
Khmer Encoding
Structure (Nov 2022)
Martin Hosken (SIL International, NPIC LSDU)
Contributors: Norbert Lindenberg, Makara Sok
Date: November 16, 2022

Table of Contents

Introduction... 3
Rationale.. 4
Document Conventions.. 5
Scope.. 6
The Starting Point... 7

Orthographic Syllable Structure... 9
Coengs.. 9
Final Coengs... 10
Triisap and Muusikatoan.. 12
Vowels.. 13
Signs... 14
Miscellaneous.. 16
Conclusion... 19

Consonant Shifters... 22
Downshifting... 23
The Main Regular Expression.. 26
Ordering... 28

Confusables and Undesirables... 30
Deprecated or discouraged.. 30
Canonical equivalence.. 30
Do not use.. 31
Confusables.. 32
Coeng ta and Coeng da... 35
Yuukaleapintu and Colon... 36

Transition.. 37
Compatibility... 38
Data Transition.. 39
Normalization.. 39

Shaping and Font Development.. 43
Shaping.. 44
Tests... 46
Design Issues.. 46

1

rick
Text Box
L2/22-290

Acknowledgements.. 48
Appendix 1 - Current Confusion... 49

Example Words.. 49
Coeng Ta vs Coeng Da... 52

Appendix 2 - Middle Khmer.. 53
Final Coengs... 53
Multiple Vowels.. 55
Diacritics.. 56
More Examples.. 56
Khom Thai.. 58
Conclusion... 58

Bibliography... 59

2

Introduction
The Khmer script has been encoded in Unicode since September 1999. But it is a very complex script
used to write several languages. The primary driving orthography is for the modern Khmer language
and there is some confusion in understanding how to encode it. This document is a step in a long
history of the discussion of how to encode the Khmer script. It proposes no changes to the character
repertoire of the Unicode Standard, but concentrates on the description of what a Khmer sequence
consists of and what rules are to be applied to it.
One of the primary concerns with this revision of the encoding is to ensure that one visual form only
has one encoding. That is, there are not two ways to encode the same visual representation. This is
important for three reasons:

1. Confusability. If you can encode the same visual representation in two ways, you can come up
with say two different website addresses that look identical, thus allowing someone to spoof
another site.

2. Ease of typing. If there are two ways to represent a single visual form, then it is up to the typist
to ensure that they enter text in an order acceptable to fonts, spelling checkers, and other text
processors, for any given visual form. If, on the other hand, there is only one encoding possible,
then the computer can generate that encoding based on a visual input from the typists,
regardless of how badly they type that visual form. This means that those who are not experts in
Khmer Unicode can successfully enter good data based exclusively on the visual form.

3. Sorting and searching. If there are two ways to encode the same visual representation, people
will be confused as to why two identical looking words do not match each other, or sort to
different places or why one might be marked as misspelled for no visual reason or why some
words cannot be found in a search.

Therefore the current encoding results in significant user experience difficulties (see Appendix 1). Thus
while, if one is careful, one can enter Khmer text in a manually enforced consistent fashion with correct
rendering, most users are not proficient enough to ensure such consistency of data entry.

When considering the encoded syllable structure for a script there are two extremes that can be
created:

• The loose specification aims to allow any possible sequence so long as it is visually contrastive to
all other sequences, even if such a sequence could never occur in any orthography using the
script. For example, in Khmer, this would allow multiple vowels or multiple non spacing
diacritics. The cost with this approach is that implementers then need to support these extra
sequences. For example, font developers would need to support vertical stacking diacritics for
vowels and other diacritics for Khmer.

• The tight specification aims to only describe sequences that could occur in an orthography. The
danger here is that it may limit someone who needs to use the script in unexpected ways for a
new orthography or the transliteration of foreign words.

In this discussion, we will start from a relatively tight position of building the syllabic structure from
orthographic analysis and then loosen it according to recognised needed extensions. Such an analysis
cannot be completed without consideration of all orthographies that use Khmer script, including Old
and Middle Khmer. In this discussion, ‘Khmer language’ refers to Modern Khmer. Other Khmer language
orthographies (like Middle or Old Khmer) are explicitly identified. It is worth noting that modern

3

minority language orthographies have been designed as much as possible, to fit within the structural
norms of Modern Khmer. For example, consonant shifters exhibit the same downshifting behaviour
found in Modern Khmer.
In handling what this document describes as illegal sequences, font and shaping engine developers need
to ensure that their rendering differs from that of correct sequences. This may be done by inserting
dotted circles into incorrect sequences of signs, or by stacking them such that the differences become
visible to the user. In OpenType, where shaping engine developers and font developers share the
responsibility for this, shaping engine documentation must specify which cases are handled by the
shaping engine and which ones remain as font developer responsibilities.

Rationale
Encoding issues are something that end users of applications, working with Khmer script, should never
have to consider. Systems should do the right thing for them, and they should not even need to know
what Unicode is. That users need to know about Unicode in order to type is a failing on the part of the
system implementers. This is not a criticism because implementation is hard and has lacked the
necessary supporting standards. Users should be able to type in a way that is natural to them. They
should be able to search for a word and find all the instances of that word across multiple documents,
typed by different people with different applications (assuming such a search can deal with the
different file formats appropriately).
The current situation, for Khmer, is that users are expected to have a relatively deep understanding of
how Khmer is encoded in Unicode in order to type correctly. They are expected to type their coengs,
vowels and other diacritics and signs in the right order with nothing to help them visually. It is not a
surprise therefore that there can be a plethora of ways in which a single word is spelled (see Appendix
1).
It is assumed, in this document, that the implementation of support for Khmer will include everything
needed to hide the encoding complexities from users. There is no need to consider the impact that
encoding will have on how end users type. Instead the question is of the impact the encoding has on the
implementation of input methods that enable users to type in a natural way without consideration of
encoding issues.

One of the purposes of this document, therefore, is to help implementers create solutions that allow users
to not have to know about Unicode to be able to type their language correctly.

We hope that this document will lead to others that will enable font designers and keyboard
implementers to produce fonts and tools that work consistently and enable consistent data entry and
rendering. We do this by concentrating on describing an unambiguous encoding structure for Khmer.

One important presupposition of this document is that if there is only one way to encode something,
then it makes it easier to produce a system that works with that one way. Thus if there is only one way
to store a word, an input method can take a variety of ways that a user might type a word and normalise
them into the single correct way. On the other hand, if there are multiple ways to encode a word, then
the input method cannot do this and the user is expected to resolve the ambiguity and pick the right
ordering.

4

In the technical context where a keyboard only allows a user to type single codepoints (or short
sequences), there has been no other option. Users want to be able to type in a variety of orders and
therefore have made use of the existing ambiguities in the encoding. But modern keyboard applications
are far more sophisticated and are capable of allowing different typing orders and outputting a single
correct order. But they can only do this if there is an agreed single correct order to output. If there is no
expected order, then the keyboard cannot resolve its input and the decision of what output to generate
has to be pushed back onto the users. Users therefore have to be aware of encoding issues. This is the
problem this document attempts to resolve: What is the agreed single correct order to be used?

The descriptive approach taken in this document is that of a regular expression. Some may wonder why
the current canonical combining order mechanism in Unicode is insufficient. Khmer gets off lightly
with regard to non zero canonical combining classes (CCC). These are problematic because once set they
can never be changed and so any sequences that would be reordered during normalization due to
canonical combining classes have to be reanalyzed and the syllable structure changed to ensure that
normalized strings, stored in combining canonical order, conform to the syllable structure.
The only two characters with non zero CCC values are U+17D2 (Coeng) CCC=9 and U+17DD (Atthacan)
CCC=230. Since U+17D2 and U+17DD are never adjacent as specified in the syllable structure, there is no
problem. Canonical ordering, therefore, is more of a problem than a solution. It is insufficiently
nuanced to handle the complexity of structure needed and too often the setting of values by those
unaware of the complexities can break a script. Thankfully, this is not the case for Khmer, but it is a
potential minefield that has to be avoided during the development of the structure.

Document Conventions
The approach taken in describing the encoding, will be strongly regular expression based both in terms
of describing the structure but also in describing transformations for rendering and keyboarding. The
regular expression language used is based on PCRE1 and EBNF2 . In particular the following more
advanced aspects of regular expressions and EBNFs are used:

• Alternation. Sequences are kept together between | alternation marks within a group.
• A separately defined subexpression, which is presented as a non-terminal declaration and use, is

considered its own group.
• (?=regex) is a look ahead assertion and (?<=regex) is a look behind assertion. This allows the

identification of a specific subexpression in the context of text before and after. This is used in
rewrite rules where the matched expression is replaced, leaving the context unchanged.

• (?!regex) is a negative look ahead assertion (fail if the regex matches) and (?<!regex) is a
negative look behind assertion.

• From standard regular expressions we use ? for optional and {0,2} for ‘up to two’. Parentheses
are used to group sequences and alternations. [] match one of the characters in the list.

Look behind assertions are problematic in that many regular expression engines that support them,
require them to be of fixed match length. A positive look behind assertion can often be refactored into a
match and replace, but negative look behind assertions can be more difficult to refactor.

1Perl Compatible Regular Expressions (https://www.pcre.org)
2Extended Backus Naur Form. Used here for its higher level structure of named non terminals.

5

https://www.pcre.org/

https://unicode.org/glossary/#orthographic_syllable

needs to be done to transition data from existing Unicode encoded representations into this new
encoded representation. This section includes a sample reference implementation of both a normalizer
that converts text and a tester that checks that strings conform to the specification here. The section on
“Shaping and Font Development” considers font design issues arising from the encoding. A large
proportion of the burden of ensuring that different strings look different falls on the font developer.
There is also an appendix that lists sample problem words and how they are often misspelled.

The Starting Point
Over the years, there have been a number of attempts at resolving the issues in the Khmer encoding and
various orthographic syllable structures have been proposed. The result has been a number of different
encoding structures, all vying to be the one true structure:

SylU = Base (Robat | Shifter)? (Coeng Ro?)* (ZW? Vowel)? (Modifier | Final)? Coeng?
SylMS = Base Coeng{0,2} (PreVowel | BelowVowel)? Shifter? AboveVowel? Modifier{0,2}

 FollowingVowel? Final?
SylH = Base ZW? (Shifter | Robat)? (Coeng (ZW? (Shifter | Robat))?)*
 ((ZW Modifier)* PreVowel? (ZW Modifier)* BelowVowel?

 (ZW Modifier)* (ZW? AboveVowel)? (ZW Modifier)* FollowingVowel?
 (ZW Modifier)* Coeng? Final* | 17D2)

SylE = Base (Robat | (ZWNJ? Shifter)) Coeng* (ZWNJ? Shifter)?
 (ZWNJ? Vowel)? (Modifier | Final)? (ZWJ Coeng)?

Base # Base consonant or independent vowel
Coeng # Subscript consonant or independent vowel sign
Final # Modifier Final
Modifier # Modifier Sign
Vowel # Dependent vowel sign
PreVowel # Pre-base vowel sign
BelowVowel # Below-base vowel sign
AboveVowel # Above-base vowel sign
FollowingVowel # Post-base vowel sign
Other # Other signs
ZWNJ = 200C # zero width non joiner
ZW = [200C 200D] # ZW(N)J
Robat = 17CC # Robat
Shifter = [17C9 17CA] # Shifter Character

SylU is the current Unicode standard (v14). SylMS is the Microsoft Khmer shaper specification. SylH is
the Harfbuzz Khmer shaper implementation. SylE is an adapted structure from an unpublished proposal
from 2004 [Solá] to refine the Khmer syllable structure. Complete definitions of some key terminals
(classes) are not given since they vary between encoding structure definitions. But their informal
description is sufficient for this analysis.

While there is considerable variation, there is some commonality and it is important that any encoding
structure derived should embrace that commonality. For example, Robat occurring early in the
sequence, while not universal, is popular. The main difficulty of these encoding structures is that they
allow multiple ways to encode the same visual form. In addition, proposed syllable structures, actual
font implementations, and shaping engines diverge from each other in various ways (e.g. Lindenberg
2019). We will, therefore, build up a new regular expression, but in the same direction. Due to the
complexities of Middle Khmer, these will not be considered initially, although they may be mentioned,

7

for this initial development of an encoded orthographic syllable structure. Current minority language
orthographies will be considered where appropriate.
All analysis of Khmer encoding so far has concentrated on the rendering of correctly input text with a
strong linguistic motivation. Unfortunately, many Khmer writers have insufficient expertise in the
linguistics of the language, let alone Unicode, to be sure to enter correctly encoded text. Ambiguities in
the encoded syllable mean that it is impossible for tooling to help users to type well. If we can remove
the visual ambiguities from the structure, it is then possible for tooling to enable users to type in any
order or resolve common typing errors. It also removes confusability (where two different sequences
render identically) which is rife in Khmer encoded data.

8

Orthographic Syllable Structure
At its simplest, a Khmer orthographic syllable may consist of a single consonant or independent vowel.
This is the only required element of an orthographic syllable.

Syllable = Base | IndependentVowel
Base = [1780-17A2]
IndependentVowel = [17A5-17B3]

The characters 17A3 and 17A4 are excluded since they are deprecated.
We can treat independent vowels just like base consonants. While they have different linguistics
associated with them, visually they behave as bases. For example, it makes no linguistic sense for an
independent vowel to have another vowel diacritic. But this is purely a spelling issue, there is no visual
contrast that needs to be resolved. This also holds for all other diacritics and signs. Thus:

Syllable = Base
Base = [1780-17A2 17A5-17B3]

For the purposes of the syllable structure, there are also other characters that we treat as being a
syllable in their own right. They take no diacritics and occur, simply, on their own. In addition we add
all the deprecated characters because they should not be used and therefore we do not want to see them
in the main syllable structure.

Other = [17A3 17A4 17B4 17B5 17D3-17DC 17E0-17E9 17F0-17F9 19E0-19FF]

A Khmer syllable may also include a single dependent vowel, unlike other scripts of Southeast Asia,
which allow longer vowel sequences:

Syllable = Base Vowel?
Vowel = [17B6-17C5]

Coengs
Khmer has subjoined consonants, called “coengs” in Khmer, that are used for initial consonant clusters
(sequence of consonants) and also for syllable chaining (whereby the base consonant is read as the final
consonant of the previous phonetic syllable and the coeng as the initial consonants of the next phonetic
syllable). In Middle Khmer they can even represent the final consonants of phonetic syllables. These
uses are not contrasted and so, for orthographic purposes, we treat the final consonant from a previous
phonetic syllable that is chained visually with the initial consonant of the next phonetic syllable as the
initial of the next orthographic syllable, with the phonetic initial consonant as an orthographic medial
consonant. For example, សង្រាម (179F 1784 17D2 1782 17D2 179A 17B6 1798) /song.kram/ is made
up of two phonetic syllables but three orthographic syllables, each starting with a base character (ស ង
ម). The second base character (ង) in this example is acting as the final consonant of the first phonetic
syllable.
There may be up to two coengs in an orthographic syllable, (e.g. involving coeng ro or as result of
syllable chaining). While theoretically more could occur, two pre-vowel coengs is the limit used in any

9

The first solution is not available to most users because systems typically do not ship with keyboards
smart enough to address this issue. This means the only option is the latter. But Middle Khmer and
some names require the proper use of final coengs. So there is an issue to resolve: how to store final
coengs not after the vowel. There are two options. In both cases we mark the final coeng with a ZWJ to
ensure that it cannot occur ‘by accident’. The first option is to store the final coeng as if it were a
specially marked normal coeng. The second is to store the final coeng after the vowel. The second
option has the advantage of being more obviously where a final coeng is stored, and also makes font
implementation easier.

It is important that only those coeng-vowel combinations that have a visual contrast between the coeng
being final or medial be allowed to have the coeng marked as final, i.e. have a ZWJ. In order to ensure that a
coeng does indeed cause a change in visual form, a final coeng is constrained in relation to the vowel(s) in the syllable.
For non-spacing diacritic vowels, the coeng must be right spacing. This is because there is a visual contrast in the
position of the vowel in relation to a non-final versus final coeng. For spacing vowels, any coeng (apart from coeng ro)
may be used. An added complexity can arise where, while there is no visual contrast (both the coeng and above vowel
are non-spacing), a final coeng, if stored as an initial coeng, would change the consonant shifter downshifting rules. This
can happen if a syllable cluster only contains series 2 consonants, but the final is series 1. In this case, when there is a
downshifting consonant shifter, we require the non spacing final coeng to not be stored initially as it would normally be.
The other case where the final coeng could affect the series of the consonant cluster is if the final coeng is a BA following
a series 1 consonant cluster. But since coeng BA is spacing, it would be marked anyway in the context of an above vowel.

Syllable = Base Coengs FinalCoeng? Shifter? Vowels?

FinalCoeng = (Coeng ZWJ RightCoengBase (?= ShifterChar? (BelowVowel? AboveVowelSamyok | BelowVowel))
spacing coeng

 | Coeng ZWJ NonRo (?= ShifterChar? [17C2-17C3]? BelowVowel? AboveVowel? SpacingVowel)
spacing vowel

 | (?<= (Series2Base Robat? (Coeng Series2Base){0,2} | BA Robat? (Coeng Base){0,2}
 | (Coeng BA (Coeng Base)?))) Coeng ZWJ Series1Base (?= 17C9 AboveVowelSamyok))

final coeng series 1 in a series 2 consonant cluster

BA = 1794
RightCoengBase = [1783 1788 178D 1794 1799 179F] # Right spacing coeng [ឃ ឈ ឍ ប យ ស]
Series2Base = [1784 1789 178E 1793 1798-179D 17A1]
ShifterChar = ([17C9 17CA] ZWNJ?) # Consonant shifter
AboveVowel = [17C1-17C5]?[17B7-17BA 17BE 17DD] | 17B6 17C6 # Above vowel context
AboveVowelSamyok = AboveVowel | [17C1-17C3]? 17D0 # Above vowel or samyok sannya
BelowVowel = [17C1-17C3]?[17BB-17BD] # Below vowel context
SpacingVowel = [17B6 17BF 17C0 17C4 17C5] # Spacing vowel context
ZWNJ = 200C # Zero width non-joiner
ZWJ = 200D # Zero width joiner

The reason that this approach does not suffer from the dangers of mistaken data entry is that a user
may not type a coeng after a vowel, and must consciously think about requiring a final coeng. Where a
smart keyboard is being used, such constraints are not problematic, but where a dumb keyboard3 is
used, the contrast is significant.

There are three positions in which a final coeng may be stored in the structure: immediately after the
medial signs, immediately after the vowels or immediately after the coengs.
After medial signs: This position can result in the sequence U+17DD (atthacan) U+17D2 (coeng). The
combining order for U+17DD is 230 and for U+17D2 it is 9. Thus under normalization, the characters

3A dumb keyboard has no ability to constrain input or to change anything that has been typed before.
11

would be reversed causing all kinds of problems. This occurrence should be avoided and this is best
done by not storing final coengs after the medial signs. Thankfully atthacan is a relatively recent
invention from around 1900 and does not occur in Middle Khmer and so not in conjunction with a final
coeng.
After the vowels: This is a possibility, but the Universal Shaping Engine does not support such sequences.
It might be argued that it can be changed or a new Khmer specific shaper be developed. In the current
technical climate both of these are unlikely. Without final coengs after vowels, the USE can support the
syllable structure (if not with full checking) merely by changing the default categories of a number of
characters, using established techniques. As has often been stated, there is a case for adding extra
checking to the front of the USE and this may be possible, but it is unlikely that the core USE structure
itself will be changed, just for Middle Khmer. This problem also applies to positioning final coengs after
medial signs.
Last Coeng: This leaves placing final coengs after any other coengs. This position adds complexity to font
implementation with final coengs having to reorder after spacing vowels. But apart from this added
cost, there are no technical limitations on this position. Another value of this position is that it
harmonizes better with the needs of a related script, Tai Tham4.

Triisap and Muusikatoan
The consonant shifters, triisap (17CA) and muusikatoan (17C9), are such important signs in Khmer that
they require their own very careful analysis. There are contextual shaping issues, keyboarding issues
and encoding issues with these signs. The full derivative details of consonant shifters are described in
the section on Consonant Shifters.

In the Khmer orthography it is the orthographic consonant cluster that is interpreted as having a series,
even if its constituent consonants are from different series. Where in a sequence should the consonant
shifter be stored? There are two schools of thought:

• The consonant shifter immediately follows the consonant it affects. Thus if the shifter changes
the series of the base consonant, it is stored after the base and before a possible coeng. Likewise
if it affects the coeng, it follows that coeng. The problem is that if the coeng is not spacing, it
requires considerable linguistic awareness to decide whether the shifter affects the base or
coeng and in some cases not even this is sufficient to resolve the ambiguity.

• The consonant shifter is stored at the end of the consonant cluster, since it applies to the whole
cluster.

Since in all orthographies we know about, there is no semantic difference between a shifter before or
after a spacing coeng, it is preferable to give the shifter a fixed position in the sequence. Thus we
propose the shifter is stored at the end of the consonant cluster. (ស្ហ៊ី)

4Tai Tham makes regular use of final consonants, but in its modern form, the visual variation is rarely
used. The confusion is multiplied by some coeng forms representing any of a medial, vowel or final.
Thus the marking of final consonants can be considered to be in near free variation with unmarked
forms (medials). Requiring a different position emphasizes a difference that is often not perceived by
typists. Instead treating final and non final medials the same but allowing marking makes for a better
user experience. For example words can be compared simply by ignoring ZWJ. The definition of Tai
Tham is waiting on the definition of Khmer, that the two may be harmonized as much as possible.

12

The later section on Consonant Shifters examines the whole issue of how in some contexts a consonant
shifter changes to the glyph of a -u vowel (17BB). The only structural implications of that section is that
it is sometimes necessary to override the default shaping behaviour and to not allow a consonant shifter
to ‘down-shift’. To do this we introduce the use of zero width non-joiner ZWNJ (200C) to stop a shifter
from down-shifting. This affects the syllable description:

Syllable = B Coengs Shifter?
Shifter = ([17C9 17CA] ZWNJ?)
ZWNJ = 200C

Simply adding a ZWNJ into the syllable description also introduces an ambiguity. Where a consonant
shifter cannot be downshifted (because there is no upper diacritic following), then the ZWNJ is
redundant and a string with or without the ZWNJ, by definition, will render the same. To complicate
things further, a simplistic algorithm that says any shifter followed by an appropriate above diacritic
shifts down, results in ambiguity, since either consonant shifter will result in the same visual
representation. Thus, while we can allow any consonant shifter after a consonant cluster, only those
that might result in down shifting may take a ZWNJ. The constraints are complicated and we copy them
here from the discussion and analysis in the section on Consonant Shifters.

Shifter = ((?<= StrongContext AnyFinalCoeng?) 17CA ZWNJ (?=AboveVowel)
 | (?<! StrongContext AnyFinalCoeng?) 17C9 ZWNJ (?=AboveVowelSamyok)
 | [17C9 17CA])

StrongContext = Series1Base Robat? CoengNoBA{0,2}
 | NoBA Robat? (Series1Coeng CoengNoBA? | CoengNoBA Series1Coeng)

Contains a strong consonant and no BA

AnyFinalCoeng = Coeng ZWJ NonRo
Robat = 17CC # Robat [៌]
Series1Base = [1780-1783 1785-1788 178A-178D 178F-1792 1795-1797 179E-17A0 17A2]

Strong consonants
Series1Coeng = (17D2 Series1Base) # Strong coengs
CoengNoBA = (17D2 NoBA) # Coeng no BA
NoBA = [1780-1793 1795-17A2] # Series consonant with no BA
AboveVowel = [17C1-17C5]?[17B7-17BA 17BE 17DD] | 17B6 17C6 # Above vowel context
AboveVowelSamyok = AboveVowel | [17C1-17C3]? 17D0 # Above vowel or samyok sannya
ZWNJ = 200C # Zero width non-joiner

Notice that the definition for VA is looser than the vowel specification. For example, it allows 17C1 17B8,
which the vowel specification does not. This is because if vowel specification does not allow a sequence,
then it will not occur and whether or not VA would match it makes no difference.

Vowels
Single vowels have already been discussed and these are sufficient for Modern Khmer. But Middle
Khmer and some names require the ability to encode vowel sequences.

Multiple Vowels
A natural approach to supporting multiple vowels is to consider there to be 4 positions (before, above,
below, after) in which vowel components may occur in relation to the consonant cluster. Since Khmer
typically uses only a single vowel, any such sequences are rare and the need for more than 2 is
unknown. Therefore there is no need to burden font developers with needing to support diacritic vowel
stacking. To keep rendering simple and ensure visual contrast, we can allow vowel components in any

13

combination of positions. The only encoding requirement is that vowels are stored in an appropriate
order. Unfortunately there are also certain vowel sequences that may not occur because they either are
confusable with an existing combined vowel, or as in the case of U+17BB are the representation of a
downshifted consonant shifter. Below vowels do not occur with the special U+17BF, U+17C0 compound
vowels.

One way of describing the vowel sequence would be:

Vowels = VPre? VBelow? VAbove? VPost? | VDeprecated
VPre = [17BE-17C5]
VBelow = [17BB-17BD]
VAbove = [17B7-17BA]
VPost = 17B6
VDeprecated = [17B4-17B5]

But there are exclusions:

NonVowelSequences = 17BB VAbove
 | 17C1 VBelow? 17B8 | 17C1 VBelow? VAbove? 17B6
 | 17BE 17BB
 | [17BE-17C0] VBelow? VAbove | [17BF 17C0] VBelow | [17BF 17C0] 17B6
 | [17C4 17C5] VBelow? VAbove? 17B6

Alternatively, if this is then converted into a single positive regular expression we get:

Vowels = 17C1 [17BC 17BD]? [17B7 17B9-17BA]? # VPre VBelow? VAbove?
 | [17C2-17C3]? [17BC-17BD]? [17B7-17BA] 17B6 # VPre? VBelow? VAbove VPost
 | [17C2-17C3]? [17BB-17BD]? 17B6 # VPre? VBelow? VPost
 | 17BE [17BC-17BD]? 17B6? # 17BE VBelow? VPost?
 | [17C1-17C5]? 17BB (?! [17D0 17DD]) # VPre? 17BB Modifier?
 | [17BF 17C0] # Standalone VPre
 | [17C2-17C5]? [17BC-17BD]? [17B7-17BA]? # VPre? VBelow? VAbove?

Note that the last line of the definition must be the last line, since it may be zero length, not matching
anything. This makes vowels inherently optional.

Signs
In Modern Khmer script, there can be up to two non-spacing signs and / or one spacing sign. We
categorise the non-spacing sign as a modifying sign and the final spacing sign as a modifying final. This
gives flexibility to categorise non-spacing signs as modifying finals if that is needed (see Middle Khmer).
Robat, while technically a sign, is in its own category and position, as discussed below.

Syllable = Base Robat? Coengs? Shifter? Vowels Modifier{0,2} Final?

Modifier = [17C6 17CB 17CD-17D1 17DD] # Modifying Signs [ំ
 ំ� ំ�ំ
ំ�ំ� ំ� ំ�]
Final = [17C7 17C8] # Modifying Finals [ំ� ំ�]
Robat = 17CC # Robat [៌]
Other = [17D4-17DC 17E0-17F9 19E0-19FF]

Other: Symbols and digits [។៕៖ៗ៘៙៚៛ៜ ០៱៲៳៴៵៶៷៸៹ ᧠-᧿]

Since some diacritic signs may occur with other diacritic signs, we generalise the syllable structure to
allow two diacritic signs. The specifics are given for each sign.

14

Issues Examples Spelling Proposed Unicode
Sequence

ក ន ិ ្ ថ ា

The extensions provided to the encoding structure beyond what is strictly needed for Modern Khmer
are in keeping with there being only one way to encode one visual form. An encoding structure is not a
lightweight spell checker. Its aim is to allow the maximal representation of textual expression while
balancing uniqueness and implementation costs. There is no point in allowing a sequence that is
difficult to render, that nobody is going to use. It is hoped this document has the balance correct, but
only time will tell.

6This rendering is erroneous. The above vowel should be over the second consonant and the coeng
should also be under the second consonant.

18

Conclusion
After all this analysis, the structure of a syllable may be expressed using a single, if rather compound,
regular expression. Top level identifiers are bolded.

Syllable = Base Robat? Coengs? FinalCoeng? Shifter? Vowels Modifiers? Final?

Base = [1780-17A2 17A5-17B3] # Base consonant [ក-ឳ]

Robat = 17CC # Robat [៌]

Coengs = ((Conjoiner NonRo)? Coeng)
Coeng = (Conjoiner Base)
Conjoiner = 17D2 # Coeng character
NonRo = [1780-1799 179B-17A2 17A5-17B3] # Non Ro letter

FinalCoeng = (Conjoiner ZWJ RightCoengBase (?= ShifterSe?
 (BelowVowel? AboveVowelSamyok | BelowVowel)) # spacing coeng
 | AnyFinalCoeng (?= ShifterSeq? [17C2-17C3]? BelowVowel? AboveVowel? SpacingVowel)

spacing vowel
 | (?<= Series2Base Robat? Conjoiner Series2Base){0,2} | BA Robat? Coengs?
 | Base Robat? (Conjoiner BA Coeng? | Conjoiner NonRo Conjoiner BA) Conjoiner ZWJ Series1Base

(?= 17C9 ZWNJ? AboveVowelSamyok))
final coeng series 1 after series 2 cluster

AnyFinalCoeng = (Conjoiner ZWJ NonRo) # Coeng marked as final
AboveVowel = ([17C1-17C5]?[17B7-17BA 17BE 17DD] | 17B6 17C6) # Above vowel context
AboveVowelSamyok = AboveVowel | [17C1-17C3]? 17D0 # Above vowel or samyok sannya context
BA = 1794 # BA consonant [ប]
BelowVowel = [17C1-17C3]?[17BB-17BD] # Below vowel context
RightCoengBase = [1783 1788 178D 1794 1799 179E 179F 17A1]

Right spacing coeng base [ឃ ឈ ឍ ប យ ឞ ស ឡ]
Series1Base = [1780-1783 1785-1788 178A-178D 178F-1792 1795-1797 179E-17A0 17A2]

Strong consonants [កខគឃ ចឆជឈ ដឋឌឍ តថទធ ផពភ ឞសហ អ]
Series2Base = [1784 1789 178E 1793 1798-179D 17A1] # Weak consonants [ងញណនមយរលវឝឡ]
ShifterSeq = ([17C9 17CA] ZWNJ?) # Consonant Shifter character [៉ ៊]
SpacingVowel = [17B6 17BF 17C0 17C4 17C5] # Spacing vowel context
ZWJ = 200D # Zero width joiner
ZWNJ = 200C # Zero width non-joiner

Shifter = ((?<= StrongContext AnyFinalCoeng?) 17CA ZWNJ (?=AboveVowel)
 | (?<! StrongContext AnyFinalCoeng?) 17C9 ZWNJ (?=AboveVowelSamyok)
 | [17C9 17CA])
StrongContext = Series1Base Robat? CoengNonBA{0,2}

 | NonBA Robat? (Series1Coeng CoengNonBA? | CoengNonBA Series1Coeng)
Contains a strong consonant and no BA

CoengNonBA = (Conjoiner NonBA) # Coeng no BA (ប 1794)
NonBA = [1780-1793 1795-17A2] # Any consonant with no BA (ប 1794)
Series1Coeng = (Conjoiner Series1Base) # Strong coengs

Vowels = (17C1 [17BC 17BD]? [17B7 17B9-17BA]? | [17C2-17C3]? [17BC-17BD]? [17B7-17BA] 17B6
 | [17C2-17C3]? [17BB-17BD]? 17B6 | 17BE [17BC-17BD]? 17B6?
 | [17C1-17C5]? 17BB (?! [17D0 17DD]) | [17BF 17C0] | [17C2-17C5]? [17BC-17BD]? [17B7-17BA]?)

Modifiers = (([17C6 17CB 17CD-17CF 17D1] | (?<!17BB [17B6 17C4 17C5]?) [17D0 17DD])
 [17C6 17CB 17CD-17D1 17DD]?) # Modifying Sign [
ំ �ំ �ំ
ំ �ំ �ំ �ំ Iំ �ំ]

Final = [17C7 17C8] # Modifying Final [ំ� ំ�]

Other = [17A3 17A4 17B4 17B5 17D3-17DC]
Other: Standalone exceptions within 1780-17DD

Description
Another way of describing the encoding structure is in prose. The purpose of a prose description is
somewhat different to a regular expression. The regular expression is complete and precise and

19

formally testable. This prose description describes the intent of the regular expression in high level
terms, while still having a clear relationship with the regular expression.

A syllable consists of an initial Consonant or Independent Vowel followed by an optional robat. This is
followed by up to 2 coengs which are constrained as follows. Coeng ro is always second of two initial
coengs.
A final coeng may occur after the coengs. Final coengs are marked with a ZWNJ between the coeng code
and the following base. Final coengs are constrained to 3 contexts:

• A spacing coeng may take a final form before a non-spacing vowel.
• Any coeng (except ro) may take a final form before a spacing vowel.
• Where an unmarked coeng would erroneously change a potentially downshifted muusikatoan

from being downshifted to not downshifted, then the coeng must be marked as final in order
not to interfere. This only happens if the final coeng is from series 1 and the rest of the
consonant cluster is all series 2.

After the coengs and final coeng, there may be a consonant shifter which may be followed by a ZWNJ if
the vowel and consonant cluster context would cause it to downshift. A consonant shifter will downshift
if it is followed by an upper vowel or appropriate diacritic or spacing vowel with nikahit. It will also only
downshift if the consonant shifter is used to change the series of the initial consonant cluster. Thus:

• A triisap (17CA) will only downshift if the consonant cluster contains no BA (1794) and contains
a series 1 consonant anywhere in the cluster. In such a context it may be followed by a ZWNJ to
stop downshifting.

• A muusikatoan (17C9) will only downshift if the consonant cluster contains a BA (1794) or
contains only series 2 consonants. In such a context it may be followed by a ZWNJ to stop
downshifting.

The vowel, or vowels, may come after the consonant shifters. Modern Khmer only uses a single vowel,
but Middle Khmer and some names use multiple vowels. The only vowel sequences allowed are those
that do not result in:

• More than one visual component in any of the 4 positions: before, above, below, and after.
• A -u (17BB) occurring with an above vowel as would be the presentation form of a downshifted

consonant shifter.
• A sequence for which there is already a single vowel code.

There may be up to 2 modifier signs. Again the modifier signs are limited following -u (17BB) to those
that would not cause a consonant shifter to downshift.
Finally there may be a final mark: reahmuk or yuukaleapintu.

Alternatively a syllable consists of some other Khmer character or digit not already described in the
main syllable structure.

No Final Coengs
Supporting final coengs within the syllable structure adds complexity to the syllable structure. A
simpler structure can be achieved if final coengs are not allowed.

Syllable = Base Robat? Coengs? Shifter? Vowels Modifier? Final? | Other

Shifter = ((?<= StrongContext) 17CA ZWNJ (?=AboveVowel)
 | (?<! StrongContext) 17C9 ZWNJ (?=AboveVowelSamyok) | [17C9 17CA])

20

And, of course, the removal of the FinalCoeng subexpression. Likewise if we only support a single vowel,
as needed for Modern Khmer, the vowel specification simplifies to:

Vowels = [17B4-17C5]?

21

Consonant Shifters
In Khmer orthography, consonant letters are considered to fall into two series, series 1 and 2. When
reading Khmer, the phonetic vowel is derived from a combination of the series of the initial
orthographic consonant cluster and the written or inherent vowel. Most vowel signs have a different
sound associated with the two series. Most consonants have series 1 and series 2 pairs. In some cases,
where there is no equivalent consonant in the other series, a consonant is identified as being able to
take a consonant shifter to switch its series. To switch from series 1 to series 2, a triisap (17CA ៊) is
used, and from series 2 to series 1, a muusikatoan (17C9 ៉) is used. The set of consonants in series 1 is
B1 and the set in series 2 is B2. Within these series, only a smaller number can take a consonant shifter
(B1S, B2S).

S = [17C9 17CA]
B1 = [1780 1781 1785 1786 178A 178B 178E 178F 1790 1794 1795 179E 179F 17A0 17A1 17A2]
B2 = [1782 1783 1784 1787 1788 1789 178C 178D 1791 1792 1793 1796 1797 1798 1799 179A
179B 179C 179D]
B1S = [1794 179E 179F 17A0 17A2]
B2S = [1784 1789 1793 1798 1799 179A 179B 179C 179D]

Several special cases exist in series assignment and consonant shifter use:
• 178E (ណ) and 179E (ឞ) have their series swapped from that implied by the Unicode name in the

Unicode chart for Khmer.
• 179D (ឝ), as used for Pali/Sanskrit transliteration, gave the character series 1. But when the

character was reappropriated for minority language use, it was given series 2, in keeping with
its visual representation (the ‘hair’ on the base character does not combine visually with
muusikatoan)7. Bear in mind that Pali and Sanskrit do not use consonant shifters.

• 1793 (ន) and 179B (ល) do have their other series counterparts, but are included in this list
because their other series counterparts are Pali characters, and when showing pronunciation,
Pali characters are avoided and a muusikatoan may be used.

• 1794 (ប ba) is used with triisap to create a series 2 counterpart bo, but also with muusikatoan
to create a different consonant pa that is the series 1 counterpart to 1796 (ព po).

But what is the series of a consonant cluster? The series is easy to derive when there is only one
consonant involved: the series of the cluster is the series of the consonant. But when a consonant
cluster consists of more than one consonant (via coengs) of consonants of different series, which
consonant determines the series for the cluster?

Makara Sok (2016, table 10) presents a chart of orthographic consonants based on a sonority hierarchy.
His hypothesis is that the consonant within a cluster with the lowest sonority in the hierarchy (earlier
in the table) determines the series for the cluster. His chart is reproduced here using Unicode
codepoints. In addition, minority characters are added.

7The known minority languages that use consonant shifters are: Brao [brb], Jarai [jra], Kuay [kdt],
Northern Khmer [kxm], Tampuan [tpu] and they all do downshifting.

22

For the most part of this discussion, we presume that someone would only insert a consonant shifter for
a consonant that takes a shifter. That is one that does not have a corresponding full consonant in the
other series. Looking at table 2, the highlighted cells show those cells containing consonants with
consonant shifters. Notice that the highlighted first series cells for the minor fricative and sonorant
rows contain second series consonants with consonant shifters. Likewise, the second series cells for the
first four rows contain a mix of second series consonants and shifted first series consonants. We can
therefore say for Modern Khmer that if a well formed consonant cluster is followed by a muusikatoan
(17C9), the consonant involved must be a minor fricative or sonorant. In addition we can say that
because the muusikatoan applies to the whole cluster, the whole cluster must have a sonority that is
row 5 or 6 and that there are no consonants from rows 1-4 in it, otherwise the cluster will be dominated
by that other consonant and the muusikatoan would not apply to such a consonant.
So a first rule is that if a consonant cluster only consists of characters of sonority 5 or 6, then the
consonant shifter is a muusikatoan. And therefore, if there are characters of sonority less than 5 in the
cluster, the consonant shifter is a triisap.

This massively simplifies the whole structure, which would otherwise result in a huge complex regular
expression to handle all the cases, most of which are not well formed Modern Khmer and so do not need
to be ‘correctly’ supported. As it is, the regular expression needed to support even these relatively
simple rules is complicated enough.
The downshifting rules therefore become:

1. If a cluster contains any consonants from sonority levels 1-4, a following triisap (17CA) will be
downshifted.

2. If a cluster contains only consonants from sonority levels 5-6, a following muusikatoan (17C9)
will be downshifted.

In reverse, if a -u is followed by an above-base vowel, then it will be converted to a triisap if the cluster
contains any consonants from sonority levels 1-4, and to a muusikatoan otherwise.

This regularising of the encoding has some interesting implications for those wishing to step outside
the bounds of Modern Khmer spelling. For example, someone might want to put a consonant shifter
over a consonant for which there is a corresponding consonant in the other series. In Modern Khmer,
therefore, such a consonant would never take a consonant shifter. If the user desires that the shifter
they add downshifts, then they may need to insert the wrong consonant shifter for the series of the
consonant they are putting it over. For example, for a consonant shifter after the sequence SA 179F,
coeng KO 17D2 1782 (ស្គ) to downshift, it must be a triisap, even though KO is second series and so
would ‘typically’ take a muusikatoan. But either sequence is anything but ‘typical’, given it could never
occur in Modern Khmer. The linguistically correct cluster would consist of SA 179F, coeng KA 17D2
1780 (ស្ក), which is in the first series.

Handling BA (U+1794)
Ba has its own unique behaviour with respect to consonant shifters. The sequence 1794 17C9 is a
different consonant, but of the same series as 1794. The sequence 1794 17CA is the same consonant but
in the other series (from series 1 to series 2). One might expect, therefore, for the 17CA to downshift if
followed by an upper vowel. But it is the other way around, with the 17C9 downshifting and the 17CA
staying up. Ba is in sonority level 1 and so according to the rules above should be followed by a triisap

24

(17CA). But we need the rule to change such that it is the 17C9 that downshifts and so is converted to -u.
Thus if a consonant cluster contains a Ba then a muusikatoan will downshift and the triisap will not.
Thus our rules change to:

1. If a cluster contains any consonant from sonority levels 1-4, and does not contain a BA, a
following triisap (17CA) will be downshifted.

2. If a cluster contains a BA or only consonants from sonority levels 5-6, a following muusikatoan
(17C9) will be downshifted.

3. If a BA occurs with a consonant from sonority levels 1-4, it still conforms to rule 2 (failing rule 1)
and it is a following muusikatoan (17C9) that is downshifted.

Regular Expressions
Can we express these rules as regular expressions? What is the regular expression that if matched will
cause the consonant shifter to be downshifted?

For rule 1 we need a class of all consonants that are in sonority levels 1-4, excluding BA, and a class of all
consonants of sonority levels 5-6. For convenience we also need a class of all consonants excluding BA
and a class of all sonority level 5-6 and BA as well.

S1 = [1780-1783 1785-1788 178A-178D 178F-1792 1795-1797 179E-17A0 17A2]
S2 = [1784 1789 178E 1793 1798-179D 17A1]
SNB = [1780-1793 1795-17A2]
S2B = [1784 1789 178E 1793 1794 1798-179D 17A1]
BA = 1794

Rule 1 can be expressed with the regular expression::

(S1 (17D2 SNB){0,2} | SNB (17D2 S1) (17D2 SNB)? | SNB (17D2 SNB) (17D2 S1)) 17CA

If we create coeng classes, we can simplify this:

SC1 = (17D2 S1)
SC2B = (17D2 S2B)
SCNB = (17D2 SNB)
SCB = (17D2 1794)

Rule 1: (S1 SCNB{0,2} | SNB (SC1 SCNB? | SCNB SC1)) 17CA
Rule 2: (S2 SC2B{0,2} | BA SC2B{0,2} | B (SC2B C? | C SC2B)) 17C9

Notice that these rules are relatively relaxed. If a cluster contains no consonants that would take a
consonant shifter, if the appropriate shifter occurs, then it will downshift. This includes if the
consonants involved are already of the series being shifted to.

For example, the sequence 1782 17CA 17B7 will downshift, despite the sequence being linguistic
nonsense. The reason is that if we were to cover all the nonsense cases appropriately, the regular
expressions would become unmanageable. The important thing is that for any one visual
representation, there is one unique sequence that will render to it. It makes little difference whether it
is 17C9 or 17CA that downshifts after a 1782, since a consonant shifter should never occur after a 1782. If

25

someone wants to have such a shifter in their name, it is not unreasonable to require them to use a
‘wrong’ shifter to get the visual representation they desire.

ZWNJ
It is not always desirable for a consonant shifter to downshift. Thus we allow the insertion of a ZWNJ to
block the downshifting. But we can only allow ZWNJ in a context where downshifting would actually
occur. If we allowed it in the context where a consonant shifter did not downshift, then it would have no
effect and there would be two different sequences (one with the ZWNJ and one without) that would
render the same. This would result in the encoding ambiguity that this whole paper is written to avoid.
As part of our main regular expression, therefore we can say that wherever a consonant shifter would
downshift, we can add a ZWNJ:

 (S1 SCNB{0,2} | SNB (SC1 SCNB? | SCNB SC1)) 17CA 200C
| (S2B SC2B{0,2} | B (SCB C? | C SCB)) 17C9 200C

In the main regular expression, 17C9 and 17CA are always allowed, but ZWNJ (U+200C) is only allowed in
the context where the consonant shifter would downshift. We also merge S2 SC2B{0,2} | BA
SC2B{0,2} to become S2B SC2B{0,2}.

The Main Regular Expression
We are now in a position to integrate this regular expression into the main full syllable description. We
do this by using forward and backward zero width constraints8. At the point in the regular expression
where we match a consonant shifter, we have already matched the initial consonant cluster and have
yet to match the following vowels and diacritics. Thus to constrain the consonant shifter sequences, we
do an extra look behind assertion to look back into the consonant cluster we have just matched and to
look ahead to the vowels we are about to match:

S = ((((?<= S1 SCNB{0,2} | SNB (SC1 SCNB? | SCNB SC1)) 17CA ZWNJ
 | (?<= S2B SC2B{0,2} | BA (SCB C? | C SCB)) 17C9 ZWNJ
) (?=[17C1-17C3]?[17B7-17BA 17BE 17D0 17DD] | 17B6 17C6))
 | [17C9 17CA]
)

One characteristic of this expression that can help us simplify things further is that

WEAK = S2B SC2B{0,2} | BA (SCB C? | C SCB)

is the opposite of
STRONG = S1 SCNB{0,2} | SNB (SC1 SCNB? | SCNB SC1)

That is, within the character set domain of what may precede a consonant shifter in a syllable, matching
WEAK is the same as not matching STRONG. Thus we can refactor our regular expression into
something much simpler and clearer.

S = ((((?<= STRONG) 17CA ZWNJ | (?<! STRONG) 17C9 ZWNJ) (?=VA)) | [17C9 17CA])

STRONG = S1 R? SCNB{0,2} | SNB R? (SC1 SCNB? | SCNB SC1) # Contains strong consonant
VA = ([17C1-17C3]?[17B7-17BA 17BE 17D0 17DD] | 17B6 17C6) # Above vowel

8Also known as zero width assertions.
26

Unfortunately many regular expression engines do not support a variable length look behind assertion. It is often
possible to refactor a look behind assertion into a simple unity replacement, but a negative look behind assertion is
much harder. In such contexts the former expression should be used and refactored.

S = ((((?<= S1 SCNB{0,2} | SNB (SC1 SCNB? | SCNB SC1)) 17CA ZWNJ
 | (?<= S2B SC2B{0,2} | BA (SCB C? | C SCB)) 17C9 ZWNJ
) (?=VA)
 | [17C9 17CA]
)

The use of an inverted match against STRONG versus matching against WEAK introduces a difference. This is in handling
independent vowels. We consider all such vowels as WEAK and therefore add them to S2:

S2B = [1784 1780 178E 1793 1794 1798-179D 17A1 17A3-17B3]
SC2B = (17D2 S2B)
SCB = (17D2 1794)

The vowel context is complicated by allowing the restricted set of vowel sequences that the main regular expression
supports. Thankfully it is not necessary here to restrict the vowel sequences to only those explicitly supported, since the
rest of the main regular expression will do that. But we do need to not exclude sequences that may occur.

Since it is always possible to downshift a consonant shifter following any possible consonant cluster, there is no need for
a way to instruct a consonant shifter to downshift, for example through the use of ZWJ. Notice though that in any
context only one of the consonant shifters will downshift and it may not be the one that a user expects. But with the
simpler regular expression context, it makes life easier for smart keyboards to insert the appropriate consonant shifter
if so demanded.

Samyok Sannya
Samyok Sannya (17D0) only pushes muusikatoan (17C9) down. It typically does not push down triisap
(17CA). We extend the regular expression relatively simply by changing some vowel contexts:

S = ((((?<= STRONG) SC? 17CA ZWNJ (?=VA) | (?<! STRONG) SC? 17C9 ZWNJ (?=VAS)) | SC)

STRONG = S1 R? SCNB{0,2} | SNB R? (SC1 SCNB? | SCNB SC1) # Contains a strong consonant and no BA
VA = ([17C1-17C3]?[17B7-17BA 17BE] | 17B6 17C6) # Above vowel
VAS = (VA | [17C1-17C3]?[17D0 17DD]) # Above vowel
SC = [17C9 17CA]

Final Coengs
Final coengs need to be ignored for the process of consonant shifter analysis. A final coeng is identified
as containing a ZWJ between the coeng character and the following base. The simplest was to ignore
them is to make them optional in the contexts:
S = ((((?<= STRONG FC?) SC? 17CA ZWNJ (?=VA) | (?<! STRONG FC?) SC? 17C9 ZWNJ (?=VAS)) | SC)
STRONG = S1 R? SCNB{0,2} | SNB R? (SC1 SCNB? | SCNB SC1) # Contains a strong consonant and no BA
SC = [17C9 17CA]
FC = (17D2 200D NoRo)
NoRo = [1780-1793 1794-17A2 17A5-17B3]

Odd Consonant Shifters
Some people use a consonant shifter on a consonant that typically does not take one because there is a
corresponding other series full consonant. Spelling conventions in Modern Khmer require that the

27

other series full consonant is used. But people sometimes like to give their name identity through
spelling and break this convention. This is already factored into the downshifting rules for consonant
shifters and is discussed there.

Conclusion
The final result that is contributed to the main encoding structure for Modern Khmer is:

S = ((((?<= STRONG FC?) SC? 17CA ZWNJ (?=VA) | (?<! STRONG FC?) SC? 17C9 ZWNJ (?=VAS)) | SC)
STRONG = S1 R? SCNB{0,2} | SNB R? (SC1 SCNB? | SCNB SC1) # Contains a strong consonant and no BA
SC = [17C9 17CA]
FC = (17D2 200D NoRo)
NoRo = [1780-1793 1794-17A2 17A5-17B3]

Ordering
The proposed structure defined here is the first that has a single fixed position for the consonant
shifters. Previous structures have allowed the shifter to be stored immediately following the consonant
it applies to, which, in effect meant anywhere after a base consonant. The difficulty with such a
structure is that without a lot of disambiguation, the encoding is inherently ambiguous with two
different encoded sequences rendering the same. This is probably the primary incompatibility between
data stored in current encoding structures and the new structure defined here. Is the approach
proposed here the best solution to the problem? In this section we consider two issues around ordering:
Whether the fixed position following coengs is the most appropriate and the rendered position of
consonant shifters.

Fixed Position
One of the weaknesses of using a fixed position following the coengs is that it can separate BA
(បប U+1794) from its muusikatoan (U+17C9) when forming the consonant PA. This makes searching for
the letter PA problematic. One cannot simply search for ប៉៉. Instead one has to use a regular expression:
\u1794(\u17D2[\u1780-\u17B3])*\u17C9. It would be much simpler to allow muusikatoan to
immediately follow BA. But since the muusikatoan after a BA is involved in downshifting, the rules can
become quite involved:

• Only muusikatoan after BA
• Disallow muusikatoan after coeng sequence following a BA that has a muusikatoan
• Enable ZWNJ following muusikatoan after BA if followed by only 2nd series coengs and

appropriate upper vowels
The regular expressions involved are not pretty. Thankfully there are very few occurrences of PA
followed by a coeng in Modern Khmer. The ones known of are:

ប៊្រីដ, ប៊្រុយ, ប៊្រុយណេ, ប៊្រន, ប៊្រនស៍, ប៊្លូ, ប៊្លូដាយ, អាំប៊្រីយ៉ា

An alternative solution might be to move the fixed position of the shifter from after the coengs to
always coming immediately after before any coengs. This would solve the PA problem and provide a
single consistent position for analysis. The difficulty here is that the complex contextual expression for
STRONG and WEAK sequences gets split across the characters in question. This involves more rules. For
example consider just the question of a triisap followed by a ZWNJ:

28

(?<=S1 R?) 17CA ZWNJ (?=SCNB{0,2} VA) | (?<=SNB R?) 17CA ZWNJ (?=(SC! SCNB? | SCNB SC1) VA)

Here the sequence in question (17CA ZWNJ) occurs twice in the expression and the constraining context
cannot be abstracted way into a single named contextual expression.

The choice to store the consonant shifter after the coengs also reflects the linguistics in which it is a
consonant cluster as a whole that has a series, and the precise series of a character in the cluster is only
as significant as its contribution to the series of the cluster as a whole. It is also noticeable that there are
many more occurrences of words in Modern Khmer where the consonant shifter applies to a coeng than
to a base with a following coeng.

Positioning the Consonant Shifter
For many years, the typewriter has been used to type Khmer script and with its fixed negative offset for
diacritics, the position of a consonant shifter varies horizontally based on whether it is typed after a
base character or after a spacing coeng. If after a base character, the shifter renders above the base. If it
is typed after a spacing coeng, then the shifter appears between the base and the spacing coeng. The
position of consonant shifter may follow a spelling convention, but it carries no linguistic value. There
are no situations where the difference in position makes any difference to sound or meaning. In Modern
Khmer, the convention is always place the consonant shifter over the consonant. This is different to the
questions surrounding final coengs, in which the contrast does carry linguistic significance.

One example may suffice to understand why no encoding contrast is necessary. Consider the two forms
of 1794 17D2 1799 17CA 17B6: ប៊្យា /pjaa/ and ប្៊យា /bjaa/. The first has the consonant shifter over the
consonant, changing BA to PA. The second changes the series of YA from 1st to 2nd. The resulting
consonant cluster is 2nd series. This contrast is only of interest because the consonant shifter has two
different functions. In the first example, it changes the nature of the consonant. In the second it is
changing the series of the cluster. But due to the sonority rules, if the consonant shifter were missing,
the series of the cluster would still be 1st series because the BA (1794) is a 1st series character and has
low sonority and so dominates the cluster, setting its series. Thus the second form never occurs.

What can be said is that there are rules that a font may apply if it wants to follow the typewriting style.
The following rules may be applied to decide where to position a consonant shifter:

• If the base consonant in the cluster can take the consonant shifter, then position the consonant
shifter over the base consonant, else

• If the spacing coeng can take the consonant shifter, then position the consonant shifter relative
to the spacing coeng, else

• Position the consonant shifter over the base consonant.
“Can take the consonant shifter” means that the consonant shifter being used is an appropriate one to
appear over the consonant in question.

29

Confusables and Undesirables
The Unicode Standard has several categories of characters or short character sequences that should be
either treated as equivalent or avoided. Different categories may apply when discussing general text
handling, where it’s required that any text can be expressed, and processes where the need for security
may require limiting what can be written. This section looks at the various categories and how they
apply to Khmer.

Deprecated or discouraged
Characters are never removed from the Unicode Standard, but they can be deprecated or discouraged.
“Deprecated” is defined as “strongly discouraged”; deprecated characters are retained only for
compatibility with older Unicode versions and should no longer be used. “Discouraged” is not formally
defined. Where for security reasons unambiguous identifiers are required, their use may be restricted.

The following Khmer characters are currently deprecated or discouraged. The Identifier_Type property
can be used to restrict characters from use in identifiers; all types shown in this table mark the
characters as restricted.

Characters Rendering Status Identifier_Type

17A3 ឣ Deprecated Deprecated

17A4 ឤ Deprecated Deprecated

17B4 ឴	 Discouraged Default_Ignorable

17B5 ឴	 Discouraged Default_Ignorable

17D3 ◌឴
 Discouraged Obsolete

17D8 ៘ Discouraged Obsolete Not_XID

These characters may still occur in text, but the syllable structure does not need to accommodate them.
As all types Identifier_Type values used for Khmer deprecated and discouraged characters mark them as
restricted, no change to them is needed.

Canonical equivalence
Two character sequences are canonically equivalent if their full canonical decompositions are identical.
In general, software should treat canonically equivalent character sequences as if they were identical.
The full canonical decomposition of non-Korean character sequences is determined by the
Decomposition_Mapping and Canonical_Combining_Class property values of the characters in the two
character sequences.

30

No Khmer characters have decomposition mappings. Two Khmer characters have combining classes
that are not 0: 17D2 KHMER SIGN COENG has ccc=9, and 17DD KHMER SIGN ATTHACAN has ccc=230. The
latter assignment by the editors of the Unicode Standard was a mistake, as it makes the character
sequences <17D2 17DD> and <17DD 17D2> canonically equivalent when in reality they’re not equivalent
at all. <17D2 17DD> is nonsensical, because 17D2 should only be used as part of the 2-character
sequences encoding coengs. <17DD 17D2>, on the other hand, is valid according to the syllable definition
in section 16.4 Khmer of the Unicode Standard 15.0 if followed by a Khmer consonant or independent
vowel. Normalization of a string, which maps <17DD 17D2> to <17D2 17DD>, can so lead to breaking up
the 2-character sequence encoding a final coeng.

Due to the Unicode Normalization Stability policy, the erroneous assignment can not be corrected.
Software that interprets Khmer character sequences with the Unicode 15 syllable structure, such as font
rendering systems, needs to be aware of this equivalence and map <17D2 17DD> to <17DD 17D2> before
interpreting strings. For a discussion of this issue in the context of the new syllable structure, see the
section Final Coengs above.

Do not use
“Do not use” tables are used in several sections of the Unicode Standard, such as 12.1 Devanagari, to
describe sequences of (otherwise valid) characters that should not be used because there’s a more
appropriate character or character sequence that results in the same rendering but is not canonically
equivalent. An example in Devanagari would be a consonant with inherent vowel, which should be
encoded by just its own code point, not its code point followed by those for a virama and the dependent
vowel -a. The Unicode Standard does not associate any specific implementation requirements with “do
not use” sequences, and so implementation support for them is generally weak. However, the Universal
Shaping Engine supports them by inserting dotted circles into disallowed sequences. It’s also reasonable
to say that smart keyboards should prevent their input, and dictionaries for predictive input and
spelling checkers should not use them in their reference data. In scripts where an extended Backus-
Naur form (EBNF) or regular expression (RE) is used to describe the structure of their orthographic
syllables, “Do not use” tables can be used complementary to a simpler EBNF/RE, or they can integrated
into a then more complicated EBNF/RE, as has been done in the EBNF developed in this document

The Khmer section has so far not used “Do not use” tables. The following table presents a core set of
character sequences that should not be used. Many of the disallowed character sequences are in fact
currently allowed by at least some shaping engines. They assume that for Khmer below-base vowels are
encoded before above-base vowels, the order preferred by HarfBuzz, the main shaping engine allowing
such combinations.

For Use Do Not Use Comments
◌ើ឴
 17BE <17C1 17B8>

◌ើ឴� 17C4 <17C1 17B6>

◌឴�ិ <17C9 17B7>, <17CA 17B7> <17BB 17B7> Above-base vowels cause U+17C9

31

http://www.unicode.org/policies/stability_policy.html#Normalization

For Use Do Not Use Comments
MUUSIKATOAN and U+17CA TRIISAP to be
rendered with the glyph of U+17BB VOWEL SIGN
U (in some fonts dependent on base consonant).
Shaping engines may or may not insert dotted
circle before second vowel.

◌឴�ី <17C9 17B8>, <17CA 17B8> <17BB 17B8>

◌឴�ឹ <17C9 17B9>, <17CA 17B9> <17BB 17B9>

◌឴�ឺ <17C9 17BA>, <17CA 17BA> <17BB 17BA>

◌឴�ើ឴
 <17C9 17BE>, <17CA 17BE> <17BB 17BE>

◌឴�ើ឴
 <17C9 17BE>, <17CA 17BE> <17BE 17BB>

◌឴�ាំ <17C9 17B6 17C6>, <17CA
17B6 17C6>

<17BB 17B6
17C6>

2-character vowel ឴឴ាំ causes U+17C9
MUUSIKATOAN and U+17CA TRIISAP to be
rendered with the glyph of U+17BB VOWEL SIGN
U (in some fonts dependent on base consonant).
Shaping engines may or may not insert dotted
circle before second vowel.

◌឴�័ <17C9 17D0> <17BB 17D0> U+17D0 SAMYOK SANNYA causes U+17C9
MUUSIKATOAN to be rendered with the glyph
of U+17BB VOWEL SIGN U (in some fonts
dependent on base consonant).

◌្ក្រ឴�	etc. <17D2 179A 17D2 17xx> <17D2 17xx
17D2 179A>

For any 17xx in [1780-17B3]. Fonts generally
don’t distinguish between a sequence of coeng ro
followed by another coeng and the sequence of
that other coeng followed by coeng ro.

Confusables
“Confusables” are character sequences that are visually similar when rendered with commonly used
fonts, but are not canonically equivalent. Confusable character sequences may be fine or even necessary
to use in normal text, but may have to be prevented in situations where unambiguous identifiers are
needed. Unicode Technical Standard #39, Unicode Security Mechanisms, discusses confusables and is
accompanied by data files listing a large number of confusables, but restricts itself to confusability
between a single character and a character sequence. An extension to confusability between short fixed
character sequences has been proposed in L2/22-107 and L2/22-108. Confusability enabled by overly
permissive syllable structures, as discussed in this document, has not yet been considered for UTS #39
(it is to some extent addressed in the Root Zone Label Generation Rules published by ICANN).
“Intentional confusable mappings” in UTS #39 are confusables where typefaces would generally use the
same glyph(s).

The confusables shown in the tables of this section should be added to the UTS #39 data files, if not
already present.

Confusable character sequences should also be considered in the design of smart keyboards and spelling
checkers, as users may unintentionally enter an incorrect sequence that then needs to be corrected…

32

Intentional confusable mappings
Much of this table parallels the “Do not use” table above. Entries involving combinations of 17BB and
17BE could be omitted from the following table because current shaping engines seem to reliably insert
dotted circles into combinations of 17BB and 17BE. Also added are entries for deprecated or
discouraged characters, and the final one is discussed in a separate section on coeng ta and coeng da.

Source Rendering Target Rendering Comments
17BE ◌ើ឴
 17C1 17B8 ◌ើ឴ី Shaping engines may or may

not insert dotted circle before
second vowel; fonts use same
component glyphs.

17C4 ◌ើ឴� 17C1 17B6 ◌ើ឴ា

17C9 17B7 ◌ ៉឴ិ	(e.g. រ�)ិ 17BB 17B7 ◌឴�ិ	(e.g. រ�)ិ Above-base vowels cause
U+17C9 MUUSIKATOAN and
U+17CA TRIISAP to be
rendered with the glyph of
U+17BB VOWEL SIGN U (in
some fonts dependent on the
base consonant). Shaping
engines may or may not insert
a dotted circle before the
second vowel.

17CA 17B7 ◌ ៊឴ិ	(e.g. ស�ិ) 17BB 17B7 ◌឴�ិ	(e.g. ស�ិ)
17C9 17B8 ◌ ៉឴ី	(e.g. រ�)ី 17BB 17B8 ◌឴�ី	(e.g. រ�)ី
17CA 17B8 ◌ ៊឴ី	(e.g. ស�ី) 17BB 17B8 ◌឴�ី	(e.g. ស�ី)
17C9 17B9 ◌ ៉឴ឹ	(e.g. រ�)ឹ 17BB 17B9 ◌឴�ឹ	(e.g. រ�)ឹ
17CA 17B9 ◌ ៊឴ឹ	(e.g. ស�ឹ) 17BB 17B9 ◌឴�ឹ	(e.g. ស�ឹ)
17C9 17BA ◌ ៉឴ឺ	(e.g. រ�)ឺ 17BB 17BA ◌឴�ឺ	(e.g. រ�)ឺ
17CA 17BA ◌ ៊឴ឺ	(e.g. ស�ឺ) 17BB 17BA ◌឴�ឺ	(e.g. ស�ឺ)
17C9 17BE ◌ ៉ើ឴
 17BB 17BE ◌឴�ើ឴
 As above, but in this case

current shaping engines seem
to reliably insert a dotted
circle before the second vowel.

17CA 17BE ◌ ៊ើ឴
 17BB 17BE ◌឴�ើ឴

17C9 17BE ◌ ៉ើ឴
 17BE 17BB ◌ើ឴
឴ �
17CA 17BE ◌ ៊ើ឴
 17BE 17BB ◌ើ឴
឴ �
17C9 17B6 17C6 ◌ ៉឴ាំ	(e.g. រា�)ំ 17BB 17B6 17C6 ◌឴�ាំ	(e.g. រា�)ំ 2-character vowel ឴឴ាំ causes

U+17C9 MUUSIKATOAN and
U+17CA TRIISAP to be
rendered with the glyph of
U+17BB VOWEL SIGN U (in
some fonts dependent on base
consonant). Shaping engines
may or may not insert dotted
circle before the second vowel.

17CA 17B6 17C6 ◌ ៊឴ាំ	(e.g. ស៊ា� ំ) 17BB 17B6 17C6 ◌឴�ាំ	(e.g.
ស៊ា� ំ)

17C9 17D0 ◌ ៉឴័	(e.g. រ�)័ 17BB 17D0 ◌឴�័	(e.g. រ�)័ U+17D0 SAMYOK SANNYA
causes U+17C9 MUUSIKATOAN
to be rendered with the glyph
of U+17BB VOWEL SIGN U (in
some fonts dependent on base
consonant).

33

Source Rendering Target Rendering Comments
17D2 179A 17D2
17xx

◌្ក្រ �឴	etc. 17D2 17xx 17D2
179A

◌្ក្រ឴�	etc. For any 17xx in [1780-17B3].
Fonts generally don’t
distinguish between a
sequence of coeng ro followed
by another coeng and the
sequence of that other coeng
followed by coeng ro.

17A3 ឣ 17A2 អ Already in UTS #39 data files.

17A4 ឤ 17A2 17B6 អា
17D8 ៘ 17D4 179B 17D4 ។ល។
1791 17D2 17A1 ទ្ឡ 17A1 ឡ Identical representation in

many fonts.
17D2 178A ◌឴$ 17D2 178F ◌឴% See discussion of coeng ta and

coeng da below.

Other confusables
Many of the confusable pairs below are easily distinguished when looking at a high-resolution
rendering with a good font in isolation, but easily confused when looking at a low-resolution screen
(which are still common in Cambodia) with expectations derived from the context.

Source Rendering Target Rendering Comments
1791 17D2 1794 ទ្ប 17A1 ឡ Subtle visual difference

17D2 17A1 ◌឴្ឡ 17D2 1794 ◌឴្ប
17D3 ◌឴
 030A ◌̊

17C6 ◌ំ 030A ◌̊
17C8 ◌឴' 003A : See discussion of

yuukaleapintu below.
17BE 17D2 1799 ◌ើ឴
្យ 17BF ើ឴)
17D2 1799 17BE ◌ើ឴្យ
 17BF ើ឴)
17C0 ើ឴* 17C1 17D2 1799 ◌ើ឴្យ
17AB ឫ 1794 17D2 1789 ប្ញ
17AD 17B6 ឭា 1789 ញ
17AE 17B6 ឮា 1789 ញ
1796 17B6 17D2
1789

ពា្ញ 1789 ញ

34

Source Rendering Target Rendering Comments
17AD ឭ 1796 17D2 1789 ព្ញ
17B0 ឰ 1796 17D2 178B ព្ឋ
17D2 1792 ◌឴5 17D2 178B ◌឴្ឋ
17AA ឪ 17B1 ឱ
17B3 ឳ 17B1 ឱ
17A7 17B7 ឧិ 17B1 ឱ
17A7 17CC ឧ៌ 17B1 ឱ
17A7 17CD ឧ៍ 17B1 ឱ
17A7 17CA ឧ៊ 17A8 ឨ
17A7 17D1 ឧ៑ 17A8 ឨ
1789 17D2 179C ញ្វ 1796 17D2 179C 17B6 ពា្វ
17E8 17D3 ៨
 19E0 ᧠

Coeng ta and Coeng da
In modern Khmer script, coeng da and coeng ta look identical9. One might expect that users know which
one to enter and there should be no problem. But, as Appendix 1 shows, confusion is rife. Users
regularly type the wrong one. Since they look identical, it is not possible for a user to see how they have
mistyped just by looking at the text. This issue arises every so often in the Khmer press: "Method for
distinguishing coeng da and coeng ta to avoid confusion" and “Beware confusing coeng da and coeng
ta". One solution would be for a keyboard input method to analyze the context and store the right coeng
even if a user typed the wrong one. The problem is that the rules are too complex, with too many special
cases for a keyboard to do that.
Because there are two ways of encoding the same visual representation here, we need to resolve this.
The easiest solution is to just use a single underlying code for the two coengs. There are no minimal
contrasts between the two coengs and therefore there is no need for contrastive encoding. Since both
coengs look identical, it is impossible for someone looking at a text to tell whether two different
encodings or a single encoding has been used. When it comes to keyboard entry, the keyboard still
allows users to type a coeng da or coeng ta as before. The only difference is that it stores one of the two
possible encodings, and the user is none the wiser. The user does not have to change their behavior and
they have the advantage that they cannot type the wrong one by accident.

The preferred encoding is that both coeng da and coeng ta are stored as 17D2 178F (coeng ta). The
storage of coeng da (17D2 178A) is not disallowed in Middle Khmer where there is a visual contrast. But
where the text is known to be Modern Khmer, coeng da should never be stored, in favor of coeng ta.
Keyboards for Modern Khmer should only output coeng ta and never coeng da. For Old or Middle Khmer

9Also raised in https://www.unicode.org/L2/L2020/20174-pubrev.html.
35

https://thmeythmey.com/?page=detail&id=60748
https://thmeythmey.com/?page=detail&id=60748
https://thmeythmey.com/m/?page=detail&id=41610
https://thmeythmey.com/m/?page=detail&id=41610
https://www.unicode.org/L2/L2020/20174-pubrev.html

where there may be a visual contrast, then both may be used, but fonts need to show a visual contrast
between the two.
Other processes working on Khmer text, such as spelling checkers and text-to-speech systems, will have
to be aware of the linguistic ambiguity that has been introduced by folding the two characters together.

We propose to change the representative glyph for coeng da in TUS section 16.4, table 16-8, to an older
form, as Kent Karlsson already proposed in L2/20-174. However, because current fonts generally follow
the Unicode Standard and use the same glyph for coeng ta and coeng da, we also need to treat the two as
intentional confusables. This has already been proposed in L2/22-108.

Yuukaleapintu and Colon
These two characters are very similar and widely confused. To help distinguish them, Khmer users
commonly insert a space before the colon. Keyboards should do this automatically to help users avoid
ambiguity.

The UTS #39 data files already record numerous other characters as confusable with colon.
Yuukaleapintu should be added.

36

Transition
We would like to eventually see the new orthographic syllable structure applied wherever text in the
Khmer script is created or interpreted, from keyboards and fonts to search tools and natural language
processing systems. However, at present, a lot of Khmer text exists already, and systems generate and
interpret text based on the various existing Khmer orthographic syllable structures. We therefore need
a transition plan that gets us from the current situation to the desired new situation.

For the most part, the new orthographic syllable structure is a subset of the existing ones. That is, text
that conforms to the new structure generally also conforms to the old ones and will, for example,
render without dotted circles and according to user expectations. On the other hand, the new structure
disallows some character sequences that the old ones allowed, so that, if and when the new structure is
enforced by rendering systems and fonts, some old text will render with dotted circles.

There are some cases where the new structure requires character sequences that the old ones did not
foresee:

• The new rules for consonant shifters mean that a consonant shifter can follow a consonant that
does not have the series expected for that shifter, and still require downshifting (the consonant
with the expected series would occur earlier in the cluster). There may be fonts that check
whether consonant and consonant shifter agree, and only downshift when that’s the case. In
addition, the ICANN root zone label generation rules for Khmer require agreement between
consonant and consonant shifter.

• The new rules for final coengs mean they are not supported by any fonts. We selected the
position of ZWJ between conjoiner and base character because current OpenType
implementations do not insert dotted circles for it. However, fonts are not designed to form
coengs from conjoiner-ZWJ-base sequences, and don’t move the resulting coengs to after the
vowel.

• The new rules support multiple vowels. Clearly these are not used in Modern Khmer, but are
needed for Middle Khmer. The sequences are constrained to not require any more visual
complexity than is already needed for Modern Khmer.

• Minority languages often reappropriate one or two diacritics for use as vowels. They then need
to combine these with actual diacritics. The result is the need to store up to two diacritics.

We propose the following transition plan:
1. Enable key text consumers to accept Khmer text encoded according to the new orthographic

syllable structure:
• Update any fonts that check for agreement between a consonant shifter and the series

of the immediately preceding consonant shifter to remove such checks.
• Update the ICANN root zone label generation rules for Khmer to require agreement

between a consonant shifter and the series of the entire sequence of preceding
consonants, as described in the section Consonant Shifters.

• Update fonts designed for Middle Khmer to support the new encoding of final coengs, by
forming coengs from conjoiner-ZWJ-base sequences and moving the resulting coengs to
after the vowel.

37

2. Transition text producers to generate Khmer text encoded according to the new orthographic
syllable structure:

• Develop smart keyboards / input methods and dictionaries used for predictive input
that generate Khmer text encoded according to the new orthographic syllable structure.

• Update other text producers, such as OCR systems or translation software, to generate
Khmer text encoded according to the new orthographic syllable structure.

3. Enable text consumers to verify text according to the new orthographic syllable structure on an
opt-in basis:

• Add support for Khmer using the new orthographic syllable structure to the OpenType
Universal Shaping Engine, using a new script tag “khm1”. When using fonts with the
new script tag, text that does not conform to the new orthographic syllable structure
will have dotted circles inserted.

• Create fonts (likely initially variants of existing Khmer fonts) that use the new script tag.
• Use the new fonts in text editing components that are dedicated to creating new text,

such as the input fields in messaging apps or in web forms.
• Update spelling checkers to verify text according to the new orthographic syllable

structure.
4. Convert existing text that needs to be maintained long-term to the new orthographic syllable

structure.
5. Eventually, change text consumers to verify text according to the new orthographic syllable

structure by default:
• Use fonts that use the new script tag by default in operating systems and apps.

The following sections provide more detail on some of these steps.

Compatibility
There are two approaches that can be taken in transitioning correct data to the new structure:

• Require data to be transformed because currently correct data is not correct in the new
structure.

• Change the new structure, if needed, to ensure that existing correct data does not need to be
transformed, where possible.

The latter is much preferred, because requiring the re-encoding of all existing data would be an
unacceptably costly activity. Therefore we need to compare the new structure with the existing. We
only do this for Modern Khmer and minority orthographies. Middle Khmer with its final coengs is
fundamentally incompatible with the new structure and there is no harmonizing the two. This is
discussed elsewhere, particular with regard to final coengs. We can take a simplified view of the new
structure:

SylN = B R? C{0,2} S? V? MS? MF? | O

There are a number of existing syllable structures both in standards and implementations. We examine
them in terms of the classes and structures already defined. The mappings are not precise, but sufficient
for our analysis. SylE is the specification from the introduction. SylU is the current Unicode standard
(v14). SylMS is the Microsoft Khmer shaper specification. SylH is the Harfbuzz Khmer shaper
implementation.

38

SylE = B (R | (ZWNJ? SC)) C* (ZWNJ? SC)? (ZWNJ? V)? (MS | MF)? (ZWJ C)?
SylU = B (R | SC) (C R?)* (Z? V)? (MS | MF)? C?
SylMS = B C{0,2} (VP | VB)? SC? VA? MS? VF? MF?
SylH = B Z? (SC | R)? (C (Z? (SC | R))?)*
 (ZMS* VP? ZMS* VB? ZMS* (Z? VA)? ZMS* VF? ZMS* C? MF* | 17D2)
Z = [200C 200D] # ZW(N)J
ZMS = (Z* MSNR) # ZW(N)J plus modifier sign
R = 17CC # Robat
SC = [17C9 17CA] # Shifter Character

From the description above, the SylMS syllable structure should not support the strings that its
implementation actually does. We assume that the specification is out of date with respect to the
implementation. Lindenberg (2019) provides a more detailed survey of how implementations actually
validate Khmer syllables, at that time.

In order to decide whether we can transition without having to transform existing good data, we need
to examine the intersection between these syllable structures and the one defined earlier. Are there
required strings that are not in that intersection? There are a number of places:

• Unicode doesn’t currently allow a consonant shifter after a coeng. But it is unique in that.
• The Microsoft shaper allows a consonant shifter only after a pre or below vowel. This is a very

strange place to put one.
• ZWNJ is stored before the consonant shifter.

Incompatibilities
Shifter order: very often a shifter is stored before the coeng when it is now required after.

Data Transition
The following classes of sequences that have been used in the past become illegal under the new regular
expression:

• Digit coeng kahn -> Lunar extended char
• Coeng ro occuring first in a sequence of coengs -> coeng ro comes second

Normalization
Here we describe normalization actions (not normalization as defined in UAX #15) where sequences in
currently conformant Unicode orders are folded into a single sequence using the structure described
here.

Reference Implementation
The enclosed reference implementation provides two functions. One fuction, khnormal, normalizes
Modern Khmer text to the encoding described here in such a way that it looks the same as the input
text. Thus if there is bad spelling in the original (for example inappropriate multiple vowels), this code
does not fix that or mark an error, it simply passes it on for other processes to handle appropriately. A
second function, khtest, tests whether a string is conformant to the Khmer encoding structure,
returning false if it does not.
Khnormal does resolve some confusables, in particular only the “do not use” sequences are replaced
with their equivalents. As a result the output string is never longer than the input string.

39

The reference implementation is in python3 using only core modules and is written to be easily
translatable into other languages. The code is not written for speed, but for clarity.
The core regular expression module (re) does not support variable length negative look behind
assertions. We refactor them into positive look behind assertions.

#!/usr/bin/python3
Copyright (c) 2021-2022, SIL International.
Licensed under MIT license: https://opensource.org/licenses/MIT

import enum, re

class Cats(enum.Enum):
Other = 0; Base = 1; Robat = 2; Coeng = 3; ZFCoeng = 4
Shift = 5; Z = 6; VPre = 7; VB = 8; VA = 9
VPost = 10; MS = 11; MF = 12

categories = ([Cats.Base] * 35 # 1780-17A2
 + [Cats.Other] * 2 # 17A3-17A4
 + [Cats.Base] * 15 # 17A5-17B3
 + [Cats.Other] * 2 # 17B4-17B5
 + [Cats.VPost] # 17B6
 + [Cats.VA] * 4 # 17B7-17BA
 + [Cats.VB] * 3 # 17BB-17BD
 + [Cats.VPre] * 8 # 17BE-17C5
 + [Cats.MS] # 17C6
 + [Cats.MF] * 2 # 17C7-17C8
 + [Cats.Shift] * 2 # 17C9-17CA
 + [Cats.MS] # 17CB
 + [Cats.Robat] # 17CC
 + [Cats.MS] * 5 # 17CD-17D1
 + [Cats.Coeng] # 17D2
 + [Cats.MS] # 17D3
 + [Cats.Other] * 9 # 17D4-17DC
 + [Cats.MS]) # 17DD

khres = { # useful regular sub expressions used later
"B": "[\u1780-\u17A2\u17A5-\u17B3\u25CC]",
"NonRo": "[\u1780-\u1799\u179B-\u17A2\u17A5-\u17B3]",
"NonBA": "[\u1780-\u1793\u1795-\u17A2\u17A5-\u17B3]",
"S1": "[\u1780-\u1783\u1785-\u1788\u178A-\u178D\u178F-\u1792"

 "\u1795-\u1797\u179E-\u17A0\u17A2]",
"S2": "[\u1784\u1780\u178E\u1793\u1794\u1798-\u179D\u17A1\u17A3-\u17B3]",
"VAA": "(?:[\u17B7-\u17BA\u17BE\u17BF\u17DD]|\u17B6\u17C6)",
"VA": "(?:[\u17C1-\u17C5]?{VAA})",
"VAS": "(?:{VA}|[\u17C1-\u17C3]?\u17D0)",
"VB": "(?:[\u17C1-\u17C3][\u17BB-\u17BD])",
contains series 1 and no BA
"STRONG": "{S1}\u17CC?(?:\u17D2{NonBA}(?:\u17D2{NonBA})?)?|"

 "{NonBA}\u17CC?(?:\u17D2{S1}(?:\u17D2{NonBA})?|\u17D2{NonBA}\u17D2{S1})",
contains BA or only series 2
"NSTRONG": "(?:{S2}\u17CC?(?:\u17D2{S2}(?:\u17D2{S2})?)?|\u1794\u17CC?{COENG}?|"

 "{B}\u17CC?(?:\u17D2{NonRo}\u17D2\u1794|\u17D2\u1794(?:\u17D2{B}))?)",
"COENG": "(?:(?:\u17D2{NonRo})?\u17D2{B})",
final right spacing coeng
"COENGR": "(?:(?:[\u17C9\u17CA]\u200C?)?(?:{VB}?{VAS}|{VB}))",
final all coengs
"COENGF": "(?:(?:[\u17C9\u17CA]\u200C?)?[\u17C2-\u17C3]?{VB}?{VA}?"

 "[\u17B6\u17BF\u17C0\u17C4\u17C5])",
"COENGS": "(?:\u17C9\u200C?{VAS})",
"FCOENG": "(?:\u17D2\u200D{NonRo})",
"SHIFT": "(?:(?<={STRONG}{FCOENG}?)\u17CA\u200C(?={VA})|"

 "(?<={NSTRONG}{FCOENG}?)\u17C9\u200C(?={VAS})|[\u17C9\u17CA])",
"V": "(?:\u17C1[\u17BC\u17BD]?[\u17B7\u17B9\u17BA]?|"

 "[\u17C2\u17C3]?[\u17BC\u17BD]?[\u17B7-\u17BA]\u17B6|"
 "[\u17C2\u17C3]?[\u17BB-\u17BD]?\u17B6|\u17BE[\u17BC\u17BD]?\u17B6?|"
 "[\u17C1-\u17C5]?\u17BB(?![\u17D0\u17DD])|"

40

https://opensource.org/licenses/MIT

 "[\u17BF\u17C0]|[\u17C2-\u17C5]?[\u17BC\u17BD]?[\u17B7-\u17BA]?)",
"MS": "(?:(?:[\u17C6\u17CB\u17CD-\u17CF\u17D1\u17D3]|"

 "(?<!\u17BB[\u17B6\u17C4\u17C5]?)[\u17D0\u17DD])"
 "[\u17C6\u17CB\u17CD-\u17D1\u17D3\u17DD]?)"
}

expand 2 times: CEONGS -> VAS -> VA -> VAA
for i in range(3):

khres = {k: v.format(**khres) for k, v in khres.items()}

def charcat(c):
''' Returns the Khmer character category for a single char string'''
o = ord(c)
if 0x1780 <= o <= 0x17DD:

 return categories[o-0x1780]
elif o == 0x200C:

 return Cats.Z
elif o == 0x200D:

 return Cats.ZFCoeng
return Cats.Other

def khnormal(txt, lang="km"):
''' Returns khmer normalised string, without fixing or marking errors'''
Mark final coengs in Middle Khmer
if lang == "xhm":

 txt = re.sub(r"([\u17B7-\u17C5]\u17D2)", "\\1\u200D", txt)
Categorise every character in the string
charcats = [charcat(c) for c in txt]

Recategorise base or ZWJ -> coeng after coeng char
for i in range(1, len(charcats)):

 if charcats[i-1] == Cats.Coeng and charcats[i] in (Cats.Base, Cats.ZFCoeng):
 charcats[i] = Cats.Coeng

Find subranges of base+non other and sort components in the subrange
i = 0
res = []
while i < len(charcats):

 c = charcats[i]
 if c != Cats.Base:
 res.append(txt[i])
 i += 1
 continue
 # Scan for end of syllable
 j = i + 1
 while j < len(charcats) and charcats[j].value > Cats.Base.value:
 j += 1
 # Sort syllable based on character categories
 # Sort the char indices by category then position in string
 newindices = sorted(range(i, j), key=lambda e:(charcats[e].value, e))
 replaces = "".join(txt[n] for n in newindices)

 replaces = re.sub("([\u200C\u200D]\u17D2?|\u17D2\u200D)[\u17D2\u200C\u200D]+",
 r"\1", replaces) # remove multiple invisible chars
 # map compoound vowel sequences to compounds with -u before to be converted
 replaces = re.sub("\u17C1([\u17BB-\u17BD]?)\u17B8", "\u17BE\\1", replaces)
 replaces = re.sub("\u17C1([\u17BB-\u17BD]?)\u17B6", "\u17C4\\1", replaces)
 replaces = re.sub("(\u17BE)(\u17BB)", r"\2\1", replaces)
 # Replace -u + upper vowel with consonant shifter
 replaces = re.sub("({STRONG}{FCOENG}?[\u17C1-\u17C5]?)\u17BB"
 "(?={VAA}|\u17D0)".format(**khres), "\\1\u17CA", replaces)
 replaces = re.sub("({NSTRONG}{FCOENG}?[\u17C1-\u17C5]?)\u17BB"
 "(?={VAA}|\u17D0)".format(**khres), "\\1\u17C9", replaces)
 replaces = re.sub("(\u17D2\u179A)(\u17D2[\u1780-\u17B3])",
 r"\2\1", replaces) # coeng ro second
 replaces = re.sub("(\u17D2)\u178A", "\\1\u178F", replaces) # coeng da->ta
 res.append(replaces)
 i = j

return "".join(res)

41

def khtest(txt):
''' Tests normalized text for conformance to Khmer encoding structure '''
import regex
syl = regex.compile("({B}\u17CC?{COENG}?(?:\u17D2\u200D(?={COENGR})|{FCOENG}(?={COENGF})|"

 "(?<={NSTRONG})\u17D2\u200D{S1}(?={COENGS}))?{SHIFT}?{V}{MS}?[\u17C7\u17C8]?|"
 "[\u17A3\u17A4\u17B4\u17B5]|[^\u1780-\u17D2])".format(**khres))

res = []
passed = True
while len(txt):

 m = syl.match(txt) # match a syllable
 if m:
 res.append(m.group(1)) # add matched syllable to output
 txt = txt[m.end(1):] # update start to after this syllable
 continue # go round for the next syllable
 passed = False # will return a failed string
 m = syl.match("\u25CC"+txt) # Try inserting 25CC and matching that
 if m and m.end(1) > 1:
 res.append(m.group(1)) # yes then insert 25CC in output
 txt = txt[m.end(1)-1:]
 else:
 res.append("!{}!".format(txt[0])) # output failure character
 txt = txt[1:]

if not passed: # if the output is different, return it
 return "".join(res)

return None # return None as sentinal for pass

if __name__ == "__main__":
import argparse, sys

parser = argparse.ArgumentParser()
parser.add_argument("infile",nargs="+",help="input file")
parser.add_argument("-o","--outfile", help="Output file")
parser.add_argument("-u","--unicodes",action="store_true")
parser.add_argument("-f","--fail",action="store_true",

 help="Only print lines that fail the regex after normalising")
parser.add_argument("-l","--lang",default="km",help="Language specific processing")
args = parser.parse_args()

if args.unicodes:
 instr = "".join(chr(int(x, 16)) for x in args.infile)
 res = khnormal(instr, lang=args.lang)

If argos.fail:
res = khtest(res)

 if res is not None:
 print(" ".join("{:04X}".format(ord(x)) for x in res))

else:
 infile = open(args.infile[0], encoding="utf-8") if args.infile[0] != "-" \

else sys.stdin
 outfile = open(args.outfile, "w", encoding="utf-8") if args.outfile else sys.stdout
 for l in infile.readlines():
 res = khnormal(l, lang=args.lang)
 if args.fail:
 tested = khtest(res)
 if tested is not None:
 outfile.write(tested)
 else:
 outfile.write(res)

42

Shaping and Font Development
A primary concern of the font is that there be a visual distinction between any two different strings.
While the regular expression describes what constitutes a ‘legal’ sequence, it gives no indication of how
illegal sequences are to be indicated. Where should a dotted circle be inserted? This section does not
distinguish responsibilities between the shaper and the font. In effect it says that ensuring good
rendering, including marking of errors, is the responsibility of the font, supported as it may be, by a
shaping engine. The reason for this is that at the time of writing, shaping support for Khmer can be very
different across different shapers and it is unknown what shaping support will be available to fonts in
the future.

An important consideration is the difference in shaping needs between Modern Khmer and Middle
Khmer. Middle Khmer allows such things as multiple vowels and final coengs. These are problematic in
Modern Khmer. There are various options in how to deal with the contrast:

1. Unify the syllable descriptions and have one shaper for both orthography families.
2. Distinguish syllable structures of Modern and Middle Khmer and allow vowel sequences and

final coengs only in Middle Khmer.
These each have costs and benefits.
Option 1 is simpler to implement. But it comes with a huge cost and that is that font designers have to
ensure and test their fonts for Middle Khmer as well as Modern Khmer, even if they have no interest in
supporting Middle Khmer. In addition, while it is anticipated that most of the heavy lifting of hiding the
encoding complexities from users will be done by the keyboard implementation, it is probable that
there will be simple keyboards produced that do not do the necessary work and will push the cognitive
load on users. This is not good, but is made much worse if they do not constrain users from typing
sequences that are not legal for Modern Khmer but are for Middle Khmer and yet are assumed to be in
Modern Khmer. It would place an immense burden on font developers of Modern Khmer fonts to handle
the erroneous sequences in the font rather than having the necessary shaper support.
Option 2 uses some mechanism to distinguish Modern and Middle Khmer. This cannot be done by
analysis of the text data itself precisely because a Modern Khmer shaper has to mark strings as illegal
that a Middle Khmer shaper would accept. So saying: ‘aha this string has Middle Khmer type structures
in it’, does nobody any service to identify the text as Middle Khmer when it should be marked as illegal
Modern Khmer. Again, there are two options to achieve this:

1. Mark text for language: language tagging
2. Mark text by font: font tagging

Language Tagging
The first approach requires a system for marking text for language. Some systems do this well, for
example Microsoft Windows always marks all text for language on entry, whether the user is aware of it
or not. Whether applications retain that information is another matter. Others, for example plain text,
SMS, social media platforms; do not. Thankfully, Middle Khmer is not a living language and is unlikely
to be used in social media. The language is usually stored for analysis or in a rich text environment like
a word processor. Thus language marking is an option.
Inside the font, it is possible to change behaviour based on language. But currently, no shaper
implementations support changing the syllable structure based purely on a language contrast. Adding

43

such support would require a compelling reason. Since the Middle Khmer user community is small and
specialist, it is unlikely that such a development will be carried out for this situation.

Font Tagging
It is not uncommon to set the font of a text. This is particularly true given the nature of the use of
Middle Khmer text where the text is clearly identified as such even in plain text contexts (through out
of band knowledge of the contents of a file or some other data structuring). The limitation is that a font
can either support Middle or Modern Khmer but not both. The preferred way OpenType supports
different shaping rules (or syllable structures) is through the use of different script tags. While a font
may provide support for multiple script tags, it makes little sense for a font to support both Middle and
Modern Khmer script tags given the shaper has to choose one of the two. Probably in this case it would
choose the least common: Middle Khmer.
The difficulty here is that since the user community for Middle Khmer is so small, it is very probable
that it would take a long time to find bugs in the Middle Khmer shaper. The turnaround for fixing bugs
in a shaper is very long and outside the control of a font developer or the user community. So another
alternative is for the Middle Khmer community to use the Modern Khmer shaper, complete with it
inserting ‘error’ dotted circles, and then for the font to remove these error glyphs appropriately. This
requires a change in the implementation of the shaping engine to insert the error glyphs before
executing GSUB features rather than after GSUB and before GPOS.

Shaping
The description here does not attempt to use any existing shaping specification. Instead it outlines the
needs of a shaper without specifying the actual implementation.

The primary issue in creating a font is to ensure that no two different strings look the same. This is a
shared responsibility between the shaping engine and the font. There is a tendency to not want to
overburden the shaping engine with a lot of detailed rules, but equally to provide helpful support to the
font.

The full disambiguating regular expression is large and complex. But it is unlikely that the regular
expression will be implemented directly, and would be expressed in code in a different way. This is
especially true since most regular expression engines cannot handle variable length zero width look
behind assertions. That is one way of identifying ‘illegal’ strings. But another way allows for a more
nuanced insertion of error marks. This approach is to do a very basic syllable analysis and then use
negative rules to identify and mark bad strings.

USE Implementation
Need to agree where dotted circles are inserted so that they can be removed for Middle Khmer? Only need to
consider dotted circles that are inserted for ‘legal’ Middle Khmer strings. What doesn’t fit and what does?
Currently shaping engines encounter an error, mark it, then restart after the bad character (e.g. coeng character)
and so break the syllable and the font can’t join the coeng character and its following base.
Handling interim strings (e.g. coeng char not followed by base).

44

Consonant Shifters
As an example, let’s consider the consonant shifter. The regular expression for this particular part of
the string is certainly complex. How might a font (in conjunction with a shaper) handle this? It already
has to address such sequences to identify when the shifter downshifts, so perhaps we can do all of the
work of downshifting and error marking together. The examples below will use the FEA syntax and
presumes no shaper support.

For the sake of this example, we will identify all base forms by their unicode value with glyph names
such as u179A. Notice that at this point we are dealing with glyphs and not codepoints. In addition,
every consonant has a coeng form: the glyph that is used when the consonant is preceded by a coeng
(17D2) and this is named as a variant glyph: thus u179A.coeng. We also presume that each of the classes
in the regular expression has a corresponding class of glyphs. If the class is preceded by a coeng (17D2),
then the class is simply a class of .coeng forms. Thus:

@SCS = (u1784.coeng u1789.coeng u1799.coeng u179A.coeng u179C.coeng u179D.coeng)
@SS = (u1784 u1789 u1798 u1799 u179A u179C u179D)

The task of the lookup we are to write is to process u17C9 and u17CA. There are two actions we can take:
we can convert the shifter into a -u vowel (u17BB) or insert a dotted circle before it (u25CC). There is
also a lookup to strip the zwj or zwnj. In the case of zwnj, if it is legal, then it is downshifting and we
replace it with a -u glyph, whereas with zwj we leave the consonant shifter in place.

lookup shiftu {
 sub u17C9 by u17BB;
 sub u17CA by u17BB;
} shiftu;

lookup shifterr {
 sub u17C9 by u25CC u17C9;
 sub u17CA by u25CC u17CA;
} shifterr;

lookup shiftstrip {
 sub u200D u17C9 by u17C9;
 sub u200D u17CA by u17CA;
 sub u200C u17C9 by u17BB;
 sub u200C u17CA by u17BB;
} shiftstrip;

These lookups are ‘called’ from a contextual chaining lookup that uses strings of glyphs to call the
appropriate lookup on the shifter. Because of the size of this lookup here, we only consider u17CA.
Handling u17C9 is left as an exercise for the reader. We also leave out the u17B6 u17C6 vowel context
after the first few example rules.

lookup doshift {
 # unmarked downshift
 sub @SF u17CA’ lookup shiftu @VS;
 sub @SF u17CA’ lookup shiftu u17B6 u17C6;
 sub @B @SCF u17CA’ lookup shiftu @VS;
 sub @B @SCF u17CA’ lookup shiftu u17B6 u17C6;
 sub @B @SCF @C u17CA’ lookup shiftu @VS;

45

 sub @B @SCNF @SCF u17CA’ lookup shiftu @VS;
 # ZWNJ stops downshift
 sub @SF u17CA’ u200C’ lookup shiftstrip @VS;
 sub @B @SCF u17CA’ u200C’ lookup shiftstrip @VS;
 sub @B @SCF @C u17CA’ u200C’ lookup shiftstrip @VS;
 sub @B @SCNF @SCF u17CA’ u200C’ lookup shiftstrip @VS;
 # ZWJ should not occur
 sub @SF u17CA’ u200D’ lookup shifterr @VS;
 sub @B @SCF u17CA’ u200D’ lookup shifterr @VS;
 sub @B @SCF @C u17CA’ u200D’ lookup shifterr @VS;
 sub @B @SCNF @SCF u17CA’ u200D’ lookup shifterr @VS;

 # we only get here if all the other rules fail, so our classes can be vague.
 # explicit ZWJ downshifts
 sub @B u17CA’ u200D’ lookup shiftu @VS;
 sub @B @C u17CA’ u200D’ lookup shiftu @VS;
 sub @B @C @C u17CA’ u200D’ lookup shiftu @VS;
 # explicit ZWNJ should not occur
 sub @B u17CA’ u200C’ lookup shifterr @VS;
 sub @B @C u17CA’ u200C’ lookup shifterr @VS;
 sub @B @C @C u17CA’ u200C’ lookup shifterr @VS;
} doshift;

Tests
• Ensure coeng sequences are contrastive based on order (reversing the order should result in a

different rendering)
• Coeng ta and coeng da should render contrastively.
• If a coeng ro is stored first in a coeng sequence, the font should show a visual contrast (however

ugly that may be) compared to the coeng ro coming second.
• If a consonant shifter precedes a spacing coeng, the font (or ideally the shaper) should show a

visual contrast compared to when the consonant shifter is after the coeng.

Design Issues

Coeng Stacking
The stacking of below diacritics is a particular design issue for Khmer fonts. Long stacks of say two
coengs and a lower diacritic vowel do exist, but they are rare. A typesetter does not want to allocate lots
of space below the baseline just for the rare cases that may occur once or twice in a book. Therefore
there is a desire by font designers to want to reduce the height of the lower diacritic stack. For example,
stacking lower diacritics horizontally across the bottom of the base character. But this flies in the face
of readability where readers need to know the order of the coengs in order to read well. In addition,
fonts need to show coeng order so that they show a visual distinction for a different character sequence.
If a font designer wants to design with horizontal stacking, they need to ensure that reversing the order
of the coengs in the stack leads to a different visual representation. Such stacks occur with borrowed
words. Thus ‘Florida’: ហ្វ្លូរដីា

10? ហ្វ្លរដីា? ផ្លរដីា? Or ‘free’: ហ្វ្រ៊,ី or ‘three’: ស្រសី៊. Another good example is
ទឡ្ហីករណ៍.

10Note that this document was written in Google docs and there are no known fonts available in Google
Fonts that render these words correctly.

46

Acknowledgements
The research and development of this document was done because a number of technical experts saw
key technical problems with the Khmer encoding. This document is written to provide input both to the
Unicode Technical Committee and also to the Cambodian Government, in particular the Cambodia
Academy of Digital Technology11. Thanks are due to SIL International and the National Polytechnic
Institute of Cambodia Language Software Development Unit (NPIC LSDU) for their authorship. Martin
Hosken’s research is also undertaken under the auspices of the Payap University Linguistics Institute,
ChiangMai Thailand. Most of the underlying research was undertaken in conjunction with Makara Sok
and Didi Kanjahn and based on the encoding proposed by Javier Solá (Open Institute). Thanks are also
due to the following people for their technical contributions and review: Peter Constable, Sovichet Tep,
Nathan Willis. Trent Walker (Stanford University) reviewed and contributed to the section on Middler
Khmer.
Further thanks is given to Lyheang Ung and Hour Kaing, of the Cambodia Academy of Digital
Technology, who reviewed the document in detail, and to the National Council of Khmer Language
(NCKL) of the Royal Academy of Cambodia (RAC) for clarification on some Khmer linguistic matters.

11បណ្ឌិត្យសភាបច្ចេកវិទ្យាឌីជីថលកម្ពុជា https://www.cadt.edu.kh/about/board-of-trustees/.

48

https://www.cadt.edu.kh/about/board-of-trustees/

Appendix 1 - Current Confusion
The problem that the Khmer script faces is that there is often more than one way to encode a visual
string and it be valid, and yet only one way is the ‘correct’ way (whatever that might be). For those very
experienced in understanding how the Khmer script is stored in Unicode, and with a strong linguistic
awareness, there seems to be no problem. But for many users there are problems. Here we present some
simple statistics taken from page counts in Google for different encodings of the same word.

Example Words

‘Woman’
The word ស្ត្រី `woman` consists of 4 characters. The initial consonant is not in confusion. The coeng ta
is confusible with coeng da and the 3 characters following the base consonant may occur in any order.
The result is 12 possible ways of encoding the word. They are listed here along with the number of pages
Google found of that spelling, in popularity order. Notice that the most popular spelling is not the
‘correct’ spelling. The best that someone searching for this word can hope for is 53% by typing their
search term wrongly.

Text Romanised Popularity
ស្រ្តី srti 8,950,000

ស្ត្រី stri 4,950,000 (correct spelling)

ស្រ្ដី srdi 1,340,000

ស្ដ្រី sdri 893,000

ស្រី្ត srit 620,000

ស្តី្រ stir 25,900

ស្រី្ដ srid 19,600

ស្ដី្រ sdir 6,190

សី្ត្រ sitr 10

សី្ដ្រ sidr 3

សី្រ្ត sirt 1

សី្រ្ដ sird 1

‘Detect/investigate’
សុីប ‘to detect/investigate’ consists of a confusable vowel (ើ 17BE) and a consonant shifter (
៊ 17CA) which is down shifted to be a glyph which looks like that of 17BB in this context. There are 15

49

possible ways of typing this word. The two most noticeable errors are (1) 17BE is perceived as a
combination of two separate vowels, i.e. 17C1 and 17B8 and (2) 17CA is thought to be 17BB because of
how it looks.

Text Sequences Popularity
សុីប ស ៊ ើ ប 759,000 (correct spelling)
សីុ ប ស ើ ុ ប 38,500
ស៊ី ប ស ៊ េ ី ប 11,800
ស៉ើប ស ៉ ើ ប 11,600 *
សីុប ស េ ី ុ ប 6,410
សុើប ស ុ ើ ប 5,120
សុីប ស េ ុ ី ប 30
សុេីប ស ុ េ ី ប 21
សីុេប ស ៊ ី េ ប 14
សី៉ ប ស ើ ៉ ប 11 *
សុីេប ស ុ ី េ ប 8
ស៉ី ប ស ៉ េ ី ប 8 *
ស៉ើេប ស ៉ ី េ ប 6 *
សីេុប ស ី េ ុ ប 5
សីុេប ស ី ុ េ ប 3
Entries marked with * are not automatically fixed by the reference normalization code.

‘Eat’
Here, there is considerable downshifting confusion.
Text Sequences Popularity
ស�ី ស	៊	឴ី 3,250,000 (correct spelling)
ស�ី ស	឴�	឴ី 3,040,000
សី៉ ស	៉	឴ី 632,000 *
សី឴� ស	឴ី	឴� 400,000
ស៊ី ស	឴ី	៊ 364
ស៉ី ស	឴ី	៉ 9 *
Entries marked with * are not automatically fixed by the reference normalization code.

‘Bread’
More downshifting confusion with a less common word.

50

Text Sequences Popularity
ប�័ង ប	឴�	឴័ ង 34,700
ប�័ង ប	៉	឴័ ង 26,400 (correct spelling)
ប័�ង ប	឴័	឴� ង 16,700

‘One sort’
For the most part people realise that the downshifter goes after the coeng.
Text Sequences Popularity
ម្៉យ៉ាង ម	឴្យ 	៉	឴ា ង 2,530,000 (correct spelling)
ម៉្យ៉ាង ម	៉	឴្យ	឴ា ង 480,000

‘Don’t’
People tend not to have a problem with typing a vowel before a final.
Text Sequences Popularity
ក�ំ ក	឴�ំ 6,050,000 (correct spelling)
កំ� ក	឴ំ	឴� 284,000

‘Wait’
People tend not to fall into the trap of typing ‘am’ the Thai way.
Text Sequences Popularity
ចំា ច	឴ាំ 5,860,000 (correct spelling)
ចំា ច	឴ំ	឴ា 208,000

‘Mr’
Most people only use one vowel for split vowels.
Text Sequences Popularity
ើMក ល	ើ឴� ក 8,190,000 (correct spelling)
ើMក ល	ើ឴	឴ា ក 422,000
Mើ឴ក ល	឴ា	ើ឴ ក 15,600

‘Khmer’
People do well at spelling the language name correctly.
Text Sequences Popularity
ខ្រ ខ	឴O	ែ឴ រ 29,100,000 (correct spelling)
ែខOរ ខ	ែ឴	឴O រ 372,000

51

Coeng Ta vs Coeng Da
Here we see some example words and their various popularities for the confusion between coeng ta and
coeng da. In each case the ‘correct’ spelling is emboldened.

ដ spelling ដ popularity ត spelling ត popularity

កណ្ដាល 2,120,000 កណ្តាល 3,550,000

ក្ដី 1,660,000 ក្តី 3,560,000

ស្ដាំ 445,000 ស្តាំ 903,000

While students are taught the correct usage of coeng ta and coeng da, it does not mean that the lessons
are always remembered into adulthood.

52

Appendix 2 - Middle Khmer
In order to arrive at a syllable structure that can support all data needs, it is necessary to analyse all the
orthographies that use Khmer script. For the most part, the minority language use of the Khmer script
is conservative with few innovations. Any such innovations are discussed in the main text. But there is
one other major set of orthographies that use the Khmer script and these are often lumped under the
simplified names of Old Khmer and Middle Khmer, even though they cover many different orthography
and language stages in the development of Khmer from Old Khmer in the 7th-8th century, Angkor
Khmer and Middle Khmer. Upon examination of these different orthographies, it is the Middle Khmer
period, leading into the Modern Khmer period, that requires the greatest complexity in encoding.
During this period, there is a growth in orthographic complexity along with little or no standardised
spelling.
The concern here is to ensure that they can be adequately encoded. Again the principles of a single
encoding for a single graphical representation are necessary. This carries with it an implication that the
encoding does not need to directly represent the linguistic structure of the syllable. For example,
syllable final coengs (following a vowel) do not necessarily have to be encoded after the vowel.
The analysis here can only be considered a sketch that is looking for particular exemplars that might
challenge the proposed encoding structure. A much more thorough analysis would be required to come
anywhere close to a full description of the orthography of Middle Khmer.
The first step in such an analysis is to find examples of words that do not fit the currently proposed
Khmer encoded syllable structure and see what they say to us. There may be a way to make them fit into
the current model or they may call for a change of the model. Care must be taken that the needs of
historic data do not overwhelm the far more prevalent modern data. The conversation needs to be one
of mutual respect and concern.
The analysis in this section was undertaken before the final form of the main syllable was agreed. Thus
its argumentation may not flow well and has been placed as an appendix.

Final Coengs
Final coengs occur after the vowel as a final sound in a phonetic syllable and they are often visually
indistinguishable from prevowel coengs. There are some contexts in which the final coeng is visually
contrastive with a before vowel coeng and some not. The table shows - if data exists and is not visually
contrastive between the coeng occurring before or after the vowel, and + if it is visually contrastive. ?
Indicates no examples have been found.

Coeng/Vowel Left Left+Above Left+Right Right Above Below

Coeng Left - ? ? - - -

Coeng Below - - ? + - ?

Coeng Right - - + + + +

We examine some examples in detail:

53

Khom Thai
The first writing system used for writing Thai was based on Khmer script. The ‘Khom’ (Thai for Khmer)
Thai script has a long history which is not of concern here. The issue is how Khom Thai may be encoded
using the Khmer Unicode block. It seems most natural to encode Khom Thai using Khmer characters
due to the similarities in the writing systems. Many of the characters look very similar and Khom Thai
has coengs which the Thai script does not. The main extensions needed are:

• Addition of Thai tones as diacritics, to Khmer. This can either be done through encoding extra
characters or by allowing the sharing of Thai tone marks with the Khmer script using script
extensions.

• Extra vowel combinations and/or extra characters.
There are a number of characters needed to encode Khom Thai in Unicode using the Khmer block.
Analysis is required for these. As it stands a further Unicode proposal will be necessary to enable Khom
Thai to be adequately encoded in Unicode. Such a proposal will also need to include any changes to the
Middle Khmer orthographic syllable structure to ensure it facilitates the encoding of Khom Thai.

Conclusion
The encoding structure for Modern Khmer does a good job of supporting Middle Khmer. The difficulty
with working with Middle Khmer is that writing in that period was both far from standardised and also
a period of innovation. The result is that there will inevitably be strings found that do not fit within the
encoding structure. It will be necessary then to decide how important it is that those strings are
representable using the standard encoding structure. For example, there is only one known word where
there is a follow on vowel after a final coeng. How important is it that this word is representable? The
identified issues with the Modern Khmer encoding structure for Middle Khmer are:

1. Special casing of final coengs following U+1789.
2. Vowel and following coeng after a final coeng.

58

Bibliography
Antelme, Michel, 2007 "INVENTAIRE PROVISOIRE DES CARACTÈRES ET DIVERS
SIGNES DES ÉCRITURES KHMÈRES PRÉ-MODERNES ET MODERNES EMPLOYÉS
POUR LA NOTATION DU KHMER, DU SIAMOIS, DES DIALECTES THAÏS
MÉRIDIONAUX, DU SANSKRIT ET DU PĀLI " (Projet “Corpus des inscriptions ∗
khmères” —CIK), url:
https://web.archive.org/web/20190814131541/http://aefek.free.fr/iso_album/
antelme_bis.pdf
Bernard, J. B., 1902 “Dictionnaire cambodgien-français” (HongKong)
British and Foreign Bible Society, 1899 “The Gospel According to Luke”, url:
https://books.google.com.kh/books?id=ZrQUAAAAYAAJ
Chuon Nath, 1967 “Khmer Dictionary” (Buddhist Institute 5th ed, 1967/68),
url: windows version http://krou.moeys.gov.kh/kh/article/item/1135-%E1%9E
%9C%E1%9E%85%E1%9E%93%E1%9E%B6%E1%9E%93%E1%9E%BB%E1%9E
%80%E1%9F%92%E1%9E%9A%E1%9E%98%E2%80%8B%E1%9E%81%E1%9F
%92%E1%9E%98%E1%9F%82%E1%9E%9A.html#.YLmnD_kvPIU, online version
http://dictionary.tovnah.com/help
Lindenberg, Norbert, 2019: Issues in Khmer syllable validation. (Lindenberg
Software, 2019), url: https://lindenbergsoftware.com/en/notes/issues-in-
khmer-syllable-validation/

Sok, Makara, 2016 “Phonological Principles and Automatic Phonemic and Phonetic Transcription
of Khmer Words” (Payap University, MA Thesis, 2016), url:
https://drive.google.com/file/d/1c_FXNy90pv06StsBMQz4Rzk87ulMqXyM/
view?usp=sharing

Sok, Makara, 2021 “Khmer Character Specification/Usages” (SIL, 2021), url:
https://github.com/sillsdev/khmer-character-specification/blob/master/
specification.md#ApplicationofKhmerScripttoOtherLanguages

Solá, Javier, 2004 “Issues in Khmer Unicode 4.0” (Open Forum of Cambodia, version 2.0,
21/Oct/2004), url: https://sourceforge.net/projects/khmer/files/Documents
%20about%20Khmer%20script/Documents%20about%20Khmer%20Script
%20and%20about%20Khmer%20Unicode%20v1.0/IssuesInUnicode40-v2.0.pdf/
download

Valy, D., Verleysen, M., Chhun, S., & Burie, J. C., 2017 “A New Khmer Palm Leaf Manuscript Dataset for
Document Analysis and Recognition - SleukRith Set” (In 4th International
Workshop on Historical Document Imaging and Processing (HIP), DOI
10.1145/3151509.3151510, Data: https://github.com/donavaly/SleukRith-Set).

59

https://github.com/donavaly/SleukRith-Set
https://sourceforge.net/projects/khmer/files/Documents%20about%20Khmer%20script/Documents%20about%20Khmer%20Script%20and%20about%20Khmer%20Unicode%20v1.0/IssuesInUnicode40-v2.0.pdf/download
https://sourceforge.net/projects/khmer/files/Documents%20about%20Khmer%20script/Documents%20about%20Khmer%20Script%20and%20about%20Khmer%20Unicode%20v1.0/IssuesInUnicode40-v2.0.pdf/download
https://sourceforge.net/projects/khmer/files/Documents%20about%20Khmer%20script/Documents%20about%20Khmer%20Script%20and%20about%20Khmer%20Unicode%20v1.0/IssuesInUnicode40-v2.0.pdf/download
https://github.com/sillsdev/khmer-character-specification/blob/master/specification.md#ApplicationofKhmerScripttoOtherLanguages
https://github.com/sillsdev/khmer-character-specification/blob/master/specification.md#ApplicationofKhmerScripttoOtherLanguages
https://drive.google.com/file/d/1c_FXNy90pv06StsBMQz4Rzk87ulMqXyM/view?usp=sharing
https://drive.google.com/file/d/1c_FXNy90pv06StsBMQz4Rzk87ulMqXyM/view?usp=sharing
https://lindenbergsoftware.com/en/notes/issues-in-khmer-syllable-validation/
https://lindenbergsoftware.com/en/notes/issues-in-khmer-syllable-validation/
http://dictionary.tovnah.com/help
http://krou.moeys.gov.kh/kh/article/item/1135-%E1%9E%9C%E1%9E%85%E1%9E%93%E1%9E%B6%E1%9E%93%E1%9E%BB%E1%9E%80%E1%9F%92%E1%9E%9A%E1%9E%98%E2%80%8B%E1%9E%81%E1%9F%92%E1%9E%98%E1%9F%82%E1%9E%9A.html#.YLmnD_kvPIU
http://krou.moeys.gov.kh/kh/article/item/1135-%E1%9E%9C%E1%9E%85%E1%9E%93%E1%9E%B6%E1%9E%93%E1%9E%BB%E1%9E%80%E1%9F%92%E1%9E%9A%E1%9E%98%E2%80%8B%E1%9E%81%E1%9F%92%E1%9E%98%E1%9F%82%E1%9E%9A.html#.YLmnD_kvPIU
http://krou.moeys.gov.kh/kh/article/item/1135-%E1%9E%9C%E1%9E%85%E1%9E%93%E1%9E%B6%E1%9E%93%E1%9E%BB%E1%9E%80%E1%9F%92%E1%9E%9A%E1%9E%98%E2%80%8B%E1%9E%81%E1%9F%92%E1%9E%98%E1%9F%82%E1%9E%9A.html#.YLmnD_kvPIU
https://books.google.com.kh/books?id=ZrQUAAAAYAAJ
https://web.archive.org/web/20190814131541/http://aefek.free.fr/iso_album/antelme_bis.pdf
https://web.archive.org/web/20190814131541/http://aefek.free.fr/iso_album/antelme_bis.pdf

	Untitled

