format Characters.

The ZWJ and ZWNJ characters are invisible in most contexts, and are only added to
Default Identifiers in a declared profile. They have security and usability implications
that make them inappropriate for implementations that do not carefully consider
those implications. For example, they should not be added via a profile where
spoofing concerns are paramount, such as top-level domain names.

UAX31-R1b. Stable Identifiers: To meet this requirement, an implementation shall
guarantee that identifiers are stable across versions of the Unicode Standard: that is, once
a string qualifies as an identifier, it does so in all future versions.

Note: The UAX31-R1b requirement is typically achieved by using grandfathered
characters. See Section 2.5, Backward Compatibility. Where profiles are allowed,
management of those profiles may also be required to guarantee backwards
compatibility. Typically such management also uses grandfathered characters.

2.1 Combining Marks

Combining marks are accounted for in identifier syntax: a composed character sequence
consisting of a base character followed by any number of combining marks is valid in an
identifier. Combining marks are required in the representation of many languages, and the
conformance rules in Chapter 3, Conformance, of [Unicode] require the interpretation of
canonical-equivalent character sequences. The simplest way to do this is to require
identifiers in the NFC format (or transform them into that format); see Section 5,
Normalization and Case.

Enclosing combining marks (such as U+20DD..U+20E0) are excluded from the definition of
the lexical class ID_Continue, because the composite characters that result from their
composition with letters are themselves not normally considered valid constituents of these
identifiers.

2.2 Modifier Letters

Modifier letters (General_Category=Lm) are also included in the definition of the syntax
classes for identifiers. Modifier letters are often part of natural language orthographies and
are useful for making word-like identifiers in formal languages. On the other hand, modifier
symbols (General_Category=Sk), which are seldom a part of language orthographies, are
excluded from identifiers. For more discussion of modifier letters and how they function,
see [Unicode].

Implementations that tailor identifier syntax for special purposes may wish to take special
note of modifier letters, as in some cases modifier letters have appearances, such as
raised commas, which may be confused with common syntax characters such as quotation
marks.

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#Unicode
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#Unicode

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 10/36

2.3 Layout and Format Control Characters

Note: The ZWJ and ZWNJ characters in UAX31-R1a are not in XID_Continue, and
meeting the requirement UAX31-R1 Default Identifiers does not require supporting
UAX31-R1a Restricted Format Characters (or for that matter, UAX31-R1b Stable
Identifiers).

These ZWJ and ZWNJ characters are invisible in most contexts, and only added to
Default Identifiers in a declared profile. They have security and usability implications
that make them inappropriate for implementations that do not carefully consider
those implications. For example, they should not be added via a profile where
spoofing concerns are paramount, such as top-level domain names.

The purpose for UAX31-R1a is to describe how to restrict the usage of ZWJ and
ZWNJ to reduce the impact, for those implementations that choose to support them.

Certain Unicode characters are known as Default_Ignorable_Code_Points. These include
variation selectors and characters used to control joining behavior, bidirectional ordering
control, and alternative formats for display (having the General_Category value of Cf). The
recommendation is to permit them in identifiers only in special cases, listed below. The use
of default-ignorable characters in identifiers is problematical, first because the effects they
represent are stylistic or otherwise out of scope for identifiers, and second because the
characters themselves often have no visible display. It is also possible to misapply these
characters such that users can create strings that look the same but actually contain
different characters, which can create security problems. In such environments, identifiers
should also be limited to characters that are case-folded and normalized with the
NFKC_Casefold operation. For more information, see Section 5, Normalization and Case
and UTR #36: Unicode Security Considerations [UTR36].

Variation selectors, in particular, including standardized variants and sequences from the
Ideographic Variation Database, are not included in the default identifier syntax. These are
subject to the same considerations as for other Default_Ignorable_Code_Points listed
above. Because variation selectors request a difference in display but do not guarantee it,
they do not work well in general-purpose identifiers. The NFKC_Casefold operation can be
used to remove them, along with other Default_Ignorable_Code_Points. However, in some
environments it may be useful to retain variation sequences in the display form for
identifiers. For more information, see Section 1.3, Display Format.

While not all Default_Ignorable_Code_Points are in XID_Continue, the variation selectors
are included in XID_Continue. These variation selectors are used in standardized variation
sequences, sequences from the Ideographic Variation Database, and emoji variation
sequences. However, they are subject to the same considerations as for other
Default_Ignorable_Code_Points listed above. Because variation selectors request a
difference in display but do not guarantee it, they do not work well in general-purpose
identifiers. A profile should be used to remove them from general-purpose identifiers
(along with other Default_Ignorable_Code_Points), unless their use is required in a
particular domain, such as in a profile that includes emoji. For such a profile it may be
useful to explicitly retain or even add certain Default_Ignorable_Code_Points in the
identifier syntax.

In any environment where the display form for identifiers differs from the form used to
compare them, Default_Ignorable_Code_Points should be ignored for comparison. For

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTR36
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BDI%7D-%5Cp%7BXIDC%7D-%5Cp%7BCn%7D
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BDI%7D%26%5Cp%7BXIDC%7D

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 11/36

example, this applies to case-insensitive identifiers, and in particular for any
implementation that uses the NFKC_Casefold operation, which ignores
Default_Ignorable_Code_Points. For more information, see Section 1.3, Display Format.

The General Security Profile defined in Section 3.1, General Security Profile for Identifiers,
in UTS #39, Unicode Security Mechanisms [UTS39], excludes all
Default_Ignorable_Code_Points by default, including variation selectors.

For the above reasons, default-ignorable characters are normally excluded from Unicode
identifiers. However, visible distinctions created by certain format characters (particularly
the Join_Control characters) are necessary in certain languages. A blanket exclusion of
these characters makes it impossible to create identifiers with the correct visual
appearance for common words or phrases in those languages.

Identifier systems that attempt to provide more natural representations of terms in
"modern, customary usage" should allow these characters in input and display, but limit
them to contexts in which they are necessary. The term modern customary usage includes
characters that are in common use in newspapers, journals, lay publications; on street
signs; in commercial signage; and as part of common geographic names and company
names, and so on. It does not include technical or academic usage such as in
mathematical expressions, using archaic scripts or words, or pedagogical use (such as
illustration of half-forms or joining forms in isolation), or liturgical use.

The goals for such a restriction of format characters to particular contexts are to:

Allow the use of these characters where required in normal text
Exclude as many cases as possible where no visible distinction results
Be simple enough to be easily implemented with standard mechanisms such as
regular expressions

Thus in such circumstances, an implementation should allow the following Join_Control
characters in the limited contexts specified in A1, A2, and B below.

U+200C ZERO WIDTH NON-JOINER (ZWNJ)
U+200D ZERO WIDTH JOINER (ZWJ)

There are also two global conditions incorporated in each of A1, A2, and B:

Script Restriction. In each of the following cases, the specified sequence must only
consist of characters from a single script (after ignoring Common and Inherited script
characters).
Normalization. In each of the following cases, the specified sequence must be in
NFC format. (To test an identifier that is not required to be in NFC, first transform into
NFC format and then test the condition.)

Implementations may also impose tighter restrictions than provided below, in order to
eliminate some other circumstances where the characters either have no visual effect or
the effect has no semantic importance.

A1. Allow ZWNJ in the following context:

Breaking a cursive connection. That is, in the context based on the Joining_Type
property, consisting of:

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS39

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 12/36

A Left-Joining or Dual-Joining character, followed by zero or more Transparent
characters, followed by a ZWNJ, followed by zero or more Transparent characters,
followed by a Right-Joining or Dual-Joining character

This corresponds to the following regular expression (in Perl-style syntax): /$LJ $T* ZWNJ
$T* $RJ/
where the character classes like $T could be defined with Unicode properties (similar to
UnicodeSet notation) like this:

$T = \p{Joining_Type=Transparent}
$RJ = [\p{Joining_Type=Dual_Joining}\p{Joining_Type=Right_Joining}]
$LJ = [\p{Joining_Type=Dual_Joining}\p{Joining_Type=Left_Joining}]

For example, consider Farsi <Noon, Alef, Meem, Heh, Alef, Farsi Yeh>. Without a ZWNJ, it
translates to "names", as shown in the first row; with a ZWNJ between Heh and Alef, it
means "a letter", as shown in the second row of Figure 2.

Figure 2. Persian Example with ZWNJ

Appearance Code Points Abbreviated Names

0646 + 0627 + 0645 + 0647 +
0627 + 06CC

NOON + ALEF + MEEM + HEH +
ALEF + FARSI YEH

0646 + 0627 + 0645 + 0647 +
200C + 0627 + 06CC

NOON + ALEF + MEEM + HEH +
ZWNJ + ALEF + FARSI YEH

A2. Allow ZWNJ in the following context:

In a conjunct context. That is, a sequence of the form:

A Letter, followed by a Virama, followed by a ZWNJ (optionally preceded or followed
by certain nonspacing marks), followed by a Letter.

This corresponds to the following regular expression (in Perl-style syntax): /$L $M* $V
$M₁* ZWNJ $M₁* $L/
where:

$L = \p{General_Category=Letter}
$V = \p{Canonical_Combining_Class=Virama}
$M = \p{General_Category=Mn}
$M₁ = [\p{General_Category=Mn}&\p{CCC≠0}]

For example, the Malayalam word for eyewitness is shown in Figure 3. The form without
the ZWNJ in the second row is incorrect in this case.

Figure 3. Malayalam Example with ZWNJ

Appearance Code Points Abbreviated Names

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 13/36

0D26 + 0D43 + 0D15 +
0D4D + 200C + 0D38 +
0D3E + 0D15 + 0D4D +

0D37 + 0D3F

DA + VOWEL SIGN VOCALIC R +
KA + VIRAMA + ZWNJ + SA +

VOWEL SIGN AA + KA + VIRAMA
+ SSA + VOWEL SIGN I

0D26 + 0D43 + 0D15 +
0D4D + 0D38 + 0D3E +
0D15 + 0D4D + 0D37 +

0D3F

DA + VOWEL SIGN VOCALIC R +
KA + VIRAMA + SA + VOWEL

SIGN AA + KA + VIRAMA + SSA +
VOWEL SIGN I

B. Allow ZWJ in the following context:

In a conjunct context. That is, a sequence of the form:

A Letter, followed by a Virama, followed by a ZWJ (optionally preceded or followed by
certain nonspacing marks), and not followed by a character of type
Indic_Syllabic_Category=Vowel_Dependent

This corresponds to the following regular expression (in Perl-style syntax): /$L $M* $V
$M₁* ZWJ (?!$D)/
where:

$L= \p{General_Category=Letter}
$V = \p{Canonical_Combining_Class=Virama}
$M = \p{General_Category=Mn}
$M₁ = [\p{General_Category=Mn}&\p{CCC≠0}]
$D = \p{Indic_Syllabic_Category=Vowel_Dependent}

For example, the Sinhala word for the country 'Sri Lanka' is shown in the first row of Figure
4, which uses both a space character and a ZWJ. Removing the space results in the text
shown in the second row of Figure 4, which is still legible, but removing the ZWJ
completely modifies the appearance of the 'Sri' cluster and results in the unacceptable text
appearance shown in the third row of Figure 4.

Figure 4. Sinhala Example with ZWJ

Appearance Code Points Abbreviated Names

0DC1 + 0DCA + 200D +
0DBB + 0DD3 + 0020 +
0DBD + 0D82 + 0D9A +

0DCF

SHA + VIRAMA + ZWJ + RA +
VOWEL SIGN II + SPACE + LA +
ANUSVARA + KA + VOWEL SIGN

AA

0DC1 + 0DCA + 200D +
0DBB + 0DD3 + 0DBD +
0D82 + 0D9A + 0DCF

SHA + VIRAMA + ZWJ + RA +
VOWEL SIGN II + LA +

ANUSVARA + KA + VOWEL SIGN
AA

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 14/36

0DC1 + 0DCA + 0DBB +
0DD3 + 0020 + 0DBD +
0D82 + 0D9A + 0DCF

SHA + VIRAMA + RA + VOWEL
SIGN II + SPACE + LA +

ANUSVARA + KA + VOWEL SIGN
AA

Note: The restrictions in A1, A2, and B are similar to the CONTEXTJ rules defined in
Appendix A, Contextual Rules Registry, in The Unicode Code Points and
Internationalized Domain Names for Applications (IDNA) [IDNA2008].

Implementations that allow emoji characters in identifiers should also normally allow emoji
sequences. These are defined in ED-17, emoji sequence in [UTS51]. In particular, that
means allowing ZWJ characters, emoji presentation selector (U+FE0F), and TAG
characters, but only in the particular defined contexts described in [UTS51].

2.3.1 Limitations

While the restrictions in A1, A2, and B greatly limit visual confusability, they do not prevent
it. For example, because Tamil only uses a Join_Control character in one specific case,
most of the sequences these rules allow in Tamil are, in fact, visually confusable. Therefore
based on their knowledge of the script concerned, implementations may choose to have
tighter restrictions than specified below. There are also cases where a joiner preceding a
virama makes a visual distinction in some scripts. It is currently unclear whether this
distinction is important enough in identifiers to warrant retention of a joiner. For more
information, see UTR #36: Unicode Security Considerations [UTR36].

Performance. Parsing identifiers can be a performance-sensitive task. However, these
characters are quite rare in practice, thus the regular expressions (or equivalent
processing) only rarely would need to be invoked. Thus these tests should not add any
significant performance cost overall.

Comparison. Typically the identifiers with and without these characters should compare
as equivalent, to prevent security issues. See Section 2.4, Specific Character Adjustments.

2.4 Specific Character Adjustments

Specific identifier syntaxes can be treated as tailorings (or profiles) of the generic syntax
based on character properties. For example, SQL identifiers allow an underscore as an
identifier continue, but not as an identifier start; C identifiers allow an underscore as either
an identifier continue or an identifier start. Specific languages may also want to exclude the
characters that have a Decomposition_Type other than Canonical or None, or to exclude
some subset of those, such as those with a Decomposition_Type equal to Font.

There are circumstances in which identifiers are expected to more fully encompass words
or phrases used in natural languages. For example, it is recommended that U+00B7 (·)
MIDDLE DOT be allowed in medial positions in natural-language identifiers such as
hashtags or search terms, because it is required for grammatical Catalan. For related
issues about MIDDLE DOT, see Section 5, Normalization and Case.

For more natural-language identifiers, a profile should allow the characters in Table 3,
Table 3a, and Table 3b in identifiers, unless there are compelling reasons not to. Most
additions to identifiers are restricted to medial positions, such as U+00B7 (·) MIDDLE

https://unicode-org.github.io/unicode-reports/tr41/tr41-29.html#IDNA2008
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS51
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS51
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTR36

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 15/36

DOT, which is not needed as a trailing character in Catalan. These are listed in Table 3a. A
few characters can also occur in final positions, and are listed in Table 3b. The contents of
these tables may overlap.

In some environments even spaces and @ are allowed in identifiers, such as in SQL:
SELECT * FROM Employee Pension.

Table 3. Optional Characters for Start

Code Point Character Name

0024 $ DOLLAR SIGN

005F _ LOW LINE

Table 3a. Optional Characters for Medial

Code Point Character Name

0027 ' APOSTROPHE

002D - HYPHEN-MINUS

002E . FULL STOP

003A : COLON

00B7 · MIDDLE DOT

058A ֊ ARMENIAN HYPHEN

05F4 ״ HEBREW PUNCTUATION GERSHAYIM

0F0B ་ TIBETAN MARK INTERSYLLABIC TSHEG

200C \u200C ZERO WIDTH NON-JOINER*

2010 ‐ HYPHEN

2019 ’ RIGHT SINGLE QUOTATION MARK

2027 ‧ HYPHENATION POINT

30A0 ゠ KATAKANA-HIRAGANA DOUBLE HYPHEN

30FB ・ KATAKANA MIDDLE DOT

Table 3b. Optional Characters for Continue

Code Point Character Name

05F3 ׳ HEBREW PUNCTUATION GERESH

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 16/36

200D \u200D ZERO WIDTH JOINER*

The characters marked with an asterisk in Table 3a and Table 3b are Join_Control
characters, discussed in Section 2.3, Layout and Format Control Characters.

In UnicodeSet notation, the characters in these tables are:

Table 3: [\$_]
Table 3a: ['\-.\:·֊״་\u200C ‐’‧゠・]
Table 3b: [\u200D ׳]

In identifiers that allow for unnormalized characters, the compatibility equivalents of the
characters listed in Table 3, Table 3a, and Table 3b may also be appropriate.

For more information on characters that may occur in words, and those that may be used
in name validation, see Section 4, Word Boundaries, in [UAX29].

Some scripts are not in customary modern use, and thus implementations may want to
exclude them from identifiers. These include historic and obsolete scripts, scripts used
mostly liturgically, and regional scripts used only in very small communities or with very
limited current usage. Some scripts also have unresolved architectural issues that make
them currently unsuitable for identifiers. The scripts in Table 4, Excluded Scripts are
recommended for exclusion from identifiers.

Table 4. Excluded Scripts

Property Notation Description

\p{script=Aghb} Caucasian Albanian

\p{script=Ahom} Ahom

\p{script=Armi} Imperial Aramaic

\p{script=Avst} Avestan

\p{script=Bass} Bassa Vah

\p{script=Bhks} Bhaiksuki

\p{script=Brah} Brahmi

\p{script=Bugi} Buginese

\p{script=Buhd} Buhid

\p{script=Cari} Carian

\p{script=Chrs} Chorasmian

\p{script=Copt} Coptic

\p{script=Cpmn}

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[\$_]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[%27\-.\:%C2%B7%D6%8A%D7%B4%E0%BC%8B\u200C%E2%80%90%E2%80%99%E2%80%A7%E3%82%A0%E3%83%BB]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[\u200D%20%D7%B3]
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UAX29

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 17/36

Cypro-Minoan

\p{script=Cprt} Cypriot

\p{script=Diak} Dives Akuru

\p{script=Dogr} Dogra

\p{script=Dsrt} Deseret

\p{script=Dupl} Duployan

\p{script=Egyp} Egyptian Hieroglyphs

\p{script=Elba} Elbasan

\p{script=Elym} Elymaic

\p{script=Glag} Glagolitic

\p{script=Gong} Gunjala Gondi

\p{script=Gonm} Masaram Gondi

\p{script=Goth} Gothic

\p{script=Gran} Grantha

\p{script=Hano} Hanunoo

\p{script=Hatr} Hatran

\p{script=Hluw} Anatolian Hieroglyphs

\p{script=Hmng} Pahawh Hmong

\p{script=Hung} Old Hungarian

\p{script=Ital} Old Italic

\p{script=Kawi} Kawi

\p{script=Khar} Kharoshthi

\p{script=Khoj} Khojki

\p{script=Kits} Khitan Small Script

\p{script=Kthi} Kaithi

\p{script=Lina} Linear A

\p{script=Linb} Linear B

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 18/36

\p{script=Lyci} Lycian

\p{script=Lydi} Lydian

\p{script=Maka} Makasar

\p{script=Mahj} Mahajani

\p{script=Mani} Manichaean

\p{script=Marc} Marchen

\p{script=Medf} Medefaidrin

\p{script=Mend} Mende Kikakui

\p{script=Merc} Meroitic Cursive

\p{script=Mero} Meroitic Hieroglyphs

\p{script=Modi} Modi

\p{script=Mong} Mongolian

\p{script=Mroo} Mro

\p{script=Mult} Multani

\p{script=Nagm} Nag Mundari

\p{script=Narb} Old North Arabian

\p{script=Nand} Nandinagari

\p{script=Nbat} Nabataean

\p{script=Nshu} Nushu

\p{script=Ogam} Ogham

\p{script=Orkh} Old Turkic

\p{script=Osma} Osmanya

\p{script=Ougr} Old Uyghur

\p{script=Palm} Palmyrene

\p{script=Pauc} Pau Cin Hau

\p{script=Perm} Old Permic

\p{script=Phag} Phags-pa

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 19/36

\p{script=Phli} Inscriptional Pahlavi

\p{script=Phlp} Psalter Pahlavi

\p{script=Phnx} Phoenician

\p{script=Prti} Inscriptional Parthian

\p{script=Rjng} Rejang

\p{script=Runr} Runic

\p{script=Samr} Samaritan

\p{script=Sarb} Old South Arabian

\p{script=Sgnw} SignWriting

\p{script=Shaw} Shavian

\p{script=Shrd} Sharada

\p{script=Sidd} Siddham

\p{script=Sind} Khudawadi

\p{script=Sora} Sora Sompeng

\p{script=Sogd} Sogdian

\p{script=Sogo} Old Sogdian

\p{script=Soyo} Soyombo

\p{script=Tagb} Tagbanwa

\p{script=Takr} Takri

\p{script=Tang} Tangut

\p{script=Tglg} Tagalog

\p{script=Tirh} Tirhuta

\p{script=Tnsa} Tangsa

\p{script=Toto} Toto

\p{script=Ugar} Ugaritic

\p{script=Vith} Vithkuqi

\p{script=Wara} Warang Citi

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 20/36

\p{script=Xpeo} Old Persian

\p{script=Xsux} Cuneiform

\p{script=Yezi} Yezidi

\p{script=Zanb} Zanabazar Square

Some characters used with recommended scripts may still be problematic for identifiers,
for example because they are part of extensions that are not in modern customary use,
and thus implementations may want to exclude them from identifiers. These include
characters for historic and obsolete orthographies, characters used mostly liturgically, and
in orthographies for languages used only in very small communities or with very limited
current or declining usage. Some characters also have architectural issues that may make
them unsuitable for identifiers. See UTS #39, Unicode Security Mechanisms [UTS39] for
more information.

The scripts listed in Table 5, Recommended Scripts are generally recommended for use in
identifiers. These are in widespread modern customary use, or are regional scripts in
modern customary use by large communities.

Table 5. Recommended Scripts

Property Notation Description

\p{script=Zyyy} Common

\p{script=Zinh} Inherited

\p{script=Arab} Arabic

\p{script=Armn} Armenian

\p{script=Beng} Bengali

\p{script=Bopo} Bopomofo

\p{script=Cyrl} Cyrillic

\p{script=Deva} Devanagari

\p{script=Ethi} Ethiopic

\p{script=Geor} Georgian

\p{script=Grek} Greek

\p{script=Gujr} Gujarati

\p{script=Guru} Gurmukhi

\p{script=Hang} Hangul

\p{script=Hani}

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS39

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 21/36

Han

\p{script=Hebr} Hebrew

\p{script=Hira} Hiragana

\p{script=Kana} Katakana

\p{script=Knda} Kannada

\p{script=Khmr} Khmer

\p{script=Laoo} Lao

\p{script=Latn} Latin

\p{script=Mlym} Malayalam

\p{script=Mymr} Myanmar

\p{script=Orya} Oriya

\p{script=Sinh} Sinhala

\p{script=Taml} Tamil

\p{script=Telu} Telugu

\p{script=Thaa} Thaana

\p{script=Thai} Thai

\p{script=Tibt} Tibetan

As of Unicode 10.0, there is no longer a distinction between aspirational use and limited
use scripts, as this has not proven to be productive for the derivation of identifier-related
classes used in security profiles. (See UTS #39, Unicode Security Mechanisms [UTS39].)
Thus the aspirational use scripts in Table 6, Aspirational Use Scripts have been
recategorized as Limited Use and moved to Table 7, Limited Use Scripts.

Table 6. Aspirational Use Scripts (Withdrawn)

Property Notation Description

intentionally blank

Modern scripts that are in more limited use are listed in Table 7, Limited Use Scripts. To
avoid security issues, some implementations may wish to disallow the limited-use scripts in
identifiers. For more information on usage, see the Unicode Locale project [CLDR].

Table 7. Limited Use Scripts

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS39
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#CLDR

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 22/36

Property Notation Description

\p{script=Adlm} Adlam

\p{script=Bali} Balinese

\p{script=Bamu} Bamum

\p{script=Batk} Batak

\p{script=Cakm} Chakma

\p{script=Cans} Canadian Aboriginal Syllabics

\p{script=Cham} Cham

\p{script=Cher} Cherokee

\p{script=Hmnp} Nyiakeng Puachue Hmong

\p{script=Java} Javanese

\p{script=Kali} Kayah Li

\p{script=Lana} Tai Tham

\p{script=Lepc} Lepcha

\p{script=Limb} Limbu

\p{script=Lisu} Lisu

\p{script=Mand} Mandaic

\p{script=Mtei} Meetei Mayek

\p{script=Newa} Newa

\p{script=Nkoo} Nko

\p{script=Olck} Ol Chiki

\p{script=Osge} Osage

\p{script=Plrd} Miao

\p{script=Rohg} Hanifi Rohingya

\p{script=Saur} Saurashtra

\p{script=Sund} Sundanese

\p{script=Sylo} Syloti Nagri

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 23/36

\p{script=Syrc} Syriac

\p{script=Tale} Tai Le

\p{script=Talu} New Tai Lue

\p{script=Tavt} Tai Viet

\p{script=Tfng} Tifinagh

\p{script=Vaii} Vai

\p{script=Wcho} Wancho

\p{script=Yiii} Yi

This is the recommendation as of the current version of Unicode; as new scripts are added
to future versions of Unicode, characters and scripts may be added to Tables 4, 5, and 7.
Characters may also be moved from one table to another as more information becomes
available.

There are a few special cases:

The Common and Inherited script values [\p{script=Zyyy}\p{script=Zinh}] are used
widely with other scripts, rather than being scripts per se. See also the
Script_Extensions property in the Unicode Character Database [UAX44].
The Unknown script \p{script=Zzzz} is used for Unassigned characters.
Braille \p{script=Brai} consists only of symbols
Katakana_Or_Hiragana \p{script=Hrkt} is empty. This value was used in earlier
versions, but is no longer used.
With respect to the scripts Balinese, Cham, Ol Chiki, Vai, Kayah Li, and Saurashtra,
there may be large communities of people speaking an associated language, but the
script itself is not in widespread use. However, there are significant revival efforts.
Bopomofo is used primarily in education.

For programming language identifiers, normalization and case have a number of important
implications. For a discussion of these issues, see Section 5, Normalization and Case.

2.5 Backward Compatibility

Unicode General_Category values are kept as stable as possible, but they can change
across versions of the Unicode Standard. The bulk of the characters having a given value
are determined by other properties, and the coverage expands in the future according to
the assignment of those properties. In addition, the Other_ID_Start property provides a
small list of characters that qualified as ID_Start characters in some previous version of
Unicode solely on the basis of their General_Category properties, but that no longer qualify
in the current version. These are called grandfathered characters.

The Other_ID_Start property includes characters such as the following:

U+2118 (℘) SCRIPT CAPITAL P
U+212E (℮) ESTIMATED SYMBOL

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UAX44

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 24/36

U+309B (゛) KATAKANA-HIRAGANA VOICED SOUND MARK
U+309C (゜) KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK

Similarly, the Other_ID_Continue property adds a small list of characters that qualified as
ID_Continue characters in some previous version of Unicode solely on the basis of their
General_Category properties, but that no longer qualify in the current version.

The Other_ID_Continue property includes characters such as the following:

U+1369 ETHIOPIC DIGIT ONE...U+1371 ETHIOPIC DIGIT NINE
U+00B7 (·) MIDDLE DOT
U+0387 (·) GREEK ANO TELEIA
U+19DA (᧚) NEW TAI LUE THAM DIGIT ONE

The exact list of characters covered by the Other_ID_Start and Other_ID_Continue
properties depends on the version of Unicode. For more information, see Unicode
Standard Annex #44, “Unicode Character Database” [UAX44].

The Other_ID_Start and Other_ID_Continue properties are thus designed to ensure that
the Unicode identifier specification is backward compatible. Any sequence of characters
that qualified as an identifier in some version of Unicode will continue to qualify as an
identifier in future versions.

If a specification tailors the Unicode recommendations for identifiers, then this technique
can also be used to maintain backwards compatibility across versions.

3 Immutable Identifiers

The disadvantage of working with the lexical classes defined previously is the storage
space needed for the detailed definitions, plus the fact that with each new version of the
Unicode Standard new characters are added, which an existing parser would not be able
to recognize. In other words, the recommendations based on that table are not upwardly
compatible.

This problem can be addressed by turning the question around. Instead of defining the set
of code points that are allowed, define a small, fixed set of code points that are reserved
for syntactic use and allow everything else (including unassigned code points) as part of an
identifier. All parsers written to this specification would behave the same way for all
versions of the Unicode Standard, because the classification of code points is fixed forever.

The drawback of this method is that it allows “nonsense” to be part of identifiers because
the concerns of lexical classification and of human intelligibility are separated. Human
intelligibility can, however, be addressed by other means, such as usage guidelines that
encourage a restriction to meaningful terms for identifiers. For an example of such
guidelines, see the XML specification by the W3C, Version 1.0 5th Edition or later [XML].

By increasing the set of disallowed characters, a reasonably intuitive recommendation for
identifiers can be achieved. This approach uses the full specification of identifier classes,
as of a particular version of the Unicode Standard, and permanently disallows any
characters not recommended in that version for inclusion in identifiers. All code points
unassigned as of that version would be allowed in identifiers, so that any future additions to
the standard would already be accounted for. This approach ensures both upwardly
compatible identifier stability and a reasonable division of characters into those that do and
do not make human sense as part of identifiers.

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UAX44
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#XML

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 25/36

With or without such fine-tuning, such a compromise approach still incurs the expense of
implementing large lists of code points. While they no longer change over time, it is a
matter of choice whether the benefit of enforcing somewhat word-like identifiers justifies
their cost.

Alternatively, one can use the properties described below and allow all sequences of
characters to be identifiers that are neither Pattern_Syntax nor Pattern_White_Space. This
has the advantage of simplicity and small tables, but allows many more “unnatural”
identifiers.

UAX31-R2. Immutable Identifiers: To meet this requirement, an implementation shall
define identifiers to be any non-empty string of characters that contains no character
having any of the following property values:

Pattern_White_Space=True
Pattern_Syntax=True
General_Category=Private_Use, Surrogate, or Control
Noncharacter_Code_Point=True

Alternatively, it shall declare that it uses a profile and define that profile with a precise
specification of the characters that are added to or removed from the sets of code points
defined by these properties.

In its profile, a specification can define identifiers to be more in accordance with the
Unicode identifier definitions at the time the profile is adopted, while still allowing for strict
immutability. For example, an implementation adopting a profile after a particular version of
Unicode is released (such as Unicode 5.0) could define the profile as follows:

1. All characters satisfying UAX31-R1 Default Identifiers according to Unicode 5.0
2. Plus all code points unassigned in Unicode 5.0 that do not have the property values

specified in UAX31-R2 Immutable Identifiers.

This technique allows identifiers to have a more natural format—excluding symbols and
punctuation already defined—yet also provides absolute code point immutability.

Immutable identifiers are intended for those cases (like XML) that cannot update across
versions of Unicode, and do not require information about normalization form, or properties
such as General_Category and Script. Immutable identifers that allow unassigned
characters cannot provide for normalization forms or these properties, which means that
they:

cannot be compared for NFC, NFKC, or case-insensitive equality
are unsuitable for restrictions such as those in UTS #39

For best practice, a profile disallowing unassigned characters should be provided where
possible.

Specifications should also include guidelines and recommendations for those creating new
identifiers. Although UAX31-R2 Immutable Identifiers permits a wide range of characters,
as a best practice identifiers should be in the format NFKC, without using any unassigned
characters. For more information on NFKC, see Unicode Standard Annex #15, “Unicode
Normalization Forms” [UAX15].

4 Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UAX15

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 26/36

Most programming languages have a concept of whitespace as part of their lexical
structure, as well as some set of characters that are disallowed in identifiers but have
syntactic use, such as arithmetic operators. There are Beyond general programming
languages, there are also many circumstances where software interprets patterns that are
a mixture of literal characters, whitespace, and syntax characters. Examples include
regular expressions, Java collation rules, Excel or ICU number formats, and many others.
In the past, regular expressions and other formal languages have been forced to use
clumsy combinations of ASCII characters for their syntax. As Unicode becomes ubiquitous,
some of these will start to use non-ASCII characters for their syntax: first as more readable
optional alternatives, then eventually as the standard syntax.

For forward and backward compatibility, it is advantageous to have a fixed set of
whitespace and syntax code points for use in patterns. This follows the recommendations
that the Unicode Consortium has made regarding completely stable identifiers, and the
practice that is seen in XML 1.0, 5th Edition or later [XML]. (In particular, the Unicode
Consortium is committed to not allocating characters suitable for identifiers in the range
U+2190..U+2BFF, which is being used by XML 1.0, 5th Edition.)

With a fixed set of whitespace and syntax code points, a pattern language can then have a
policy requiring all possible syntax characters (even ones currently unused) to be quoted if
they are literals. Using this policy preserves the freedom to extend the syntax in the future
by using those characters. Past patterns on future systems will always work; future
patterns on past systems will signal an error instead of silently producing the wrong results.
Consider the following scenario, for example.

In version 1.0 of program X, '≈' is a reserved syntax character; that is, it does not
perform an operation, and it needs to be quoted. In this example, '\' quotes the next
character; that is, it causes it to be treated as a literal instead of a syntax character.
In version 2.0 of program X, '≈' is given a real meaning—for example, “uppercase the
subsequent characters”.

The pattern abc...\≈...xyz works on both versions 1.0 and 2.0, and refers to the
literal character because it is quoted in both cases.
The pattern abc...≈...xyz works on version 2.0 and uppercases the following
characters. On version 1.0, the engine (rightfully) has no idea what to do with ≈.
Rather than silently fail (by ignoring ≈ or turning it into a literal), it has the
opportunity to signal an error.

As of Unicode 4.1, two Unicode character properties are defined to provide for stable
syntax: Pattern_White_Space and Pattern_Syntax. Particular pattern languages may, of
course, override these recommendations, for example, by adding or removing other
characters for compatibility with ASCII usage.

For stability, the values of these properties are absolutely invariant, not changing with
successive versions of Unicode. Of course, this does not limit the ability of the Unicode
Standard to encode more symbol or whitespace characters, but the syntax and whitespace
code points recommended for use in patterns will not change.

When generating rules or patterns, all whitespace and syntax code points that are to be
literals require quoting, using whatever quoting mechanism is available. For readability, it is
recommended practice to quote or escape all literal whitespace and default ignorable code
points as well.

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#XML

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 27/36

Consider the following example, where the items in angle brackets indicate literal
characters:

a<SPACE>b → x<ZERO WIDTH SPACE>y + z;

Because <SPACE> is a Pattern_White_Space character, it requires quoting.
Because <ZERO WIDTH SPACE> is a default ignorable character, it should also be
quoted for readability. So in this example, if \uXXXX is used for a code point literal,
but is resolved before quoting, and if single quotes are used for quoting, this example
might be expressed as:

'a\u0020b' → 'x\u200By' + z;

UAX31-R3. Pattern_White_Space and Pattern_Syntax Characters: To meet this
requirement, an implementation shall use Pattern_White_Space characters as all and only
those characters interpreted as whitespace in parsing, and shall use Pattern_Syntax
characters as all and only those characters with syntactic use.

Alternatively, it shall declare that it uses a profile and define that profile with a precise
specification of the characters that are added to or removed from the sets of code points
defined by these properties.

Note: When meeting this requirement, all characters except those that have the
Pattern_White_Space or Pattern_Syntax properties are available for use as
identifiers or literals.

Note: This requirement is relevant even for languages that do not use immutable
identifiers, or that have lexical structure outside of the categories of syntax and
whitespace characters. In particular, the set of Pattern_White_Space characters is
chosen to make it possible to correct bidirectional ordering issues that can arise in a
wide range of programming languages, visually obfuscating the logic of expressions.
In the absence of higher-level protocols (see Section 4.3, Higher-Level Protocols, in
[UAX9]), tokens may be visually reordered by the Unicode Bidi Algorithm in
bidirectional source text, producing a visual result that conveys a different logical
intent. To remedy that, two implicit directional marks are among
Pattern_White_Space characters; if these can be freely inserted between tokens,
implicit directional marks consistent with the paragraph direction can be used to
ensure that the visual order of tokens matches their logical order.

Since the implicit directional marks are nonspacing, where a syntax requires a
sequence of spaces (such as between identifiers), it should require that at least one
of those be neither LEFT-TO-RIGHT MARK nor RIGHT-TO-LEFT MARK. The visual
appearance would otherwise be too confusing to readers: “else⟨LRM⟩if” would be
seen by the user as “elseif” but parsed by the compiler as “else if”, whereas
“else⟨LRM⟩ if” would be seen and parsed as “else if” and be harmless.

Example: Consider the following two lines:

(1) x + tav == 1

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UAX9

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 28/36

(2) x + 1 == תו

Internally, they are the same except that the ASCII identifier tav in line (1) is replaced
by the Hebrew identifier תו in line (2). However, with a plain text display (with left-to-
right paragraph direction) the user will be misled, thinking that line (2) is a
comparison between (x + 1) and תו, whereas it is actually a comparison between (x
and 1. The misleading rendering of (2) occurs because the directionality of the (תו +
identifier תו influences subsequent weakly-directional tokens; inserting a left-to-right
mark after the identifier תו stops it from influencing the remainder of the line, and thus
yields a better rendering in plain text with left-to-right paragraph direction, as
demonstrated in the following table, wherein characters whose ordering is affected
by that identifier have been highlighted.

Underlying Representation Display (LTR paragraph direction)

x + ת ו = = 1 x + 1 == תו

x + ת ו ⟨LRM⟩ = = 1 x + 1 == תו

The simplest automatic mechanism for placement of LRM characters is around every
identifier, string literal, and comment that contains RTL characters. However, this can
also be reduced in some cases.

Note: Left-to-right marks are used for this purpose when the main direction is left–to-
right. Correspondingly, right-to-left marks are used when the main direction is right-
to-left.

5 Normalization and Case

This section discusses issues that must be taken into account when considering
normalization and case folding of identifiers in programming languages or scripting
languages. Using normalization avoids many problems where apparently identical
identifiers are not treated equivalently. Such problems can appear both during compilation
and during linking—in particular across different programming languages. To avoid such
problems, programming languages can normalize identifiers before storing or comparing
them. Generally if the programming language has case-sensitive identifiers, then
Normalization Form C is appropriate; whereas, if the programming language has case-
insensitive identifiers, then Normalization Form KC is more appropriate.

Implementations that take normalization and case into account have two choices: to treat
variants as equivalent, or to disallow variants.

UAX31-R4. Equivalent Normalized Identifiers: To meet this requirement, an
implementation shall specify the Normalization Form and shall provide a precise
specification of the characters that are excluded from normalization, if any. If the
Normalization Form is NFKC, the implementation shall apply the modifications in Section
5.1, NFKC Modifications, given by the properties XID_Start and XID_Continue. Except for
identifiers containing excluded characters, any two identifiers that have the same
Normalization Form shall be treated as equivalent by the implementation.

UAX31-R5. Equivalent Case-Insensitive Identifiers: To meet this requirement, an
implementation shall specify either simple or full case folding, and adhere to the Unicode

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 29/36

specification for that folding. Any two identifiers that have the same case-folded form shall
be treated as equivalent by the implementation.

UAX31-R6. Filtered Normalized Identifiers: To meet this requirement, an implementation
shall specify the Normalization Form and shall provide a precise specification of the
characters that are excluded from normalization, if any. If the Normalization Form is NFKC,
the implementation shall apply the modifications in Section 5.1, NFKC Modifications, given
by the properties XID_Start and XID_Continue. Except for identifiers containing excluded
characters, allowed identifiers must be in the specified Normalization Form.

Note: For requirement UAX31-R6, filtering involves disallowing any characters in the
set \p{NFKC_QuickCheck=No}, or equivalently, disallowing \P{isNFKC}.

UAX31-R7. Filtered Case-Insensitive Identifiers: To meet this requirement, an
implementation shall specify either simple or full case folding, and adhere to the Unicode
specification for that folding. Except for identifiers containing excluded characters, allowed
identifiers must be in the specified case folded form.

Note: For requirement UAX31-R7 with full case folding, filtering involves disallowing
any characters in the set \p{Changes_When_Casefolded}.

As of Unicode 5.2, an additional string transform is available for use in matching identifiers:
toNFKC_Casefold(S). See UAX31-R5 in Section 3.13, Default Case Algorithms in [Unicode].
That operation case folds and normalizes a string, and also removes default ignorable
code points. It can be used to support an implementation of Equivalent Case and
Compatibility-Insensitive Identifiers. There is a corresponding boolean property,
Changes_When_NFKC_Casefolded, which can be used to support an implementation of
Filtered Case and Compatibility-Insensitive Identifiers. The NFKC_Casefold character
mapping property and the Changes_When_NFKC_Casefolded property are described in
Unicode Standard Annex #44, "Unicode Character Database" [UAX44].

Note: In mathematically oriented programming languages that make distinctive use
of the Mathematical Alphanumeric Symbols, such as U+1D400 MATHEMATICAL
BOLD CAPITAL A, an application of NFKC must filter characters to exclude
characters with the property value Decomposition_Type=Font.

5.1 NFKC Modifications

Where programming languages are using NFKC to fold differences between characters,
they need the following modifications of the identifier syntax from the Unicode Standard to
deal with the idiosyncrasies of a small number of characters. These modifications are
reflected in the XID_Start and XID_Continue properties.

5.1.1 Modifications for Characters that Behave Like Combining Marks

Certain characters are not formally combining characters, although they behave in most
respects as if they were. In most cases, the mismatch does not cause a problem, but when
these characters have compatibility decompositions, they can cause identifiers not to be
closed under Normalization Form KC. In particular, the following four characters are
included in XID_Continue and not XID_Start:

U+0E33 THAI CHARACTER SARA AM
U+0EB3 LAO VOWEL SIGN AM

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BChanges_When_Casefolded%7D
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#Unicode
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UAX44

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 30/36

U+FF9E HALFWIDTH KATAKANA VOICED SOUND MARK
U+FF9F HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK

5.1.2 Modifications for Irregularly Decomposing Characters

U+037A GREEK YPOGEGRAMMENI and certain Arabic presentation forms have irregular
compatibility decompositions and are excluded from both XID_Start and XID_Continue. It
is recommended that all Arabic presentation forms be excluded from identifiers in any
event, although only a few of them must be excluded for normalization to guarantee
identifier closure.

5.1.3 Identifier Closure Under Normalization

With these amendments to the identifier syntax, all identifiers are closed under all four
Normalization Forms. This means that for any string S, the implications shown in Figure 5
hold.

Figure 5. Normalization Closure

isIdentifier(S) →
isIdentifier(toNFD(S))

 isIdentifier(toNFC(S))
 isIdentifier(toNFKD(S))
 isIdentifier(toNFKC(S))

Identifiers are also closed under case operations. For any string S (with exceptions
involving a single character), the implications shown in Figure 6 hold.

Figure 6. Case Closure

isIdentifier(S) →
isIdentifier(toLowercase(S))

 isIdentifier(toUppercase(S))
 isIdentifier(toFoldedcase(S))

The one exception for casing is U+0345 COMBINING GREEK YPOGEGRAMMENI. In the
very unusual case that U+0345 is at the start of S, U+0345 is not in XID_Start, but its
uppercase and case-folded versions are. In practice, this is not a problem because of the
way normalization is used with identifiers.

The reverse implication is true for canonical equivalence but not true in the case of
compatibility equivalence:

Figure 7. Reverse Normalization Closure

isIdentifier(toNFD(S))
 isIdentifier(toNFC(S)) → isIdentifier(S)

isIdentifier(toNFKD(S))

isIdentifier(toNFKC(S)) ↛ isIdentifier(S)

There are many characters for which the reverse implication is not true for compatibility
equivalence, because there are many characters counting as symbols or non-decimal
numbers—and thus outside of identifiers—whose compatibility equivalents are letters or
decimal numbers and thus in identifiers. Some examples are shown in Table 8.

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 31/36

Table 8. Compatibility Equivalents to Letters or Decimal Numbers

Code Points GC Samples Names

2070 No ⁰ SUPERSCRIPT ZERO

20A8 Sc ₨ RUPEE SIGN

2116 So № NUMERO SIGN

2120..2122 So ℠..™ SERVICE MARK..TRADE MARK SIGN

2460..2473 No ①..⑳ CIRCLED DIGIT ONE..CIRCLED NUMBER TWENTY

3300..33A6 So ㌀..㎦ SQUARE APAATO..SQUARE KM CUBED

If an implementation needs to ensure both directions for compatibility equivalence of
identifiers, then the identifier definition needs to be tailored to add these characters.

For canonical equivalence the implication is true in both directions. isIdentifier(toNFC(S))
if and only if isIdentifier(S).

There were two exceptions before Unicode 5.1, as shown in Table 9. If an implementation
needs to ensure full canonical equivalence of identifiers, then the identifier definition must
be tailored so that these characters have the same value, so that either both isIdentifier(S)
and isIdentifier(toNFC(S)) are true, or so that both values are false.

Table 9. Canonical Equivalence Exceptions Prior to Unicode 5.1

isIdentifier(toNFC(S))=True isIdentifier(S)=False Different in

02B9 (ʹ) MODIFIER LETTER PRIME 0374 (ʹ) GREEK NUMERAL SIGN XID and ID

00B7 (·) MIDDLE DOT 0387 (·) GREEK ANO TELEIA XID alone

Those programming languages with case-insensitive identifiers should use the case
foldings described in Section 3.13, Default Case Algorithms, of [Unicode] to produce a
case-insensitive normalized form.

When source text is parsed for identifiers, the folding of distinctions (using case mapping
or NFKC) must be delayed until after parsing has located the identifiers. Thus such folding
of distinctions should not be applied to string literals or to comments in program source
text.

The Unicode Standard supports case folding with normalization, with the function
toNFKC_Casefold(X). See definition UAX31-R5 in Section 3.13, Default Case Algorithms
in [Unicode] for the specification of this function and further explanation of its use.

5.2 Case and Stability

The alphabetic case of the initial character of an identifier is used as a mechanism to
distinguish syntactic classes in some languages like Prolog, Erlang, Haskell, Clean, and
Go. For example, in Prolog and Erlang, variables must begin with capital letters (or

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#Unicode
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#Unicode

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 32/36

underscores) and atoms must not. There are some complications in the use of this
mechanism.

For such a casing distinction in a programming language to work with unicameral writing
systems (such as Kanji or Devanagari), another mechanism (such as underscores) needs
to substitute for the casing distinction.

Casing stability is also an issue for bicameral writing systems. The assignment of
General_Category property values, such as gc=Lu, is not guaranteed to be stable, nor is
the assignment of characters to the broader properties such as Uppercase. So these
property values cannot be used by themselves, without incorporating a grandfathering
mechanism, such as is done for Unicode identifiers in Section 2.5 Backward Compatibility.
That is, the implementation would maintain its own list of special inclusions and exclusions
that require updating for each new version of Unicode.

Alternatively, a programming language specification can use the operation specified in
Case Folding Stability as the basis for its casing distinction. That operation is guaranteed
to be stable. That is, one can use a casing distinction such as the following:

1. S is a variable if S begins with an underscore.
2. Otherwise, produce S' = toCasefold(toNFKC(S))

a. S is a variable if firstCodePoint(S) ≠ firstCodePoint(S'),
b. otherwise S is an atom.

This test can clearly be optimized for the normal cases, such as initial ASCII. It is also
recommended that identifiers be in NFKC format, which makes the detection even simpler.

5.2.1 Edge Cases for Folding

In Unicode 8.0, the Cherokee script letters have been changed from gc=Lo to gc=Lu, and
corresponding lowercase letters (gc=Ll) have been added. This is an unusual pattern;
typically when case pairs are added, existing letters are changed from gc=Lo to gc=Ll, and
new corresponding uppercase letters (gc=Lu) are added. In the case of Cherokee, it was
felt that this solution provided the most compatibility for existing implementations in terms
of font treatment.

The downside of this approach is that the Cherokee characters, when case-folded, will
convert as necessary to the pre-8.0 characters, namely to the uppercase versions. This
folding is unlike that of any other case-mapped characters in Unicode. Thus the case-
folded version of a Cherokee string will contain uppercase letters instead of lowercase
letters. Compatibility with fonts for the current user community was felt to be more
important than the confusion introduced by this edge case of case folding, because
Cherokee programmatic identifiers would be rare.

The upshot is that when it comes to identifiers, implementations should never use the
General_Category or Lowercase or Uppercase properties to test for casing conditions, nor
use toUppercase(), toLowercase(), or toTitlecase() to fold or test identifiers. Instead, they
should instead use Case_Folding or NFKC_CaseFold.

6 Hashtag Identifiers

Hashtag identifiers have become very popular in social media. They consist of a number
sign in front of some string of characters, such as #emoji. The actual composition of
allowable Unicode hashtag identifiers varies between vendors. It has also become

https://www.unicode.org/policies/stability_policy.html#Case_Folding

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 33/36

common for hashtags to include emoji characters, without a clear notion of exactly which
characters are included.

This section presents a syntax that can be used for parsing Unicode hashtag identifiers for
increased interoperability.

UAX31-D2. Default Hashtag Identifier Syntax:

<Hashtag-Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*

When parsing hashtags in flowing text, it is recommended that an extended Hashtag only
be recognized when there is no Continue character before a Start character. For example,
in “abc#def” there would be no hashtag, while there would be in “abc #def” or “abc.#def”.

UAX31-R8. Extended Hashtag Identifiers: To meet this requirement, to determine
whether a string is a hashtag identifier an implementation shall use definition UAX31-D2,
setting:

1. Start := [#﹟＃]
U+0023 NUMBER SIGN
U+FE5F SMALL NUMBER SIGN
U+FF03 FULLWIDTH NUMBER SIGN
(These are # and its compatibility equivalents.)

2. Medial is currently empty, but can be used for customization.
3. Continue := XID_Continue, plus Extended_Pictographic, Emoji_Component, and “_”,

“-”, “+”, minus Start characters.
Note the subtraction of # characters.
This is expressed in UnicodeSet notation as:
[\p{XID_Continue}\p{Extended_Pictographic}\p{Emoji_Component}[-+_]-[#﹟
＃]]

Alternatively, it shall declare that it uses a profile as in UAX31-R1.

The Emoji properties are from the corresponding version of [UTS51]. The version of the
emoji properties is tied to the version of the Unicode Standard, starting with Version 11.0.

The grandfathering techniques mentioned in Section 2.5 Backward Compatibility may be
used where stability between successive versions is required.

Comparison and matching should be done after converting to NFKC_CF format. Thus
#MötleyCrüe should match #MÖTLEYCRÜE and other variants.

Implementations may choose to add characters in Table 3a, Optional Characters for
Medial to Medial and Table 3b, Optional Characters for Continue to Continue for better
identifiers for natural languages.

Acknowledgments

Mark Davis is the author of the initial version and has added to and maintained the text of
this annex.

Thanks to Eric Muller, Asmus Freytag, Lisa Moore, Julie Allen, Jonathan Warden, Kenneth
Whistler, David Corbett, Klaus Hartke, and Martin Duerst for feedback on this annex.

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS51

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 34/36

References

For references for this annex, see Unicode Standard Annex #41, “Common References for
Unicode Standard Annexes.”

Migration

Version 13.0

Version 13.0 changed the structure of Table 4. Excluded Scripts significantly, dropping
conditions that were not based on script. Implementations that were based on Table 4
should refer to UTS #39, Unicode Security Mechanisms [UTS39] for additional restrictions.

Version 11.0

Version 11.0 refines the use of ZWJ in identifiers (adding some restrictions and relaxing
others slightly), and broadens the definition of hashtag identifiers somewhat. For details,
see the Modifications.

Version 9.0

In previous versions, the text favored the use of XID_Start and XID_Continue, as in the
following paragraph. However, the formal definition used ID_Start and ID_Continue.

The XID_Start and XID_Continue properties are improved lexical classes that
incorporate the changes described in Section 5.1, NFKC Modifications. They are
recommended for most purposes, especially for security, over the original ID_Start
and ID_Continue properties.

In version 9.0, that is swapped and the X versions are stated explicitly in the formal
definition. This affects just the following characters.

037A ; GREEK YPOGEGRAMMENI
0E33 ; THAI CHARACTER SARA AM
0EB3 ; LAO VOWEL SIGN AM
309B ; KATAKANA-HIRAGANA VOICED SOUND MARK
309C ; KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK
FC5E..FC63 ; ARABIC LIGATURE SHADDA WITH SUPERSCRIPT ALEF ISOLATED FORM
FDFA ; ARABIC LIGATURE SALLALLAHOU ALAYHE WASALLAM
FDFB ; ARABIC LIGATURE JALLAJALALOUHOU
FE70 ; ARABIC FATHATAN ISOLATED FORM
FE72 ; ARABIC DAMMATAN ISOLATED FORM
FE74 ; ARABIC KASRATAN ISOLATED FORM
FE76 ; ARABIC FATHA ISOLATED FORM
FE78 ; ARABIC DAMMA ISOLATED FORM
FE7A ; ARABIC KASRA ISOLATED FORM
FE7C ; ARABIC SHADDA ISOLATED FORM
FE7E ; ARABIC SUKUN ISOLATED FORM
FF9E ; HALFWIDTH KATAKANA VOICED SOUND MARK
FF9F ; HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK

Implementations that wish to maintain conformance to the older recommendation need
only declare a profile that uses ID_Start and ID_Continue instead of XID_Start and
XID_Continue.

Version 9.0 splits the older Table 3 from Version 8.0 into 3 parts.

https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html
https://unicode-org.github.io/unicode-reports/tr41/tr41-28.html#UTS39

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 35/36

Current Tables Unicode 8.0

Table 3, Optional Characters for
Start

Table 3, Candidate Characters for Inclusion in
ID_Continue

Table 3a, Optional Characters for
Medial

Table 3b, Optional Characters for
Continue

only outlined in text

Version 6.1

Between Unicode Versions 5.2, 6.0 and 6.1, Table 5 was split in three. In Version 6.1, the
resulting tables were renumbered for easier reference. The titles and links remain the
same, for stability.

The following shows the correspondences:

Current Tables Unicode
6.0

Unicode
5.2

Table 5, Recommended Scripts 5a 5

Table 6, Aspirational Use Scripts

Table 7, Limited Use Scripts 5b

Table 8, Compatibility Equivalents to Letters or Decimal
Numbers

6 6

Table 9, Canonical Equivalence Exceptions Prior to
Unicode 5.1

7 7

Modifications

The following summarizes modifications from the previously published version of this
annex.

Revision 36

Proposed Update for Unicode 15.0.
Section 2, Default identifiers

Added text after UAX31-R1 with more guidance on profiles for default
identifiers.
Clarified the wording of UAX31-R1a.
Added a note to UAX31-R1a clarifying that it is not part of requirement UAX31-
R1.

Section 2.3, Layout and Format Control Characters

7/25/22, 3:44 PM UAX #31: Unicode Identifier and Pattern Syntax

https://unicode-org.github.io/unicode-reports/tr31/tr31.html 36/36

Added a note clarifying that requirement UAX31-R1a is not part of requirement
UAX31-R1.
Added a note mentioning the resemblance of the contexts defined for ZWJ and
ZWNJ with those defined by IDNA.
Replaced the paragraph starting “Variation selectors […] are not included in the
default identifier syntax...”. The variation selectors, as well as other default
ignorable code points, are part of XID_Continue. [Draft 6, resolving review
notes]

Section 2.4, Specific Character Adjustments
Added the two new scripts to Table 4, Excluded Scripts.

Section 4, Pattern Syntax
Clarified that this section is applicable to programming languages.
Added a note and an example to UAX31-R3 describing its relevance to issues
of bidirectional ordering.

 Section 5, Normalization and Case
Corrected two important typos. [Draft 6, resolving review notes]

Minor editorial corrections.

Revision 35

Reissued for Unicode 14.0.
Added Section 1.5, Notation, referring to the LDML for the UnicodeSet notation used
in this annex.
Section 2.4, Specific Character Adjustments

Added the five new scripts to Table 4, Excluded Scripts.
Minor editorial corrections.

Modifications for previous versions are listed in those respective versions.

© 2022 Unicode®, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any
kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in
connection with or arising out of the use of the information or programs contained or accompanying this technical report.
The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

https://www.unicode.org/copyright.html

