
 L2/23-008 

 UTC     #174     properties     feedback     &     recommendations 
 Markus     Scherer     /  Unicode     properties     &     algorithms     group  ,  2023-jan-18 

 Participants 
 The     following     people     have     contributed     to     this     document: 

 Markus     Scherer     (chair),     Josh     Hadley     (vice     chair),     Asmus     Freytag,     Elango     Cheran,     Ken     Whistler,     Manish 
 Goregaokar,     Mark     Davis,     Ned     Holbrook,     Peter     Constable,     Rick     McGowan,     Robin     Leroy 

 1.     UCD 

 1.1     Stabilize     toNFKC_Casefold     on     XID_Continue 

 Recommended     UTC     actions 

 1.  Consensus:  The     UTC     recommends     to     the     officers     a     new  stability     policy:     “For     each     string     S     containing 
 only     code     points     with     the     property     XID_Continue     at     a     given     Unicode     version,     toNFKC_Casefold(S) 
 under     that     version     is     identical     to     toNFKC_Casefold(S)     under     any     later     version     of     Unicode.” 

 2.  Action     Item  for     Mark     Davis,     PAG:     Relay     the     recommendation  for     the     additional     stability     policy     for 
 XID_Continue     toNFKC_Casefold     to     the     officers     and     update     the     policy     page.     See     L2/23-008     item     1.1. 

 3.  Action     Item  for     Ken     Whistler,     PAG:     In     DerivedCoreProperties.txt,  document     the     implications     of 
 changing     Default_Ignorable_Code_Point,     for     Unicode     Version     15.1.     See     L2/23-008     item     1.1. 

 4.  Action     Item  for     Mark     Davis,     PAG:     In     UAX     #31,     document  for     NFKC_Casefold     that     if     the 
 Default_Ignorable_Code_Point     value     changes     for     an     existing     XID_Continue     that     its     NFKC_Casefold 
 mapping     must     not     change.     For     Unicode     15.1.     See     L2/23-008     item     1.1. 

 5.  Action     Item  for     Mark     Davis,     PAG:     In     the     core     spec,  document     for     NFKC_Casefold     that     if     the 
 Default_Ignorable_Code_Point     value     changes     for     an     existing     XID_Continue     that     its     NFKC_Casefold 
 mapping     must     not     change.     Point     to     related     text     in     UAX     #31;     consider     related     edits     to     UAX     #31.     For 
 Unicode     16.0.     See     L2/23-008     item     1.1. 

 (Note:     A  GitHub     issue  has     been     filed     to     request     an  “invariant     test”     for     such     changes.) 

 Feedback 

 From     the     Source     Code     Working     Group: 

 The     stability     policy     guarantees     that     toCasefold∘toNFKC     is     stable     on     encoded     characters. 

 However,     the     recommended     operation     for     case-insensitive     identifier     comparison     since     Unicode     6     (or 
 maybe     5.2?)     is     not     toCasefold∘toNFKC,     but     toNFKC_Casefold;     toNFKC_Casefold     is     not     stable. 

 1 

https://www.unicode.org/consortium/props-algorithms.html
https://github.com/unicode-org/unicodetools/issues/385


 Making     toNFKC_Casefold     stable     would     require     stabilizing     the     assignment     of 
 Default_Ignorable_Code_Point     on     encoded     characters;     this     seems     too     constraining,     as     it     changed     as 
 recently     as     2013:  https://www.unicode.org/L2/L2013/13011.htm#134-C16  . 

 However,     the     Default_Ignorable_Code_Points     in     XID_Continue     is     more     stable: 
 https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5B%3ADefault_Ignorable_Code_Point 
 %3A%5D%26%5B%3AXID_Continue%3A%5D%5D&g=age&i=Gc  . 

 Background     information     /     discussion 

 ●  Basically,     we     provide     stable     XID_Continue,     and     it     is     recommended     for     use     with     case-insensitive 
 identifiers,     for     which     we     use     NFKC_Casefold,     and     so     it     makes     sense     to     stabilize     that,     too,     for     those 
 characters. 

 ●  We     could     still     change     the     DI     value     of     XID_Continue     characters     as     long     as     we     kept     the     NFKC_Casefold 
 behavior     of     those     characters     stable     (via     an     override). 

 1.2     We     should     add     toNFKC_SimpleCaseFold     and     simple     counterparts     to 
 the     full     stability     policies 

 Recommended     UTC     actions 

 1.  Consensus:  Create     a     new     derived     property     NFKC_SimpleCasefold  (NFKC_SCF),     derived     as     its 
 non-Simple     counterparts     except     for     the     use     of     the     Simple_Case_Folding     instead     of     the     Case_Folding, 
 for     Unicode     Version     15.1. 

 2.  Action     Item  for     Mark     Davis,     PAG:     Add     NFKC_SimpleCasefold  to     DerivedNormalizationProps.txt     and 
 PropertyAliases.txt,     for     Unicode     Version     15.1.     See     L2/23-008     item     1.2. 

 3.  Action     Item  for     Mark     Davis,     PAG:     Add     NFKC_SimpleCasefold  to     the     list     of     Full     Properties     in     Section 
 2.7     of     UTS     # 18,     Unicode     Regular     Expressions,     for     a     future     revision     of     that     UTS.     See     L2/23-008     item 
 1.2. 

 4.  Action     Item  for     Ken     Whistler,     PAG:     Add     NFKC_SimpleCasefold  to     the     Property     Table     of     Unicode 
 Standard     Annex     # 44,     Unicode     Character     Database,     for     Unicode     Version     15.1.     See     L2/23-008     item     1.2. 

 5.  Consensus:  The     UTC     recommends     to     the     officers     that  the     Case     Folding     and     Case     Pair     stability 
 policies     be     extended     to     simple     as     well     as     full     case     transformations.     See     L2/23-008     item     1.2. 

 6.  Action     Item  for     Mark     Davis,     PAG:     Relay     to     the     officers  the     recommendation     for     extending     stability 
 policies     for     case     mappings     to     simple     mappings,     and     update     the     policy     page.     See     L2/23-008     item     1.2. 

 Feedback 

 From     the     Source     Code     Working     Group: 

 While     we     recommend     the     use     of     full     case     folding     for     identifier     comparison,     some     implementations     need 
 simple     case     folding     for     compatibility;     for     instance,     Ada     is     a     case-insensitive     language     which     added 
 support     for     Latin-1     in     1995,     defining     things     so     that     ß     was     inequivalent     to     ss,     and     thus     has     had     to     use     the 
 simple     case     mappings     and     folding     when     adding     Unicode     support     (in     fact     they     briefly     referred     to     full     case 
 folding     in     Ada     2005,     but  reverted     it     in     the     next     Technical  Corrigendum  noticing     the     incompatibility;     this 
 was     likely     never     implemented     with     full     case     folding). 

 2 

https://www.unicode.org/L2/L2013/13011.htm#134-C16
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5B%3ADefault_Ignorable_Code_Point%3A%5D%26%5B%3AXID_Continue%3A%5D%5D&g=age&i=Gc
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5B%3ADefault_Ignorable_Code_Point%3A%5D%26%5B%3AXID_Continue%3A%5D%5D&g=age&i=Gc
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai05s/ai05-0227-1.txt?rev=1.9&raw=N


 We     recommend     the     use     of     toNFKC_Casefold,     rather     than     just     toCasefold     or     toCasefold∘toNFKC,     as     the 
 identifier     equivalence;     we     should     provide     a     corresponding     solution     for     those     who     are     stuck     with     simple 
 case     folding. 

 A     formal     definition     of     the     operation     in     the     core     spec     should     not     be     needed     (we     don’t     have     one     for     the 
 simple     case     mappings     and     case     folding),     but     a     property     is     needed. 

 Likewise     we     may     not     need     the     Changes_When,     we     don’t     have     those     for     the     simple     mappings. 

 Since     these     properties     are     meant     for     identifier     comparison,     the     same     stability     policies     should     apply     to 
 them     as     apply     to     full     case     folding. 

 1.3     change     UAX     44     multi-value     example     away     from     kCantonese 
 PRI     #465  Proposed     Update     UAX     #44,     Unicode     Character  Database 

 Recommended     UTC     actions 

 1.  The     PAG     reviewed     this     feedback,     but     the     EDC     is     recording     actions     for     it. 

 Feedback     (verbatim) 

 Date/Time:     Thu     Jan     5     23:44:42     CST     2023 
 Name:     Ben     Yang 
 Report     Type:     Public     Review     Issue 
 Opt     Subject:     465 

 The     following     text     is     found     in     UAX#44: 

 ---- 

 Most     properties     have     a     single     value     associated     with     each     code     point. 
 However,     some     properties     may     instead     associate     a     set     of     multiple     different 
 values     with     each     code     point.     For     example,     the     provisional     kCantonese 
 property,     which     lists     Cantonese     pronunciations     for     unified     CJK     ideographs, 
 has     values     which     consist     of     a     set     of     zero     or     more     romanized     pronunciation 
 strings.     Thus,     the     Unihan     Database     contains     an     entry: 

 U+342B     kCantonese     gun3     hung1     zung1 

 This     line     is     to     be     interpreted     as     associating     a     set     of     three     string     values, 
 {“gun3”,     “hung1",     “zung1”}     with     the     kCantonese     property     for     U+342B. 

 ---- 

 However,     since     I     believe     Unicode     14.0,     "kCantonese"     has     been     modified     to 
 only     allow     a     single     entry,     so     this     text     is     no     longer     accurate. 

 3 

https://www.unicode.org/review/pri465/


 If     we'd     like     to     stick     with     using     a     Unihan     property     to     demonstrate,     how 
 about     "kVietnamese"?     Here's     a     suggestion     for     an     edit: 

 ---- 

 Most     properties     have     a     single     value     associated     with     each     code     point. 
 However,     some     properties     may     instead     associate     a     set     of     multiple     different 
 values     with     each     code     point.     For     example,     the     provisional     kVietnamese 
 property,     which     lists     Vietnamese     pronunciations     for     unified     CJK     ideographs, 
 has     values     which     consist     of     a     set     of     zero     or     more     pronunciation     strings. 
 Thus,     the     Unihan     Database     contains     an     entry: 

 U+6258     kVietnamese     thác     thách     thốc     thước     thướt 

 This     line     is     to     be     interpreted     as     associating     a     set     of     three     string     values, 
 {"thác",     "thách",     "thốc",     "thước",     "thướt"}     with     the     kVietnamese     property 
 for     U+6258. 

 ---- 

 Background     information     /     discussion 

 https://www.unicode.org/reports/tr44/#Property_Values_As_Sets 

 https://www.unicode.org/reports/tr38/#kCantonese 

 Since     Unicode     14,     kCantonese     is     no     longer     a     normal     multi-value     property,     and     does     not     currently     map     any 
 code     point     to     more     than     one     value. 

 1.4     Incorrect     applicable     version     for     XID_Continue     stability 

 Recommended     UTC     actions 

 1.  Consensus:  The     UTC     recommends     to     the     officers     that  the     applicable     version     be     updated     to     4.1+     on 
 the     policy     “Once     a     character     is     XID_Continue,     it     must     continue     to     be     so     in     all     future     versions”. 

 2.  Action     Item  for     Mark     Davis,     PAG:     Relay     to     the     officers  the     recommendation     for     correcting     the 
 application     version     of     the     XID_Continue     stability     policy,     and     update     the     policy     page.     See     L2/23-008     item 
 1.4. 

 Feedback 

 From     Robin     Leroy: 

 https://www.unicode.org/policies/stability_policy.html#Property_Value  : 

 Applicable     Properties:     XID_Continue 
 Constraints:     Once     a     character     is     XID_Continue,     it     must     continue     to     be     so     in     all     future     versions. 

 4 

https://www.unicode.org/reports/tr44/#Property_Values_As_Sets
https://www.unicode.org/reports/tr38/#kCantonese
https://www.unicode.org/policies/stability_policy.html#Property_Value


 Applicable     Unicode     Versions:     3.0.1+ 

 https://unicode.org/Public/4.0-Update/DerivedCoreProperties-4.0.0.txt  : 

 30FB              ;     XID_Continue     #     Pc           KATAKANA     MIDDLE     DOT 

 https://util.unicode.org/UnicodeJsps/character.jsp?a=30FB&B1=Show  : 

 XID_Continue:     No 
 Unicode/Emoji     version:     15.0 

 The     reason     is 

 [  101-C16  ]     Consensus:     Change     the     General     Category     of  U+30FB     KATAKANA     MIDDLE     DOT     and 
 U+FF65     HALFWIDTH     KATAKANA     MIDDLE     DOT     from     "Pc"     to     "Po".     [L2/04-391] 

 and     it     was     not     added     to     Other_ID_Continue. 

 Background     information     /     discussion 

 Mark     Davis     verified     programmatically     that     the     last     time     characters     were     removed     from     XID_Continue     was     in 
 Unicode     4.1. 

 1.5     Character     classes     of     U+2126     OHM     SIGN     and     U+00B5     MICRO     SIGN 

 Recommended     UTC     actions 

 1.  Action     Item  for     Rick     McGowan:     Respond     to     Steven     Pemberton  with     the     information     in     the     background 
 section     of     L2/23-008     item     1.5. 

 Feedback     (verbatim) 

 Date/Time:     Wed     Dec     14     10:54:46     CST     2022 
 Name:     Steven     Pemberton 
 Report     Type:     Error     Report 
 Opt     Subject: 
 Character     classes     of     U+2126     OHM     SIGN     and     U+00B5     MICRO     SIGN 

 Programming     languages     and     other     software     systems     using     Unicode     generate     functions     directly     from 
 the     Unicode     database,     for     instance     functions     to     convert     strings     to     uppercase,     lowercase     and     titlecase. 

 For     instance,     CSS,     which     has     a     text-transform     property.     If     I     take     the     text     "Resistance     is     950µΩ"     and 
 apply     the     different     transforms,     I     get     displayed: 

 text-transform:     uppercase: 
 RESISTANCE     IS     950ΜΩ 

 5 

https://unicode.org/Public/4.0-Update/DerivedCoreProperties-4.0.0.txt
https://util.unicode.org/UnicodeJsps/character.jsp?a=30FB&B1=Show
https://www.unicode.org/L2/L2004/04361.htm#101-C16


 text-transform:     lowercase: 
 resistance     is     950µω 

 text-transform:     capitalize: 
 Resistance     Is     950µΩ 

 This     is     clearly     unacceptable,     since     it     changes     the     meaning     of     the     text. 

 To     fix     this,     U+2126     OHM     SIGN     and     U+00B5     MICRO     SIGN     should     be     classified     as     "Symbol,     Other",     and 
 not     be     assigned     case     equivalents. 

 Respectfully, 

 Steven     Pemberton 

 Background     information     /     discussion 

 ●  We     do     not     guarantee     that     transforming     text     (other     than     normalization)     will     not     affect     its     meaning. 
 ●  More     generally,     applying     case     mappings     to     technical     text     rather     than     “normal     language”     is     a     mistake, 

 and     cannot     be     fixed     in     the     encoding     nor     via     properties. 
 ●  Case     mappings     are     lossy     even     on     normal     text     (lowercasing     iPod     or     McGowan;     anything     German; 

 uppercasing     Irish).     Matters     are     much     worse     in     technical     text. 
 ●  Under     case     folding     stability,     no     change     is     possible. 
 ●  Under     normalization,     µ     and     Ω     normalize     to     their     standard     Greek     counterparts,     so     treating     them 

 differently     is     not     possible. 
 ●  ASCII     letters     used     for     SI     units     are     also     not     exempt     from     casing,     and     also     change     meaning     with     case:     1 

 ms     =     1     millisecond,     whereas     1MS     =     1     megasiemens. 
 ●  Not     all     letters     for     SI     units     have     duplicates,     this     is     the     reason     why     the     few     that     were     introduced 

 separately     have     been     made     canonically     equivalent     to     standard     letters.     This     way,     all     SI     units     are     treated 
 the     same. 

 2.     New     Scripts     &     Characters 
 PAG     members     reviewed     the     following     proposals,     provided     feedback     to     SAH,     and     the     feedback     has     been 
 addressed. 
 No     further     recommended     actions     from     our     side. 

 ●  L2/22-289  Final     Proposal     to     encode     the     Tai     Yo     Script. 
 ●  L2/22-236  Proposal     to     encode     KAWI     SIGN     NUKTA 
 ●  L2/22-250  Canonical     combining     class     for     nukta     characters 
 ●  L2/22-260  Proposal     to     encode     three     characters     in     Tulu-Tigalari  /     [  173-C27  ]     approving     two     of     them 
 ●  L2/22-281  Proposal     to     encode     Two     Quranic     Arabic     Characters 
 ●  L2/22-218  Proposal     to     Encode     Chisoi 

 6 

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-289
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-236
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-250
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-260
https://www.unicode.org/cgi-bin/GetL2Ref.pl?173-C27
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-281
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-218


 3.     Bidi 

 3.1     UAX     #9:     Feedback     on     text     for     N0     and     BD16 
 PRI     #460  Proposed     Update     UAX     #9,     Unicode     Bidirectional  Algorithm 

 Manish     Goregaokar     submitted     the     feedback     below,     and     then     found     more     issues     and     iterated     with     PAG 
 members,     resulting     in 

 L2/23-014  Proposal     for     amendments     to     UAX     #9 

 Recommended     UTC     actions 

 1.  Action     Item  for     Manish     Goregaokar,     PAG:     In     Proposed  Update     UAX     #9,     Unicode     Bidirectional 
 Algorithm,     apply     the     changes     proposed     in     L2/23-014,     for     Unicode     Version     15.1.     See     L2/23-008     item 
 3.1. 

 2.  Action     Item  for     Manish     Goregaokar,     PAG:     Prepare     a  proposal     with     additional     revisions     of     UAX     #9 
 clarifying     the     flow     of     control     and     data,     for     a     future     version     of     Unicode.     See     L2/23-008     item     3.1. 

 Feedback     (verbatim) 

 Date/Time:     Sun     Dec     18     00:13:30     CST     2022 
 Name:     Manish     Goregaokar 
 Report     Type:     Public     Review     Issue 
 Opt     Subject:     460 
 I     was     recently     implementing     N0     and     I     have     a     couple     largely     (but     not     entirely) 
 editorial     suggestions: 

 1.  BD16  variable     naming 

 In     BD16,     there     are     two     mutated     variables:     "a     stack"     and     "a     list     of 
 elements".     They're     named     according     to     their     types     rather     than     what     they     do 
 and     they're     somewhat     confusable,     I     think     it's     worth     giving     them     names 
 (probably     ̀stack`     or     ̀open_brackets`     and     ̀result`) 

 2.     BD16     bailout 

 In     BD16     it     says     "stop     processing     BD16     for     the     remainder     of     the     isolating     run 
 sequence".     Is     this     a     degenerate     case,     or     is     behavior     expected     to     be     defined 
 here?     It's     unclear     *where*     this     bails     out     to:     BD16     is     expected     to     produce     a 
 result     so     you     have     to     end     up     with     something.     A     couple     options     are     to     return 
 an     empty     list,     return     the     current     list,     or     return     the     current     list,     but 
 sorted. 

 3.     BD16     Empty     stack     case 
 7 

https://www.unicode.org/review/pri460/
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-014
https://unicode.org/reports/tr9/#BD16


 "Declare     a     variable     that     holds     a     reference     to     the     current     stack     element" 
 does     not     handle     the     empty     stack     case     (i.e.     a     string     that     starts     with     a 
 closing     bracket).     It's     kind     of     obvious     from     context     (just     go     straight     to 
 step     5)     but     it     probably     could     be     spelled     out     explicitly. 

 4.  N0  step     c     sos     handling 

 The     spec     inconsistently     refers     to     sos     as     a     strong     type     in     its     own     right     as 
 well     as     a     useful     marker     for     the     start-of-sequence     position.     I     suspect     this 
 could     be     disambiguated     here     by     saying     something     like     "until     the     first 
 strong     type     (L     or     R)     is     found.     If     none,     use     the     value     assigned     to     _sos_" 

 5.     N0     step     c     complexity 

 Step     c     basically     does     the     following: 

 -     (c)     look     for     the     first     strong     type     s     preceding     the     bracket,     falling     back     to     the     value     of     sos     if     necessary 
 -     (c     1)     If     s     !=     e,     assign     brackets     to     s 
 -     (c     2)     Else     (when     s     ==     e)     assign     brackets     to     e 

 (c     1)     and     (c     2)     could     be     much     more     succinctly     written     as     just     "assign 
 brackets     to     s".     I'll     admit     that     being     overly     Gricean     is     probably     not     the 
 best     when     it     comes     to     reading     specifications,     but     the     fact     that     this     was 
 written     out     as     two     steps     gave     me     pause     and     I     had     to     reevaluate     if     I     had 
 missed     something     important. 

 I     think     we     should     do     one     of: 

 -     Collapsing     (c     1)     and     (c     2)     to     a     single     step     that     always     assigns     to     the 
 strong     type     found,     and     add     some     non     normative     text     about     how     this     finds 
 established     context     but     falls     back     to     the     embedding     direction. 

 -     Add     some     non     normative     text     saying     "this     has     the     effect     of     assigning 
 to     the     strong     type     found"     or     something     so     it's     clear     that     the     spec     is 
 being     verbose     here. 

 The     main     value     I     see     in     keeping     (c     1)     separate     is     that     it     is     an     implicit 
 definition     of     the     "established     context"     concept,     which     is     not     used     in     the 
 spec     but     might     be     generally     useful. 

 8 

https://unicode.org/reports/tr9/#N0


 4.     Text     Segmentation 

 4.1     Chapter     3     D58     Grapheme     base     &     D61b     Graphical     application 

 Recommended     UTC     actions 

 1.  Action     Item  for     Mark     Davis,     Robin     Leroy,     PAG:     Review  the     core     spec     for     "grapheme     base"     and 
 Grapheme_Base     and     propose     changes,     as     appropriate.     See     L2/23-008     item     4.1. 

 Feedback     (verbatim) 

 Date/Time:     Thu     Sep     15     05:52:10     CDT     2022 
 Name:     Rossen     Mikhov 
 Report     Type:     Error     Report 
 Opt     Subject:     Unicode     Chapter     3     Conformance 

 https://www.unicode.org/versions/Unicode15.0.0/ch03.pdf 
 Version     15.0.0 

 Location: 
 D62b     Graphical     Application 

 Problematic     text: 

 A     nonspacing     mark     in     a     defective     combining     character     sequence     is     not     part     of 
 a     grapheme     cluster     and     is     subject     to     the     same     kinds     of     fallback     processing 
 as     for     any     defective     combining     character     sequence. 

 Explanation: 

 "Grapheme     cluster"     is     defined     in     D60     as     "The     text     between     grapheme     cluster 
 boundaries".     So,     formally,     any     character     is     part     of     some     grapheme     cluster, 
 be     it     a     degenerate     one. 

 What     is     more     troubling     with     this     definition     D62b     is     that     it     states     that 
 nonspacing     marks     apply     to     grapheme     bases,     with     "Grapheme     base"     being 
 defined     in     D58     as     based     on     Grapheme_Base.     But     Grapheme_Base     is     no     longer 
 used     by     UAX29.     It     isn't     clear     if     nonspacing     marks     should     "graphically 
 apply"     to     things     other     than     Grapheme_Base     characters     and     Korean     syllables, 
 for     example     what     about     emoji     ZWJ     sequences. 

 Background     information     /     discussion 

 This     was     originally     filed     for     consideration     for     UTC     #173     but     was     overlooked     at     the     time.     The     group     agrees     that 
 we     should     consider     deprecating     the     Grapheme_Base     property     but     not     before     fixing     the     spec     where     it     refers     to 
 it. 

 9 



 4.2     LineBreakTest.txt     bug     for     unassigned     U+1F02C 

 Recommended     UTC     actions 

 1.  Discussed;     no     action     for     UTC 

 Feedback     (verbatim) 

 Date/Time:     Thu     Nov     10     06:14:10     CST     2022 
 Name:     Tomasz     Gucio 
 Report     Type:     Error     Report 
 Opt     Subject:     LineBreakTest.txt 

 Hello, 

 I've     found     what     might     be     an     error     in     the     latest     line     break     test     file.     In     the 
 case     below,     the     expected     result     is     no     break     between     the     two     code     points     based 
 on     the     first     code's     property     (Other).     However,     this     and     other     codes     in     the 
 range     are     Ideographic     (ID)     and     so     line     break     should     be     allowed. 

 Property     data:     LineBreak-15.0.0.txt,     Date:     2022-07-28,     09:20:42     GMT     [KW,     LI] 

 1F02C..1F02F;ID       #     Cn         [4]     <reserved-1F02C>..<reserved-1F02F> 
 Test     case:     LineBreakTest-15.0.0.txt,     Date:     2022-02-26,     00:38:39     GMT 

 ×     1F02C     ×     1F3FF     ÷  #      ×     [0.3]     <reserved-1F02C>     (Other)     ×     [30.22]     EMOJI     MODIFIER     FITZPATRICK 
 TYPE-6     (EM)     ÷     [0.3] 
 Best     regards, 
 Tomasz 

 Background     information     /     discussion 

 It     is     not     obvious     what     the     LineBreakTest.txt     file     comment     <reserved-1F02C>     (Other)     means     because     "Other"     is 
 not     a     Line_Break     value     alias. 

 In     any     case,     U+1F02C     is     Extended_Pictographic     and     unassigned,     and     rule     LB30b     keeps     these     together     with     a 
 following     EM:     “[\p{Extended_Pictographic}&\p{Cn}]     ×     EM” 

 So     this     seems     to     be     working     properly. 

 However,     it     might     be     a     good     idea     to     better     document     the     intended     behavior     of     “Other”     for     this     test,     and     possibly 
 update     instances     of     “(Other)”     to     “(ExtPicUnassigned)”.  An     issue  for     this     has     been     created     in     the     unicodetools 
 repo. 

 10 

https://github.com/unicode-org/unicodetools/issues/354


 5.     Collation 

 5.1     Collation     of     Hebrew     punctuation     Geresh     &     Gershayim 
 L2/23-016  DUCET:     Sort     quotation     marks+Geresh+Gershayim  like     their     ASCII     fallbacks 

 Recommended     UTC     actions 

 1.  Consensus:  Change     the     Unicode     default     sort     order     of  certain     punctuation     marks     according     to 
 L2/23-016. 

 2.  Action     Item  for     Markus     Scherer,     PAG:     Change     the     Unicode  default     sort     order     of     certain     punctuation 
 marks     according     to     L2/23-016,     for     Unicode     Version     15.1. 

 Summary 

 In     the     Unicode     default     sort     order,     several     punctuation     marks     that     look     similar     to     ASCII     apostrophe     and     double 
 quote,     or     for     which     those     ASCII     characters     are     common     fallbacks,     sort     primary-differently     from     them.     This 
 yields     poor     sorting,     and     makes     it     hard     to     search     for     text.     CLDR     collation     tailorings     already     change     the     behavior 
 of     some     of     these     characters.     Also,     a     prominent     text     search     implementation     works     around     this     issue.     The 
 proposal     is     to     make     these     characters     primary-equal     to     their     ASCII     fallbacks. 

 6.     Security 

 6.1     Properties     for     UAX     #31     Standard     Profiles 

 Recommended     UTC     actions 

 1.  Consensus:  Create     two     properties,     ID_Compat_Math_Start  and     ID_Compat_Math_Continue,     as 
 documented     in  section     7.1,     Mathematical     Compatibility  Notation     Profile  ,     of     the     proposed     update     of     UAX 
 #31     (revision     38,     draft     6),     for     Unicode     Version     15.1. 

 2.  Action     Item  for     Robin     Leroy,     PAG:     Create     two     properties,  ID_Compat_Math_Start     and 
 ID_Compat_Math_Continue,     as     documented     in  section  7.1,     Mathematical     Compatibility     Notation 
 Profile  ,     of     the     proposed     update     of     UAX     #31     (revision  38,     draft     6),     for     Unicode     Version     15.1.     Update 
 PropertyAliases.txt     and     PropList.txt     as     appropriate.     See     L2/23-008     item     6.1. 

 3.  Action     Item  for     Ken     Whistler,     PAG:     Document     the     new  properties     ID_Compat_Math_Start     and 
 ID_Compat_Math_Continue     in     UAX     #44,     for     Unicode     Version     15.1.     See     L2/23-008     item     6.1. 

 4.  Action     Item  for     Mark     Davis,     PAG:     Add     ID_Compat_Math_Start  and     ID_Compat_Math_Continue     to     the 
 list     of     Full     Properties     in     Section     2.7     of     UTS     # 18,     Unicode     Regular     Expressions,     for     a     future     revision     of 
 that     UTS.     See     L2/23-008     item     6.1. 

 Feedback 

 From     Robin     Leroy: 
 The     standard     profiles     in     the     proposed     Section     7     of     UAX     # 31     rely     on     the     following     sets: 

 11 

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-016
https://www.unicode.org/reports/tr31/tr31-38d6.html#Mathematical_Compatibility_Notation_Profile
https://www.unicode.org/reports/tr31/tr31-38d6.html#Mathematical_Compatibility_Notation_Profile
https://www.unicode.org/reports/tr31/tr31-38d6.html#Mathematical_Compatibility_Notation_Profile


 [∂𝛛𝜕𝝏𝞉𝟃∇𝛁𝛻𝜵𝝯𝞩∞] 
 [∂𝛛𝜕𝝏𝞉𝟃∇𝛁𝛻𝜵𝝯𝞩∞⁽₍⁾₎⁺₊⁼₌⁻₋⁰₀¹₁²₂³₃⁴₄⁵₅⁶₆⁷₇⁸₈⁹₉] 
 [[:Pattern_Syntax:]&[:Emoji_Presentation:]] 
 Since     these     sets     are     meant     to     be     used     in     the     definition     of     the     lexical     structure     of     computer     languages,     it 
 makes     sense     if     they     can     be     referred     to,     e.g.,     in     regular     expressions     that     implement     UTS     # 18. 

 This     means     we     would     need     properties     for     sets     1     and     2.     It     was     suggested     at     UTC     # 173     that     3.     be     made 
 a     derived     property,     but     it     may     be     less     clear     how     necessary     this     is,     given     that     UTS     # 18,     UnicodeSet,     etc. 
 allow     for     set     intersection     already. 

 I     am     using     the     names     ID_Compat_Math_Start     and     ID_Compat_Math_Continue     for     the     first     two     in     the 
 draft     for     now.     Ken     suggested     Emoji_PSEP     for     the     third. 

 Question:     how     many     properties     do     we     need,     and     what     are     their     names? 

 Background     information     /     discussion 

 PAG     discussed     and     concluded     that     there     should     be     2     new     properties     for     the     first     2     sets,     but     not     for     the     3rd 
 which     is     trivially     computable     from     the     intersection     of     existing     properties. 

 6.2     Suspected     endless     loop     in     UTS     #55  zero()  example 

 Recommended     UTC     actions 

 1.  Action     Item  for     Rick     McGowan:     Thank     David     Starner  for     their     feedback     of     [Mon     Dec     5     17:34:03     CST 
 2022]     and     relay     the     information     in     the     background     section     of     L2/23-008     item     6.2. 

 Feedback     (verbatim) 

 Date/Time:     Mon     Dec     5     17:34:03     CST     2022 
 Name:     David     Eugene     Starner 
 Report     Type:     Public     Review     Issue 
 Opt     Subject:     466 

 void     zero(double**     matrix,     int     rows,     int     columns)     { 
 for     (int     i     =     0;     i     <     rows;     ++i)     { 

 double*     row     =     matrix[i]; 
 for     (int     і     =     0;     і     <     columns;     ++і)     { 

 row[i]     =     0.0; 
 } 

 } 
 } 
 This     program     looks     like     it     zeros     a     rows     by     columns     rectangle,     but     it     actually     only     zeros     a     diagonal, 
 because     the     identifier     і     on     line     4     is     a     Cyrillic     letter,     whereas     i     is     the     Latin     letter     everywhere     else. 

 That     program     looks     like     it     goes     into     an     infinite     loop     if     rows     >     columns,     as     the     inner     loop     index     overwrites 
 the     outer     one.     It's     bad     code     whether     or     not     the     identifier     on     line     4     is     Latin     or     Cyrillic. 

 12 



 Background     information     /     discussion 

 See  https://www.unicode.org/reports/tr55/tr55-1.html#Spoofing-confusables 

 The     example     looks     right.     David     seems     to     be     overlooking     the     comment     that     the     inner     loop     head     uses     Cyrillic     "і" 
 not     Latin     "i".     If     it     did     use     the     same     variable     name,     then     the     compiler  might  warn     about     one     ‘i’     shadowing  the 
 other,     but     there     would     be     no     infinite     loop:     the     program     would     zero     a  rows  by  columns  rectangle,     as     described. 

 What     the     program     looks     like:  https://gcc.godbolt.org/z/dfdG1vbGc 
 What     the     program     really     is:  https://gcc.godbolt.org/z/v7bb858EP 

 6.3     PD-UTS     55     lacks     information     on     spoofing     and     usability     issues     /     Brahmic 

 Recommended     UTC     actions 

 1.  PAG     recommends     no     action,     except     to     record     in     the     minutes     that     the     feedback     from     Norbert     Lindenberg 
 [Thu     Dec     15     00:05:11     CST     2022]     should     be     considered     by     PAG     as     part     of     prior     action     172-A82. 

 Feedback     (verbatim) 

 Date/Time:     Thu     Dec     15     00:05:11     CST     2022 
 Name:     Norbert     Lindenberg 
 Report     Type:     Public     Review     Issue 
 Opt     Subject:     466 

 The     proposed     draft     UTS     #55,     Unicode     Source     Code     Handling,     lacks     information     on     spoofing     and 
 usability     issues     arising     from     lookalike     syllables     in     Brahmic     scripts. 

 Most     Brahmic     scripts     have     been     encoded     in     Unicode     according     to     principles     that     differ     from     those     used 
 for     most     other     scripts.     For     most     non-Brahmic     scripts,     spacing     characters     are     encoded     in     visual     order, 
 with     nonspacing     marks     following     the     spacing     characters     they     attach     to.     If     multiple     nonspacing     marks 
 attach     to     the     same     base,     marks     that     interact     typographically     are     encoded     from     innermost     (closest     to     the 
 base)     to     outermost,     while     Unicode     normalization     handles     ambiguities     caused     by     nonspacing     marks     that 
 don’t     interact     typographically.     For     most     Brahmic     scripts,     the     intent     is     that     characters     are     encoded     in 
 phonetic     order,     independent     of     visual     placement     relative     to     each     other,     and     Unicode     normalization     is 
 largely     disabled     by     using     the     canonical     combining     class     0     for     most     combining     marks. 

 To     ensure     interoperability     between     smart     keyboards,     predictive     input     systems,     spelling     checkers,     font 
 rendering     systems,     fonts,     systems     for     searching     and     sorting     text,     optical     character     recognition     systems, 
 speech     input     and     output     systems,     text     normalization,     and     other     text     processing     software,     the     Unicode 
 Standard     would     have     to     define     the     encoding     order     of     orthographic     syllable     components     precisely     and 
 unambiguously     for     each     Brahmic     script.     However,     the     Unicode     Standard     fails     to     do     so.     Fonts     and     font 
 rendering     systems     to     some     extent     try     to     impose     order     by     inserting     dotted     circles     into     character 
 sequences     that     their     designers     find     inappropriate,     but     do     so     incompletely     and     inconsistently,     with     a 
 tendency     to     relax     rules     over     time. 

 13 

https://www.unicode.org/reports/tr55/tr55-1.html#Spoofing-confusables
https://gcc.godbolt.org/z/dfdG1vbGc
https://gcc.godbolt.org/z/v7bb858EP


 The     result     is     that     in     a     number     of     Brahmic     scripts     a     given     orthographic     syllable     can     be     encoded     in 
 multiple     ways     with     the     same     rendering.     This     is     well     documented,     for     example,     for     Khmer     –     see     Horton 
 et     al.     2017,     Lindenberg     2019,     Hosken     2021.     For     example,     the     word     �ស�ី     (woman)     can     be     encoded     with 
 three     different     character     sequences     with     identical     rendering     in     all     major     rendering     systems:     �ស�ី,     �ស�ី,     �សី� 
 –     even     after     eliminating     ambiguities     introduced     by     the     intentional     confusable     subjoined     consonants     ◌� 
 (coeng     da)     and     ◌�     (coeng     ta).     See     Hosken     2021     pages     34-36     for     more     examples. 

 The     issues     could     be     documented     in     UTS     55     as     follows. 

 Spoofing     using     lookalike     orthographic     syllables 

 The     Unicode     Standard     uses     phonetic     encoding     order     for     most     Brahmic     scripts,     but     does     not     define     the 
 encoding     order     of     orthographic     syllable     components     for     most     such     scripts.     As     a     consequence,     syllables 
 can     often     be     encoded     in     multiple     character     sequences     that     render     identically. 
 This     can     be     used     for     spoofing,     for     instance,     by     constructing     identifiers     that     look     like     they     are     the     same, 
 but     are     actually     different. 

 Example:     Consider     the     following     Python     program: 

 �ស�ី     =     True 
 �ស�ី     =     False 
 if     �ស�ី: 
 print("True!") 
 else: 
 print("False?”) 
 The     program     looks     like     it     would     print     “False?”,     but     it     actually     prints     “True!”     because     the     �ស�ី     assigned 
 False     is     a     different     variable     than     the     �ស�ី     assigned     True,     and     the     �ស�ី     tested     in     the     if-statement     is     the     one 
 assigned     True. 

 Usability     issues     arising     from     lookalike     orthographic     syllables 

 When     working     with     Brahmic     scripts,     there     is     a     common     usability     issue     whereby     one     accidentally     types 
 an     orthographic     syllable     using     the     wrong     character     sequence,     with     no     difference     in     the     resulting 
 rendering.     For     example,     the     code     shown     in     “Spoofing     using     lookalike     orthographic     syllables”     may     be 
 the     result     of     one     engineer     typing     �ស�ី,     another     typing     �ស�ី,     which     look     identical     but     are     in     fact     different 
 variables. 

 To     address     these     problems,     the     Unicode     Standard     would     have     to     specify     the     encoding     order     of 
 orthographic     syllable     components     for     all     Brahmic     scripts.     A     proposal     for     Khmer     is     currently     under 
 discussion. 

 References: 

 Joshua     Horton,     Makara     Sok,     Marc     Durdin,     Rasmey     Ty:     Spoof-Vulnerable     Rendering     in     Khmer     Unicode 
 Implementations.     2017. 
 https://lt4all.elra.info/proceedings/lt4all2019/pdf/2019.lt4all-1.35.pdf 

 Norbert     Lindenberg:     Issues     in     Khmer     syllable     validation.     2019. 

 14 

https://lt4all.elra.info/proceedings/lt4all2019/pdf/2019.lt4all-1.35.pdf


 https://lindenbergsoftware.com/en/notes/issues-in-khmer-syllable-validation/ 

 Martin     Hosken:     Khmer     Encoding     Structure.     2021. 
 https://www.unicode.org/L2/L2021/21241-khmer-structure.pdf 

 Background     information     /     discussion 

 The     issues     described     in     the     feedback     fall     under     the     much     broader     umbrella     of     the     dismal     state     of     our 
 confusability     detection     for     those     scripts.     Confusable     detection     (which     is     defined     in     # 39,     not     in     # 55)     should     be 
 significantly     improved,     in     particular     for     those     scripts     that     have     a     profusion     of     «     do     not     use     »     sequences. 

 Work     is     ongoing     to     improve     this     aspect     of     confusable     detection     in     # 39. 

 Script-specific     considerations     do     not     belong     in     PDUTS     # 55,     whose     audiences     cannot     be     expected     to     dive     into 
 those     subtleties;     once     the     suitable     mechanisms     are     defined     in     # 39,     they     will     be     picked     up     by     the 
 recommendations     in     # 55     (either     automatically     or     with     a     small     update     to     # 55,     depending     on     what     exactly     we 
 do). 

 6.4     Review     SCWG     proposals     for     UTC     #174 
 L2/23-017  Recommendations     of     the     source     code     working  group     for     UTC     #174 

 Recommended     UTC     actions 

 1.  PAG     recommends     that     the     UTC     review     PDU-UAX31.     Note     the     further     technical     changes     in     the 
 evolution     of     this     update. 

 2.  PAG     endorses     the     recommendations     in     the     doc. 

 Summary 

 Further     technical     changes     to     the     proposed     update     for     # 31     and     proposed     draft     to     # 55. 

 6.5     Errors     in     UTR#36     Unicode     Security     Considerations 

 Recommended     UTC     actions 

 1.  Action     Item  for     Mark     Davis,     Robin     Leroy,     PAG:     Address  the     editorial     issues     described     in     the     feedback 
 of     [Thu     Jan     5     20:53:39     CST     2023],     as     described     in     Section     6.5     of     L2/23-008. 

 Feedback     (verbatim) 

 Date/Time:     Thu     Jan     5     20:53:39     CST     2023 
 Name:     NAKAUCHI     Tomohiro 
 Report     Type:     Error     Report 
 Opt     Subject:     UTR#36     Unicode     Security     Considerations 

 I've     read     UTR#36-rev.15     interestedly.     At     that     time,     I     found     some     errors. 
 15 

https://lindenbergsoftware.com/en/notes/issues-in-khmer-syllable-validation/
https://www.unicode.org/L2/L2021/21241-khmer-structure.pdf
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-017


 So,     I     would     like     to     report     those: 

 1.  I     have     a     question     that     in     line     619     to     625     why     such     structure(html)     is     used?     (which     invokes     that 
 the     tool     tip     shows     'U+0906     DEVANAGARI     LETTER     AA'     in     my     web     browser.) 
 I     think     that     description     of     'title'     attribute     used     in     span     element     is     inappropriate. 

 2.  In     addition,     at     the     same     parahraph,     description     says     that     'look     identical     (ẋ ̣    and     ẋ ̣̇ )',     but     my     web 
 browser     shows     that     the     former     is     <x,     dot_below,     dot_above>     and     the     latter     is     <x,     dot_below, 
 dot_above,     dot_above>.     So,     I     think     that     these     are     not     identical. 

 3.  In     line     1393,     word     'such     as'     is     duplicated. 
 4.  In     section     2.7     Numeric     Spoofs,     I     think     that     description     is     slightly     incorrect. 

 Although     string     appeared     like     "89"     is     represented     by     Bengali     and     Oriya,     this     description     says 
 that     is     only     'the     Bengali     string     "৪୨"'. 

 5.  In     line     1628,     text     written     is     'Final_Sigma     as     provided     in     Table     3-15'. 
 I     guess     that     this     is     'Table     3-17'. 

 6.  In     line     3044,     word     'from'     is     duplicated. 

 Background     information     /     discussion 

 PAG     agrees     with     the     feedback     and     recommends     the     editorial     changes     suggested,     except     we     should     use     a 
 different     example     for     #2.     Specifically,     a     sequence     where     the     CCA     stays     put,     such     as     x ̣̄      vs.     x ̣̄ . 

 16 


