
Beyond Canonical Equivalence: A discussion on a way
forward

Lawrence Wolf-Sonkin

January 2023

Abstract
The Unicode standard provides mechanisms by which to consider distinct sequences of codepoints
as equivalent for various purposes. This is very helpful for dealing with the issue of multiply-
encodable strings. Unfortunately, for a variety of reasons, many scripts in the standard, but
especially Brahmic scripts widespread in South and South-East Asia, contain a plethora of multiply-
encodable strings which are not formally equivalent by any mechanism in the standard. This leads
to a wide variety of downstream issues whereby two strings, in a single script, that seem identical
to end users may in-fact have multiple non-equivalent encoded representations. The existing
mechanisms of canonical and compatibility equivalence have strong stability requirements which
prevent us from alleviating this there. In this paper, we will outline a potential way forward via
a more expansive notion of string equivalence which makes a different set of tradeoffs, preferring
correctness and updateability over stability.

Background
For a variety of historical and contemporary reasons, the Unicode standard possesses multiple
methods by which to encode certain strings, as described in UAX #1512. Many of cases involve
codepoints which were encoded for compatibility reasons (compatibility equivalence) with other text
encoding standards, but yet many others deal with fundamental ambiguities which we declare to
be equivalent (canonical equivalence). These mechanisms are absolutely central to a text standard
and are used by implementers to avoid the pitfalls associated with visually indistinguishable strings
represented by distinct codepoint sequences, for example q̣̇ as being encoded either as <q,�̇,�̣> or
as <q,�̣,�̇>.

It is quite common in large systems for text-at-rest to be normalized into NFC. This works well for
cases lucky enough to be captured already by the Unicode Standard’s canonical decompositions,
but there is an extremely long tail of strings which are (almost) considered equivalent by the
standard, but are not formally considered canonically equivalent (nor compatibility equivalent).

Many of these are described in the core specification itself, but lack any weight via existing mecha-
1The Unicode Standard, Version 15.0 – Core Specification, Section 2.12 Equivalent Sequences
2Unicode Standard Annex 15 (UAX #15)

1

https://www.unicode.org/versions/Unicode15.0.0/ch02.pdf#page=54
https://www.unicode.org/reports/tr15/
rick
Text Box
L2/23-056



nisms for declaring such equivalences, such as canonical equivalence. In some cases, the core spec
discusses multiple representations of a grapheme, but doesn’t quite declare them as equivalent in
any formal way. For example, the “eyelash-RA” in Devanagari can be encoded <RRA,VIRAMA>
or as <RA, VIRAMA, ZWJ>3. A similar example is the Tamil Shri ligature, for which the core
specification states4:

Prior to Unicode 4.1, the best mapping to represent the ligature shri was to the se-
quence <U+0BB8, U+0BCD, U+0BB0, U+0BC0>. Unicode 4.1 in 2005 added the
character U+0BB6 TAMIL LETTER SHA and as a consequence, the best mapping
became <U+0BB6, U+0BCD, U+0BB0, U+0BC0>. Due to slow updates to imple-
mentations, both representations are widespread in existing text. Therefore, treating
both representations as equivalent sequences is recommended.

It is important to note that, even though the core specification describes these cases in a way
that makes them quite similar fundamentally to either compatibility equivalence or canonical
equivalence, there is no existing mechanism by which to declare them to be such formally since
already encoded characters are subject to Unicode normalization stability requirements5.

Many other such examples of “nearly equivalent” sequences are described via “Do-Not-Use” tables
(15 in total) throughout the core spec, which are especially numerous and productive in the Brah-
mic scripts. These list a grapheme or glyph alongside its preferred encoding as well as a list of
dispreferred encodings. These tables suggest a “preference” by the standard, but isn’t particularly
actionable as to precisely what this preference means. For example, the way that these sequences
should be treated by various sorts of systems, such as input methods, rendering engines, lookup,
or textual analysis when they do in-fact appear is left unclear. It should also be noted that some
of these “Do-Not-Use” tables are often exemplary rather than exhaustive, such as the Do-Not-Use
table on Devanagari consonant conjuncts.6

A potential way forward
The current situation of having semi-normative descriptions of sequences which are treated as
either “viable-encodings-but-differently-preferred” or “recommended-to-be-treated-as-equivalent”,
but which ultimately have no formal relation between each other, is an under-specified state whose
ambiguity often leads to unexpected issues to users of these scripts and software which tries to
process them.

These sorts of issues have consistently come up during Script Ad-Hoc meetings, where we try to
steer new scripts away from these encoding models which would lend themselves to these structures
in order to avoid the issues that come along with them. With that said, there are still many scripts
already encoded in the standard which already have these non-equivalent multiple-encodings, and
the Unicode Standard itself seems to be the appropriate place to try to properly define the relations
between these sequences.

3The Unicode Standard, Version 15.0 – Core Specification, Section 12.1 Devanagari, Rule R5 and R5a
4The Unicode Standard, Version 15.0 – Core Specification, Section 12.6 Tamil, Figure 12-24. Tamil Ligatures

for shri
5Unicode® Character Encoding Stability Policies, Normalization Stability
6The Unicode Standard, Version 15.0 – Core Specification, Section 12.1 Devanagari, Table 12-3. Devanagari

Consonant Conjuncts

2

https://www.unicode.org/versions/Unicode15.0.0/ch12.pdf#page=16
https://www.unicode.org/versions/Unicode15.0.0/ch12.pdf#page=52
https://www.unicode.org/versions/Unicode15.0.0/ch12.pdf#page=52
https://www.unicode.org/policies/stability_policy.html
https://www.unicode.org/versions/Unicode15.0.0/ch12.pdf#page=11
https://www.unicode.org/versions/Unicode15.0.0/ch12.pdf#page=11


The key features of a solution would be:

• Significantly looser stability requirements than canonical decompositions, in order to allow
us to update this from version-to-version of the Unicode Standard

• That canonical equivalence would be a refinement of this new wider notion of extended
canonical equivalence

– This would mean that each equivalence class under this new extended methodology
would be a merger of some existing canonical equivalence classes

I would be interested in getting the view of the Unicode Technical Committee on a way forward to
more formally, systematically, and helpfully define these relations in a way that will help users and
implementers, and whether the UTC would find solving this to be in-scope, or whether it would
be more appropriately solved elsewhere.

Appendix
Further “light-equivalence” examples
Other such examples are described inline in the standard7:

U+0654 ARABIC HAMZA ABOVE should not be used with U+0649 ARABIC LET-
TER ALEF MAKSURA. Instead, the precomposed U+0626 ARABIC LETTER YEH
WITH HAMZA ABOVE should be used to represent a yeh-shaped base with no dots
in any positional form, and with a hamza above.

7The Unicode Standard, Version 15.0 – Core Specification, Section 9.2 Arabic, Combining Hamza

3

https://www.unicode.org/versions/Unicode15.0.0/ch09.pdf#page=32

	Abstract
	Background
	A potential way forward
	Appendix
	Further “light-equivalence” examples




