
 L2/22-230

 Mathematical notation pro�le for default identi�ers
 To: UTC
 From: Robin Leroy, Source code ad hoc working group
 Date: 2022-10-20

 I. Summary

 The mathematical notation pro�le for default identi�ers consists in the addition of the set Math_Start to
 the set Start , and the set Math_Continue to the set Continue , in de�nition UAX31-D1 . These sets are
 de�ned as follows, where the expressions in brackets are in UnicodeSet notation :

 Math_Start ≔ [∂𝛛𝜕𝝏𝞉𝟃∇𝛁𝛻𝜵𝝯𝞩∞]

 Math_Continue ≔ Math_Start ∪ [⁽₍⁾₎⁺₊⁼₌⁻₋⁰₀¹₁²₂³₃⁴₄⁵₅⁶₆⁷₇⁸₈⁹₉]

 It is associated with a pro�le for UAX31-R3 , which consists in removing the characters ∂, ∇, and ∞ from
 the set of characters with syntactic use (these are the characters in [:Pattern_Syntax:] ∖ Math_Continue).

 Document L2/22-229 proposes adding the de�nition of that pro�le to Unicode Standard Annex #31. This
 document serves as a rationale for the set of characters added to Start and Continue .

 II. Background

 It is a long established practice in mathematical code to make use of identi�ers “closely resembling the
 natural language of mathematics” 1 . Such identi�ers include may represent single-letter variables (e.g. , int
 i , COMPLEX*16 ALPHA), subscripted variables (e.g., REAL X1, X2), but also subexpressions, as in the
 following examples from classic scienti�c computing libraries:

 (1) BR = B * R LAPACK (Fortran)
 (2) REAL AINVNM LAPACK (Fortran) 2

 (3) SINPIY = ABS (SIN(PI*Y)) FNLIB (Fortran)
 (4) x2 = x * x; CEPHES (C) 3

 (5) ivln2 = 1.44269504088896338700e+00 FDLIBM (C) 4

 (6) r2 = x0*x0 + y0*y0; IAU SOFA (C) 5

 r = sqrt(r2);
 (7) cost2 = np.cos(theta) ** 2 astropy (Python)

 5 From tpxev.c. See tpxev.c in ERFA . The same code (except uppercase) is used in tpxev.for in SOFA.

 4 The constant is the (rounded) inverse of the natural logarithm of 2.

 3 From fresnlf.c; see GitHub mirror .

 2 AINVNM stands for the norm of the inverse of A.

 1 Fortran Automatic Coding System for the IBM 704: Programmer’s Reference Manual (1956), p. 2 .

https://unicode.org/reports/tr31/#D1
https://www.unicode.org/reports/tr35/tr35-66/tr35.html#Unicode_Sets
https://unicode.org/reports/tr31/#R3
https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/22-229
https://github.com/Reference-LAPACK/lapack/blob/e02aff97b590628a19f9ae5a27f2521213993676/SRC/dladiv.f#L237
https://github.com/Reference-LAPACK/lapack/blob/77a0ceb6c9a3c757e7039027f1f324e2811e6ee0/SRC/sptcon.f#L139
https://netlib.org/slatec/fnlib/alngam.f
https://netlib.org/cephes/
https://netlib.org/fdlibm/e_pow.c
https://www.iausofa.org/
https://github.com/astropy/astropy/blob/68f6792f3c42ac7affa5318e95bacf9e76fc2620/astropy/modeling/functional_models.py#L402
https://github.com/liberfa/erfa/blob/master/src/tpxev.c#L88-L89
https://github.com/jeremybarnes/cephes/blob/60f27df395b8322c2da22c83751a2366b82d50d1/single/fresnlf.c#L134
https://archive.computerhistory.org/resources/text/Fortran/102649787.05.01.acc.pdf#page=4

 Programming language identi�ers do not 6 bene�t from mathematical typesetting in display. The above
 usages are therefore examples of a fallback plain text representation of mathematical notation, as described in
 UTR #25 ; for instance, the identi�ers in (6) above are a fallback for the following:

 = * + * ; 𝑟 2 𝑥
 0

 𝑥
 0

 𝑦
 0

 𝑦
 0

 = sqrt(); 𝑟 𝑟 2

 This fallback representation is even more restricted than ordinary plain text: as programming languages
 make use of mathematical syntax (such as the operator +) for executable operations, the expressions do not
 usually represent multiple terms; or if they do, they need to resort to a heavily degraded representation, such
 as log1p(x) for log(1+x) in IEEE 754.

 Nevertheless, this fallback representation can extend beyond Basic Latin; most obviously, Greek letters can
 be used instead of their names 7 ; indeed this usage is common in programming languages and code bases that
 allow for non-ASCII identi�ers, even outside of specialized scienti�c computing codebases, including in
 standard libraries 8 and general-purpose frameworks 9 .

 The fallback representation of mathematical notation in identi�ers can also bene�t from some characters
 outside of [:XID_Continue:] (the set of characters allowed in UAX #31 default identi�ers), either because
 they improve readability, or because they resolve ambiguities. This document proposes an extension that
 serves these aims, while staying clear of characters that could have syntactic use in a programming language,
 and taking confusability concerns into account.

 Indeed, the identity of programming language identi�ers should be visually ascertainable, so some lookalike
 mathematical symbols are not appropriate in identi�ers, on account not just of security concerns, but also of
 usability concerns. For instance, getting a compilation error—or worse, an erroneous result—because one
 tries to refer to ∆x (increment x) as Δx (delta x) would be mystifying; at the same time, with any reasonable
 choice of notation, there is little use for these to be allowed as distinct identi�ers: a capital delta is an
 acceptable fallback representation of the increment symbol.

 The recommendations in this document are informed by real usage in programs: some programming
 languages (such as C and C++ 10 11, 14, 17, and 20, as well as Swift) de�ne their identi�ers based on
 requirement UAX31-R2 (immutable identi�ers) , which allows a much larger set of characters, while others
 (such as Julia) broadly extend their de�nition of identi�ers to include characters with potential
 mathematical use. Document L2/22-102 surveys mathematical usage of non-XID identi�er characters in
 these languages.

 10 C and C++ 11 through 20 as originally published. Upcoming standards (C23 and C++23) retroactively change the
 identi�er de�nition to default identi�ers, as a defect report to previous versions of the language. See Appendix C.

 9 See, e.g. , sinα in t he Swift Foundation framework.

 8 See π : constant := Pi in the sta ndard library of Ada 2005 and later.

 7 Or other fallbacks for them, such as w for ω, or t for θ in (5) above.

 6 Some programming environments speci�cally targeted to mathematical usage display their source code with advanced
 typesetting, such as displaying subexpressions used as an exponent as superscripts, or displaying fractions vertically; this
 is for instance the case of Wolfram Mathematica. Such languages are out of scope for the pro�le described in this
 document, which speci�cally targets the family of programming languages designed for plain text display and wherein
 the multiplication operation uses an explicit operator, such as * , rather than juxtaposition.

http://www.unicode.org/reports/tr25/tr25-15.pdf
https://unicode.org/reports/tr31/#R2
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://github.com/apple/swift-corelibs-foundation/blob/cc90ac55a64a33f11004036eac47fc1d658a39ec/Sources/Foundation/AffineTransform.swift#L110-L117
https://www.adaic.org/resources/add_content/standards/05rm/html/RM-A-5.html

 III. Rationale for inclusions

 The following criteria in favour of inclusion in the répertoire were considered:

 I1. Attested usage in identi�ers, as documented in L2/22-102 A survey of non-XID identifier usage in
 program text .

 I2. Lack of fallback representations, or ambiguity of such representations.

 The following criteria in favour of exclusion from the répertoire were considered:

 X1. A character with attested or potential syntactic usage should not be added to identi�ers.
 X2. A character that is confusable with ones that are already allowed in default identi�ers, and are likely

 to be used instead, or a character that is confusable with characters that have syntactic use in
 mathematical code, should not be added to identi�ers.

 Note: Criterion X2 isn’t “there is a lookalike character which could be used for spoo�ng”;
 spoo�ng issues should be addressed with confusability checks rather than syntactic
 restrictions (this will be addressed in depth in upcoming documents from the Source Code
 Working Group). Instead the criterion is “there is a lookalike character which, in a pinch,
 people pick for the mathematical usage”. Exclusions based on this criterion are based on
 attested usages of these confusables.

 III.1. Superscripts and subscripts

 The following characters are part of the mathematical répertoire extension for default identi�ers, as an
 addition to the set Continue :

 [⁽₍⁾₎⁺₊⁼₌⁻₋⁰₀¹₁²₂³₃⁴₄⁵₅⁶₆⁷₇⁸₈⁹₉]

 These are the subscript and superscript digits, as well as the subscript and superscript characters with the
 property Math , in Unicode Version 14.0.0.

 (I1) Their use is attested in identi�ers; see L2/22-102 , Section I.1.1.

 (I2) They resolve ambiguities; for example:

 — x2 may be a fallback representation of either x² or x₂ , including within the same codebase, as in
 the following examples from a robotics toolkit by MIT:

 — const T x2 = x.squaredNorm();
 — const T x2 = c / (a * x1);

 — In example (7) from Section II, cost2 (or, if we allow ourselves the Greek letters, cosθ2) could be
 misinterpreted as cos(θ²). In contrast, cos²θ would be unambiguous. Note however that an ASCII
 fallback cos2θ would be even worse than cosθ2 , because it would be interpreted as cos(2θ).

 — In example (2) from Section II, the inverse is indicated by a su�x INV , whereas in example (5), a
 pre�x iv �lls this role. This can lead to ambiguity when interpreting an identi�er such as AINVB .
 In contrast A⁻¹B and AB⁻¹ are unambiguous.

 — Parentheses distinguish derivatives (f⁽³⁾ for the third derivative of f) from exponentiation (f³ for
 f cubed).

https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5B%3Adt%3Dsup%3A%5D%5B%3Adt%3Dsub%3A%5D%5D%26%5B%3AMath%3A%5D&g=&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5B%3Adt%3Dsup%3A%5D%5B%3Adt%3Dsub%3A%5D%5D%26%5B%3AMath%3A%5D&g=&i=
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://github.com/RobotLocomotion/drake/blob/e59b7fc18dbe80b827d07e4a3283a0c87eda7021/multibody/tree/linear_spring_damper.cc#L185
https://github.com/RobotLocomotion/drake/blob/a66c7d73d79d07efb6eaa02e3bbcc275fc521938/systems/analysis/test_utilities/spring_mass_damper_system.h#L167

 (X1) These characters are not used as syntax. Indeed, since exponentiation associates more strongly than
 multiplication, their use as operators would be misleading: xy² reads as (x)(y²) , but would parse as
 (xy)² if ² were a post�x operator.

 (X2) Most of these characters have no confusables . The exceptions are:

 — SUPERSCRIPT ZERO ⁰ is confusable with the following XID_Continue characters:
 — MASCULINE ORDINAL INDICATOR º, and
 — MODIFIER LETTER SMALL O ᵒ;

 — SUPERSCRIPT NINE ⁹ is confusable with the following XID_Continue character:
 — MODIFIER LETTER US ꝰ.

 The confusables with superscript zero are usually visually distinct; they are no more likely to be mistakenly
 entered instead of superscript zero than o is likely to be used instead of 0. The confusable with superscript
 nine, while it is visually very similar, is an obscure medievalist 11 character. As such, it is not likely to be
 inadvertently entered, and since its name does not contain the word “nine”, users looking for the superscript
 nine by name are unlikely to come across it; contrast the primes mentioned in Appendix A. In practice we
 were not able to �nd that character in source code in any of the languages considered in L2/22-102 .

 III.2. Di�erential operators

 The following characters are part of the mathematical répertoire extension for default identi�ers, as an
 addition to the sets Start and Continue :

 [∂𝛛𝜕𝝏𝞉𝟃∇𝛁𝛻𝜵𝝯𝞩]

 These are the partial di�erential symbol, the nabla symbol, and their mathematical style variants.

 (I1) Their use is attested in identi�ers; see L2/22-102 , Section I.1.2.

 (I2) The use of the partial di�erential symbol may resolve ambiguities with d (total di�erential, or
 in�nitesimal di�erence—often used for small di�erences in identi�ers). It is also the symbol for the
 boundary of a set, a sense not conveyed by d . While the notation grad can be a substitute for ∇ (and Δ for
 ∇²), it is not common in all mathematical traditions.

 (X1) Where languages allow them to be de�ned as operators, these characters are not attested in operators;
 see L2/22-102 , Appendix B. Note that their use in mathematical notation is as pre�x operators, so that, if
 allowed as function identi�ers, they could be used as function names; in a language that uses parentheses for
 function calls, ∇f would then be an identi�er, and ∇(f) the computation of the gradient of f . This is
 similar to the situation for the trigonometric functions, which are often written without parentheses in
 mathematical typesetting.

 (X2) Confusability (excluding between the style variants) is only recorded with unrelated Warang Citi and
 Mende Kikakui characters, which are unlikely to be used inadvertently in mathematics.

 Note that all mathematical style variants are included here, since all style variants of the mathematical
 alphabets and digits are allowed in default identi�ers. See Semantic Distinctions in Unicode Technical
 Report #25, pp. 6 sq. , on the use of style variants in plain text fallback representations of mathematical
 expressions.

 11 See proposal L2/06-027 .

https://util.unicode.org/UnicodeJsps/confusables.jsp?a=%E2%81%BD%E2%82%8D%E2%81%BE%E2%82%8E%E2%81%BA%E2%82%8A%E2%81%BC%E2%82%8C%E2%81%BB%E2%82%8B%E2%81%B0%E2%82%80%C2%B9%E2%82%81%C2%B2%E2%82%82%C2%B3%E2%82%83%E2%81%B4%E2%82%84%E2%81%B5%E2%82%85%E2%81%B6%E2%82%86%E2%81%B7%E2%82%87%E2%81%B8%E2%82%88%E2%81%B9%E2%82%89
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://util.unicode.org/UnicodeJsps/confusables.jsp?a=%E2%88%82%E2%88%87&r=None
https://www.unicode.org/reports/tr25/tr25-15.pdf#page=6
https://www.unicode.org/reports/tr25/tr25-15.pdf#page=6
https://www.unicode.org/L2/L2006/06027-n3027-medieval.pdf

 III.3. In�nity

 The character U+221E INFINITY (∞) is part of the mathematical répertoire extension for default
 identi�ers, as an addition to the sets Start and Continue .

 (I1) Its usage is attested in identi�ers; see L2/22-102 , Section I.1.3.

 (I2) Fallbacks generally consist in spelling out “in�nity” or an abbreviation thereof (frequently “inf”). This
 can be ambiguous with the in�mum (for which the standard notation is inf), or with other abbreviations
 (for instance, LAPACK uses INF for an INFO parameter and POSINF and NEGINF for ± ∞). Note that
 in�nity is used as part of identi�ers other than ∞, such as L∞ or m∞ , wherein an alphabetic fallback would
 lead to further ambiguities (minf could easily be misread as the minimum of f, rather than m-in�nity).

 (X1) The in�nity symbol is not an operator. A programming language could use it in its syntax as a literal
 for in�nity in an arbitrary type; however, this does not preclude making it an identi�er character: the
 identi�er ∞ would then merely be a reserved word in the language. Alternatively, it could be a library
 constant; cf. Ada.Numerics.π .

 (X2) Its confusables are oo and the Latin and Cyrillic letters ꝏ and ꚙ . The ASCII sequence oo , while
 attested as a fallback for in�nity, looks clearly distinct, especially in �xed-width fonts, and the double letters
 are unrelated enough that they are unlikely to be picked inadvertently. In practice we were not able to �nd
 either double-o ligature in source code in any of the languages considered in L2/22-102 .

 Appendix A. Other characters considered

 The classi�cation in the MathClassEx �le associated with UTR #25 (Revision 15) was used together with
 the survey L2/22-102 to review additional candidates.

 The characters in classes Binary, Closing, Fence, Opening, Punctuation, Relation, Space, and Vary, as well as
 the characters in [:ASCII:] ∩ [:Pattern_Syntax:], were discarded based on criterion X1 (attested or potential
 syntactic use). Compatibility variants (class X) and glyph parts (class G) were also excluded. This leaves the
 following characters non-XID_Continue characters, besides the ones discussed above:

 ∱∰∯∮∭∬∫∢∡∠∟∜∛√∑∐∏∎∆∅∄∃∁∀⅋⅄⅃⅂⅁⅀℩℧�⃟⃞⃝⁗⁒⁑‼※‷‶‵‴″′… ؈ ؇؆϶˜˚˙˘¾½¼¶´°¯¬¨§¦¥¤£¢
 ∲∳∿⊤⊾⊿⋀⋁⋂⋃⌀⌂⌐⌑⌙⌶⎔⎴⎵⎶⏜⏝⏞⏟⏠⏡⏢⏣⏤⏥⏦⏧Ⓢ█□▪▫▭▮▯▰▱◆◇◈◉◎●◐◑◒◓◖
 ◗◢◣◤◥◧◨◩◪◯☉☌☽☾☿♀♁♂♃♄♆♇♈ ♉ ♠♡♢♣♤♥♦♧♩♭♮♯⚀⚁⚂⚃⚄⚅⚆⚇⚈⚉⚪⚫⚬⚲✓✗✠✪✶
 ⟀⟁⟌⟐⟕⟖⟗⟘⟙⦁⦛⦜⦝⦞⦟⦠⦡⦢⦣⦤⦥⦦⦧⦨⦩⦪⦫⦬⦭⦮⦯⦰⦱⦲⦳⦴⦵⦺⦻⦼⦽⦾⦿⧂⧃⧉⧊⧋⧌⧍
 ⧜⧝⧞⧠⧧⧨⧩⧪⧬⧭⧮⧯⧰⧱⧲⧳⧸⧹⨀⨁⨂⨃⨄⨅⨆⨇⨈⨉⨊⨋⨌⨍⨎⨏⨐⨑⨒⨓⨔⨕⨖⨗⨘⨙⨚⨛⨜⨝⨞⨟⨠⨡⫡⫱⫼⫿⬒
 ⬓⬔⬕⬖⬗⬘⬙⬛⬜⬝⬞⬟⬠⬡⬢⬣⬤⬥⬦⬧⬨⬩⬪⬫⬬⬭⬮⬯⭐ ⭑⭒⭓⭔⯂⯃⯄⯅⯆⯇⯈⯊⯋ �� 🞄🞌🞍🞗🞘�🞝🞞�

 Notes: VARIATION SELECTOR-15 was inserted after the characters ♈ , ♉ , and ⭐ to avoid
 emoji presentation (♈, ♉, ⭐). VS-15, like all other variation selectors, is allowed in default
 identi�ers. The tofu at the end of this list consists of the following characters:

 ● ARABIC MATHEMATICAL OPERATOR MEEM WITH HAH WITH TATWEEL
 ● ARABIC MATHEMATICAL OPERATOR HAH WITH DAL
 ● BLACK MEDIUM SMALL DIAMOND
 ● BLACK MEDIUM SMALL LOZENGE

https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://github.com/Reference-LAPACK/lapack/blob/801ac2ff7a7c41f8d0fc60ebec6ef9fef3600fc9/SRC/claqr0.f#L568-L570
https://github.com/Reference-LAPACK/lapack/blob/801ac2ff7a7c41f8d0fc60ebec6ef9fef3600fc9/SRC/claqr4.f#L246-L247
https://github.com/Reference-LAPACK/lapack/blob/77a0ceb6c9a3c757e7039027f1f324e2811e6ee0/SRC/ieeeck.f#L101-L111
https://github.com/JuliaApproximation/SingularIntegralEquations.jl/blob/d4f5caeb37a76e58b131575897955ce1c29d5f36/src/arc.jl#L81
https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl/blob/f9b9e6172b21c4a6f9ee83f7bdc6f30b7c2e7247/examples/benchmark-morris.jl#L14
https://util.unicode.org/UnicodeJsps/character.jsp?a=%E2%88%9E&B1=Show
https://github.com/sympy/sympy/blob/45dcb6cae616eca10ca6df1a874d6aed25bc1fb4/sympy/core/numbers.py#L3445
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://www.unicode.org/Public/math/revision-15/MathClassEx-15.html
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf

 Many of these characters are allowed in Julia identi�ers , however most are not used in practice. In this
 section, we consider those that are attested, as well as some that are common enough in general
 mathematical notation that their exclusion requires an explanation.

 A.1 Unary operators (Class U)

 A.1. Increment

 As discussed above, the increment symbol fails to meet the criteria for inclusion, and is excluded per
 criterion X2 (confusability). In Julia which allows both U+2206 INCREMENT (∆) and U+0394 GREEK
 CAPITAL LETTER DELTA (Δ) in identi�ers, the latter is signi�cantly more common in identi�ers
 representing an increment. Indeed increments and Laplacians are both commonly read “delta”; see also the
 notes for U+2206 in MathClassEx.

 A.2. Quanti�ers

 The universal and existential quanti�ers ∀ and ∃ fail to meet the criteria for inclusion, and are excluded per
 criterion X1 (potential syntactic use). They are not attested in Julia identi�ers; conversely it is plausible that
 they could be given syntactic use in a programming language, as several programming languages have
 quanti�cation as operations on sequences, e.g. , Ada 2012 for some and for all , Python any and all .

 A.2 Large operators (Class L)

 A.2.1 Radicals

 Excluded per criterion X1 (syntactic use). The character U+221A SQUARE ROOT (√) is a prede�ned
 operator in Julia (likewise ∛). It is sometimes used as an operator in Swift (see L2/22-102 , Appendix B).

 A.2.2 Summation and product

 Excluded per criteria X1 (syntactic use) and X2 (confusability). In Julia which allows both U+2211 N-ARY
 SUMMATION (∑) and U+03A3 GREEK CAPITAL LETTER SIGMA (Σ) in identi�ers, the latter is
 signi�cantly more common in identi�ers representing a sum; see L2/22-102 , Section I.1.5. Its usage as an
 operator is attested in Swift (see L2/22-102 , Appendix B). The situation is similar for the product operator
 ∏ and the letter Π.

 A.2.3 Integrals

 The integral sign fails to meet the criteria for inclusion, and is excluded per criterion X2 (confusability). The
 numerous integral signs are not attested in Julia identi�ers, except in situations where they e�ectively serve as
 integration operators; see L2/22-102 , Section I.1.6. The XID_Continue LATIN LETTER ESH (ʃ) is
 attested in identi�ers representing integrals, e.g. , ʃT .

 A.3 Class N

 A.3.3 Fractions

 Where they are allowed, the fractions are rarely attested in identi�ers. See L2/22-102 , section I.1.8. Vulgar
 fractions (as opposed to vertical ones) are not commonly used in mathematical notation, so they are poorly
 suited to improving the readability of identi�ers representing mathematical expressions.

https://github.com/JuliaLang/julia/blob/87ded5a9aa502cfc4e03cbf230cb9bba86c85cc1/src/flisp/julia_extensions.c#L79-L117
http://www.ada-auth.org/standards/aarm12_w_tc1/html/AA-4-5-8.html
https://docs.python.org/3/library/functions.html#all
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://github.com/RNCan/WeatherBasedSimulationFramework/blob/5fa3f650fba604d942c7a38cc10580992d8a1781/wbsModels/HemlockLooper/HemlockLooperEquations.cpp#L254-L255
https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf

 A.3.2 Primes

 Excluded per criterion X2 (confusability). Primes (and double primes, though not triple and higher) are very
 common in Julia identi�ers. However, in programming languages that do not allow them in identi�ers, but
 instead use default identi�ers, the use of the modi�er letters prime and double prime, which are in
 XID_Continue, is well attested. See L2/22-102 , section I.1.4. This is likely because neither the Other
 Punctuation nor the Modi�er Letter are entered via the keyboard; instead users look them up by name, and
 �nd the letters as well as the punctuation characters.

 A.3.1 Empty set

 We found the character U+2205 EMPTY SET (∅) used in one Julia library to represent the empty set;
 example (i) below. However, it is often confusable with U+00D8 LATIN CAPITAL LETTER O WITH
 STROKE (Ø), which is attested as a fallback, as in examples (ii) and (iii).

 (i) const ∅ = emptyinterval(Float64) (Julia)
 (ii) Ø: Set[str] = set() (Python)

 (iii) let Ø = NSSet() (Swift)

 Further, contrary to the conceptually similar in�nity, this symbol is not productive; its only attested usage in
 identi�ers is to represent the empty set, whereas in�nity is used in identi�ers representing the uniform norm,
 the value of variables at in�nity, etc.

 A.3.4 Astronomical symbols

 The astronomical symbols fail to satisfy either criterion for inclusion, and are excluded per criterion X2
 (confusability). The astronomical symbols are unattested in Julia identi�ers, wherein they are allowed. It is
 unlikely that they would be necessary; indeed, the use of the astronomical symbols for planets, while still
 common in some publications (especially in the case of 🜨, Earth), is not recommended by the International
 Astronomical Union, which instead recommends alphabetic abbreviations (Me, V, E, EM, Ma, J, S, U, N,
 P). See the IAU style manual , Section 5.25. While the IAU does use the symbol ☉, an alphabetic fallback
 such as “Sun” do not appear to be a problem in practical usage. At the same time, the symbols ☉ (Sun) and
 🜨 (Earth) are confusable with the operators ⊙ (circled dot: Hadamard product, symmetric product…) and
 ⊕ (circled plus: direct sum, XOR…), which have potential syntactic use; indeed in T E X these astronomical
 symbols are generally represented by the operators.

 Appendix B. Why a pro�le?

 We are not proposing to add these characters to XID_Continue (and thus to default identi�ers with no
 pro�le).

 One reason for this is technical: the introduction of the characters ⁽₍⁾₎⁺₊⁼₌⁻₋ violates identi�er closure under
 Normalization Form KC; while this is not a problem for most implementations, as normalization is
 generally performed after lexing, it is a guarantee o�ered by the default.

 Another is compatibility with stable properties: an implementation that conforms to UAX31-R1 and
 UAX31-R3 and uses this pro�le removes some characters from the set de�ned by Pattern_Syntax; the
 Pattern_Syntax property itself is immutable, so this must be done as part of a pro�le.

https://www.unicode.org/L2/L2022/22102-non-xid-ident-usage.pdf
https://github.com/JuliaIntervals/IntervalArithmetic.jl/blob/f8a5b5edffd2daacd741d875cb882a42b83f2191/src/intervals/special.jl#L13
https://github.com/psf/black/blob/44d5da00b520a05cd56e58b3998660f64ea59ebd/src/black/linegen.py#L412
https://github.com/akosma/Swift-Presentation/blob/eb3d2a892eaedaf19bf63cf8af2ccb8fae3783c4/PresentationKit/Demos/SetsDemo.swift#L4
https://www.iau.org/static/publications/stylemanual1989.pdf
https://unicode-org.github.io/unicode-reports/tr31/tr31.html#R1
https://unicode-org.github.io/unicode-reports/tr31/tr31.html#R1#R3

 Finally, the use case of identi�ers in programming languages used in scienti�c computing is more restricted
 than the scope of default identi�ers, which is intended to serve as a basis for domain names, usernames,
 identi�ers in markup languages, and other identi�er systems where mathematical notation is not used.

 Appendix C. Compatibility considerations

 Some programming languages (notably, C, C++, and Swift) have adopted identi�er de�nitions based on
 requirement UAX31-R2 , immutable identi�ers, but are considering a switch to a de�nition based on
 requirement UAX31-R1 , default identi�ers. This is in part because it is impractical to mitigate spoo�ng
 issues in the space of immutable identi�ers, which includes unassigned code points. Such a migration would
 however break backward compatibility, leading to migration issues and divergence between implementations
 (some implementations do not implement the more restrictive de�nition). See SG16 issue #79 . UAX #31
 provides a mechanism to deal with backward compatibility, namely pro�les: implementations could add
 characters commonly used in identi�ers as part of a pro�le in order to avoid breaking real use cases, while
 still drastically restricting the identi�er space.

 However, implementers and standardizers are reluctant to de�ne pro�les without standard guidance from
 Unicode. De�ning the mathematical notation pro�le in UAX #31 allows these implementers to refer to a
 standard, while both retaining backward compatibility in practical use cases and restricting the identi�er
 space to a more manageable set.

 Acknowledgements

 We thank Murray Sargent for reviewing this document and suggesting improvements.

https://unicode.org/reports/tr31/#R2
https://unicode.org/reports/tr31/#R1
https://github.com/sg16-unicode/sg16/issues/79

