
 L2/23-079

 UTC #175 properties feedback & recommendations
 Markus Scherer / Unicode properties & algorithms group , 2023-apr-20

 Participants
 The following people have contributed to this document:

 Markus Scherer (chair), Josh Hadley (vice chair), Asmus Freytag, Elango Cheran, Ken Whistler, Manish
 Goregaokar, Mark Davis, Ned Holbrook, Peter Constable, Rick McGowan, Robin Leroy, Steven Loomis

 1. Core spec
 This section intentionally left blank.

 2. UCD

 2.1 Add Simple_Case_Folding mappings for three existing characters
 L2/23-062 from Markus Scherer

 Recommended UTC actions

 1. Consensus: Add Simple_Case_Folding mappings for U+1FD3 , U+1FE3 , and U+FB05 , see L2/23-062 ; for
 Unicode 15.1.

 2. Action Item for Markus Scherer, PAG: In CaseFolding.txt, add Simple_Case_Folding mappings for U+1FD3 ,
 U+1FE3 , and U+FB05 , see L2/23-062 ; for Unicode 15.1.

 Summary

 These three characters have (full) Case_Folding mappings by which they each match a related character, and
 they map to the same sequences via NFKC, but they do not have Simple_Case_Folding mappings. Therefore,
 surprisingly, these do not match their related characters under simple folding.

 1

https://www.unicode.org/consortium/props-algorithms.html
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-062
https://util.unicode.org/UnicodeJsps/character.jsp?a=1FD3
https://util.unicode.org/UnicodeJsps/character.jsp?a=1FE3
https://util.unicode.org/UnicodeJsps/character.jsp?a=FB05
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-062
https://util.unicode.org/UnicodeJsps/character.jsp?a=1FD3
https://util.unicode.org/UnicodeJsps/character.jsp?a=1FE3
https://util.unicode.org/UnicodeJsps/character.jsp?a=FB05
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-062

 2.2 Annotated version of UAX #14

 Recommended UTC actions

 1. Action Item for Robin Leroy, EDC: Publish the annotated version of the UAX # 14, Unicode Line
 Breaking Algorithm, as a new UTN (Unicode Technical Note).

 Feedback

 From Robin Leroy:

 We keep running into a certain kind of question whereby we wonder why some part of the standard is the way it is.

 Sometimes such questions come directly from outside. Sometimes we have similar questions that arise because
 some obscure rule causes unforeseen issues; we then need to do archæology to figure out why these rules are the
 way they are in order to understand how we can change them without resurrecting forgotten bugs.

 This kind of problem is not specific to Unicode. Asmus has mentioned that IDNA has references to source proposals
 in its data structures. The Ada Rapporteur Group’s answer to that problem is the Annotated Ada Reference Manual ,
 which is to produce a separate document, which consists of the standard, plus:

 ● differences from the preceding version (much like our yellowed reports);
 ● references to proposals, discussions, and ARG or WG9 dispositions behind the change;
 ● additional annotations pointing out reasons for rules, ramifications of rules, etc., that go in greater depth than

 is relevant to the intended audience of the standard, but that are useful to the standardizers.

 Having noticed in PRI-446 and L2/22-243 the abundance of « why is the sky blue? » questions on this particular
 document, I have produced an annotated version of UAX14 in that vein. Temporary demo:
 eggrobin.github.io/unicode-annotations/alba.html .

 This has facilitated the work on UAX # 14 this cycle, such as

 ● identifying and fixing outdated wording (which used pre-5.0 terminology) in 173-A6 , and CP1252 holdovers
 from Unicode 3.0.0 in 173-A13 .

 ● understanding long-standing issues with quotation marks in L2/23-063 ,
 ● quickly iterating on amendments to the proposed rules in L2/22-080 to deal with the dotted circle issue, with

 a good understanding of the interactions between rules.

 Making this available would facilitate the work of contributors, and help users answer their own questions about the
 origins of rules and wording. A Unicode Technical Note seems like an appropriate medium for such a standing
 document; compare UTN45.

 2

http://www.ada-auth.org/standards/aarm12_w_tc1/html/AA-1.html
https://www.unicode.org/review/pri446/
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-243
https://unicode.org/reports/tr14
https://eggrobin.github.io/unicode-annotations/alba.html
https://www.unicode.org/cgi-bin/GetL2Ref.pl?173-A6
https://www.unicode.org/cgi-bin/GetL2Ref.pl?173-A13
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-063
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-080

 2.3 value "none" can mean the absence of a value

 Recommended UTC actions

 1. No action. Ken Whistler has already modified UAX #44 to say that <none> indicates that no value is defined
 for a code point. No longer referring to the “empty string” and not referring to “absence of a string”. Instead
 now points to 4.2.11 Empty Fields for contrast.

 Feedback

 From Markus Scherer:

 UAX 44 https://www.unicode.org/reports/tr44/#Missing_Conventions documents

 The special tag values which may occur in the default_prop_val field in an @missing line are interpreted as
 follows:
 <none> = the empty string

 However, in some (many?) cases it's really not mapping a code point to the empty string, but documenting that for
 that code point there is no meaningful value -- and “none” says that nicely.

 For example, Bidi_Paired_Bracket (in BidiBrackets.txt) uses <none> to indicate that for any character not listed in the
 file there is no other character that is its paired bracket.

 Whether a programmatic API returns an empty string or a null value or a None value or a special dummy string... is
 beside the point for the UCD.

 I suggest that we amend the UAX 44 “Interpretation” to “the empty string, or the absence of a value”.

 2.4 UAX #31 "grandfathered character"
 PRI #462 “Proposed Update UAX #31 Unicode Identifiers and Syntax”

 Recommended UTC actions

 1. Action Item for Markus Scherer, Asmus Freytag, PAG: Modify UAX #31 removing the use of
 "grandfathered" or replacing it with other language as appropriate without creating novel terms, for
 Unicode 15.1. See L2/23-079 item 2.4.

 Feedback (verbatim)

 Date/Time: Fri Jan 6 16:44:32 CST 2023
 Name: Markus Scherer
 Report Type: Error Report
 Opt Subject: UAX #31 "grandfathered character"

 I just stumbled on the term "grandfathered character" in UAX #31 .
 We should replace that; see

 3

https://www.unicode.org/reports/tr44/#Missing_Conventions
https://github.com/missing
https://www.unicode.org/review/pri462/

 ● https://en.wikipedia.org/wiki/Grandfather_clause#Origin
 ● https://medium.com/@nriley/words-matter-why-we-should-put-an-end-to-grandfathering-8b19efe08b6a
 ● https://developers.google.com/style/inclusive-documentation
 ● https://developers.google.com/style/word-list#grandfathered

 There are five occurrences in UAX #31 . Suggestions:

 2.5 Backward Compatibility

 Unicode General_Category values are kept as stable as possible, but they can
 change across versions of the Unicode Standard. The bulk of the characters
 having a given value are determined by other properties, and the coverage
 expands in the future according to the assignment of those properties. In
 addition, the Other_ID_Start property provides a small list of characters
 that qualified as ID_Start characters in some previous version of Unicode
 solely on the basis of their General_Category properties, but that no
 longer qualify in the current version. These are called grandfathered
 characters.
 -->

 Just remove the last sentence.

 2 Default Identifiers

 Note: The UAX31 -R1b requirement is typically achieved by using grandfathered
 characters. See Section 2.5, Backward Compatibility. Where profiles are
 allowed, management of those profiles may also be required to guarantee
 backwards compatibility. Typically such management also uses grandfathered
 characters.

 -->

 Note: The UAX31 -R1b requirement is typically achieved by using a small list
 of characters that qualified as identifier characters in some previous
 version of Unicode. See Section 2.5, Backward Compatibility. Where profiles
 are allowed, management of those profiles may also be required to guarantee
 backwards compatibility. Typically such management also uses a list of
 characters that qualified previously.

 4

https://en.wikipedia.org/wiki/Grandfather_clause#Origin
https://medium.com/@nriley/words-matter-why-we-should-put-an-end-to-grandfathering-8b19efe08b6a
https://developers.google.com/style/inclusive-documentation
https://developers.google.com/style/word-list#grandfathered
https://unicode.org/reports/tr31
https://unicode.org/reports/tr31

 5.2 Case and Stability

 Casing stability is also an issue for bicameral writing systems. The
 assignment of General_Category property values, such as gc=Lu, is not
 guaranteed to be stable, nor is the assignment of characters to the broader
 properties such as Uppercase. So these property values cannot be used by
 themselves, without incorporating a grandfathering mechanism, such as is
 done for Unicode identifiers in Section 2.5 Backward Compatibility. That
 is, the implementation would maintain its own list of special inclusions
 and exclusions that require updating for each new version of Unicode.

 -->

 Casing stability is also an issue for bicameral writing systems. The
 assignment of General_Category property values, such as gc=Lu, is not
 guaranteed to be stable, nor is the assignment of characters to the broader
 properties such as Uppercase. So these property values cannot be used by
 themselves, without incorporating a compatibility-preserving
 [stability-enforcing?] mechanism, such as is done for Unicode identifiers
 in Section 2.5 Backward Compatibility. That is, the implementation would
 maintain its own list of special inclusions and exclusions that require
 updating for each new version of Unicode.

 6 Hashtag Identifiers

 The grandfathering techniques mentioned in Section 2.5 Backward
 Compatibility may be used where stability between successive versions is
 required.

 -->

 The compatibility-preserving [stability-enforcing?] techniques mentioned in
 Section 2.5 Backward Compatibility may be used where stability between
 successive versions is required.

 Background information / discussion

 Asmus: Most places where we mention Section 2.5 we can delete grandfathered as "techniques" are already
 for backwards compatibility. We don't need to add a new qualification for that cross reference.

 Don't use "compatibility-preserving" in Case and Stability as that looks like a defined term, but use "that
 preserve backward compatibility".

 5

 2.5 Case convention of the name of NFKC_SCF

 Recommended UTC actions

 1. Consensus: Change the name of the informative property created by Consensus 174-C2 to
 NFKC_Simple_Casefold, with a low line between the words Simple and Casefold. Its alias NFKC_SCF
 and its definition are unchanged. For Unicode Version 15.1.

 2. Action Item for Ken Whistler, PAG: Update the name of the property NFKC_SCF in the Property Table
 of Unicode Standard Annex #44, Unicode Character Database, for Unicode Version 15.1. See
 document L2/23-079 item 2.5.

 Feedback

 From Robin Leroy:

 Spotted while working on the following AI:

 [174-C2] Consensus: Create a new informative, derived property NFKC_SimpleCasefold (NFKC_SCF),
 derived as its non-Simple counterparts except for the use of the Simple_Case_Folding instead of the
 Case_Folding, for Unicode Version 15.1.
 [174-A8] Action Item for Mark Davis, PAG: Add NFKC_SimpleCasefold to DerivedNormalizationProps.txt
 and PropertyAliases.txt, for Unicode Version 15.1. See document L2/23-008 item 1.2.

 The name NFKC_SimpleCasefold is odd, in that it has a mix of CamelCase and Low_Lines. None of the other
 properties in Table 7 of UAX44 use CamelCase. Unihan uses CamelCase, but no low lines; this is not Unihan
 anyway.

 Should the property be called NFKC_Simple_Casefold?

 3. New Scripts & Characters

 3.1 New characters with no significant issues
 PAG members reviewed the following proposals, provided feedback to SAH, and the feedback has been
 addressed.
 No further recommended actions from our side.

 ● L2/22-268 Revised Proposal to Encode Alternate BA for the Bengali Language
 ● L2/23-019 Revised proposal to encode Sidetic in Unicode
 ● L2/23-024 Proposal to encode Tolong Siki in Unicode
 ● L2/23-065 Proposal to encode a blank character for Khitan Small Script

 6

https://www.unicode.org/cgi-bin/GetL2Ref.pl?174-C2
https://www.unicode.org/cgi-bin/GetL2Ref.pl?174-A8
https://www.unicode.org/cgi-bin/GetMatchingDocs.pl?L2/23-008
https://www.unicode.org/reports/tr44/proposed.html#Property_Index_Table
https://unicode.org/reports/tr44
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-268
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-019
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-024
https://www.unicode.org/L2/L2023/23065-n5205-khitan-small-blank.pdf

 3.2 Forint sign
 L2/23/060 Proposal to Encode a Hungarian Forint Symbol in the Unicode Standard

 Discussion between PAG and SAH about this proposal is ongoing. We ask that the UTC not make any binding
 decision yet in favor of the proposal.

 4. Bidi

 4.1 Dependency of the bidi algorithm on normalization

 Recommended UTC actions

 1. Consensus: Unicode will not add further characters with both (a) canonical decompositions, and (b)
 Bidi_Paired_Bracket_Type ≠ None. Unicode will also not add further characters where the canonical
 decompositions *contain* characters whose Bidi_Paired_Bracket_Type ≠ None. See L2/23-079 item 4.1.

 2. Consensus: The UTC establishes the above Consensus 175-C?? as a precedent according to UTC
 procedures 10.5.2 .

 3. Action Item for Manish Goregaokar, PAG: Change UAX #9 to point out that an implementation of the UBA
 need not perform normalization / canonical equivalence in general, and explicitly list the pairs of paired
 bracket characters relevant for canonical equivalence and merely motivate this list via normalization; note
 that this list is immutable unless Unicode overturns precedent 175-C??; for Unicode 15.1. See L2/23-079
 item 4.1.

 Feedback

 From Manish Goregaokar:

 In UAX #9:

 BD16 . A bracket pair is a pair of characters consisting of an opening paired bracket and a closing paired
 bracket such that the Bidi_Paired_Bracket property value of the former or its canonical equivalent equals the
 latter or its canonical equivalent and which are algorithmically identified at specific text positions within an
 isolating run sequence.

 The "canonical equivalence" bit exists so that text containing "mismatched" brackets that "match" under
 normalization will have the same bidi behavior before and after normalization.

 However, there is only a single pair of characters for which this matters: U+2329 LEFT-POINTING ANGLE
 BRACKET and U+232A RIGHT-POINTING ANGLE BRACKET (which map to U+3008 and U+3009)

 In previous discussion we determined that current Unicode stability policy does not prevent further such singleton
 normalizations from being introduced.

 However, it is worth considering if we can change this, basically, have a policy against new characters being
 introduced that normalize to other Bidi_Paired_Bracket characters (in other words, introducing new types that are
 NFC_Inert=No + Bidi_Paired_Bracket_Type = {Open, Close} .

 7

https://www.unicode.org/L2/L2023/23060-forint-sign.pdf
https://unicode.org/consortium/tc-procedures.html
https://unicode.org/consortium/tc-procedures.html
https://unicode.org/reports/tr9
https://www.unicode.org/reports/tr9/#BD16
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5B%3ANFC_Inert%3DNo%3A%5D%26%5B%5B%3Abpt%3DOpen%3A%5D%7C%5B%3Abpt%3DClose%3A%5D%5D%5D&g=&i=toNFC
https://util.unicode.org/UnicodeJsps/character.jsp?a=2329
https://util.unicode.org/UnicodeJsps/character.jsp?a=232A
https://util.unicode.org/UnicodeJsps/character.jsp?a=3008&B1=Show
https://util.unicode.org/UnicodeJsps/character.jsp?a=3009&B1=Show

 If we still want to maintain the ability to add such characters in the future, the algorithm could be changed to rely on
 BPB values that are pre-normalized (i.e. U+2329 maps to U+3009 and U+232A maps to U+3008) where for BD16 it
 checks both the value and its corresponding paired value (this will be tricky to get right, but ultimately doable). This
 makes the property no longer solely derived from Bidi_M, though. I don't like this particular path.

 Background information / discussion

 The problematic cases are "bracket" punctuation characters with canonical singleton decompositions. It is very
 unlikely that we will add any more such characters.

 This edge case does not seem to warrant a stability policy.

 Ken Whistler mentioned these characters on the public mailing list last year
 https://corp.unicode.org/pipermail/unicode/2022-March/010074.html , writing

 And it is vanishingly unlikely that the UTC is ever going to
 add more such paired brackets with canonical decomposition mappings.

 and noting that

 The BidiReference code just does a hard-coded additional test (and
 explains why). For this particular edge case, that works just as well,
 is just as robust (see above assertion that UTC isn't going to add more
 exceptions to be dealt with), […]

 5. Text Segmentation

 5.1 Improve the handling of class QU in the line breaking algorithm
 L2/23-063 “Line breaking around quotation marks” from Robin Leroy

 Recommended UTC actions

 1. Consensus: Replace rule LB 15 by LB 15a and LB 15b in UAX # 14, as described in L2/23-063 Line breaking
 around quotation marks . For Unicode Version 15.1.

 2. Action Item for Robin Leroy, PAG: Make the changes to the Proposed Update for UAX # 14 described in
 L2/23-063 . For Unicode Version 15.1.

 Summary

 This document is a proposal for changes to Unicode Standard Annex #14, Unicode Line Breaking
 Algorithm, in order to improve its handling of « this kind » of quotation marks, and fix strange edge cases in
 the existing handling of quotation marks

 8

https://util.unicode.org/UnicodeJsps/character.jsp?a=2329
https://util.unicode.org/UnicodeJsps/character.jsp?a=3009
https://util.unicode.org/UnicodeJsps/character.jsp?a=232A
https://util.unicode.org/UnicodeJsps/character.jsp?a=3008
https://corp.unicode.org/pipermail/unicode/2022-March/010074.html
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-063
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-063
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-063

 Unset

 5.2 UAX #29: WB4 should be expanded and clarified
 PRI #469 Proposed Update UAX #29, Unicode Text Segmentation

 Recommended UTC actions

 1. Consensus: Change the Word_Break property of U+0600–U+0605, U+06DD, U+0890, U+0891,
 U+08E2, U+110BD, and U+110CD from Format to Numeric, and the Word_Break property of U+070F
 from Format to ALetter. See L2/23-079 item 5.2.

 2. Action Item for Josh Hadley, PAG: Update Table 3 of Unicode Standard Annex # 29, Unicode Text
 Segmentation, to exclude GCB=Prepend from Word_Break=Format, include U+0600–U+0605,
 U+06DD, U+0890, U+0891, U+08E2, U+110BD, and U+110CD in Word_Break=Numeric, and include
 U+070F in Word_Break=ALetter. For Unicode Version 15.1.

 3. Action Item for Robin Leroy, PAG: Update WordBreakProperty.txt according to L2/23-079 item 5.2. For
 Unicode Version 15.1.

 Feedback (verbatim)

 Date/Time: Fri Jan 6 18:26:42 CST 2023
 Name: Marshall Stoner
 Report Type: Error Report
 Opt Subject: www.unicode.org/reports/tr29/

 The Rule WB4 should be expanded and clarified. As is, the algorithm may
 break an Arabic numeric heading such as U+061C U+0600 U+0664 U+0666 in the
 wrong place. The word break rules should lead to " U+061C ÷ U+0600 ×
 U+0664 ", not " U+061C x U+0600 ÷ U+0664 ". According to the same document,
 the sequence " U+0600 U+0664 " is a grapheme cluster that should not be
 broken. I think there should be a rule in addition to WB4 that clarifies
 the break should come after most 'Format', 'Extend', or 'ZWJ', code
 points, but 'Format' should exclude any format characters that are
 subtending marks. Format characters that are subtending marks should be
 placed in a new category and there should then be two rules..

 WB4a: Any × (Extend | Format | ZWJ)
 WB4b: Prepend × Any

 Therefore, if there is a sequence [some letter] (Extend | Format | ZWJ)* Prepend* [another letter] ,
 the break should always occur after the "(Extend | Format | ZWJ)*" string but before the "Prepend*" string.
 Prepend should be characters excluded from Format.

 Background information / discussion

 http://www.unicode.org/reports/tr29/#WB4

 Ignore Format and Extend characters, except after sot, CR, LF, and Newline. (See Section 6.2, Replacing
 Ignore Rules .) This also has the effect of: Any × (Format | Extend | ZWJ)
 WB4 X (Extend | Format | ZWJ)* → X

 9

https://www.unicode.org/review/pri469/
http://www.unicode.org/reports/tr29/
https://util.unicode.org/UnicodeJsps/character.jsp?a=061C
https://util.unicode.org/UnicodeJsps/character.jsp?a=0600
https://util.unicode.org/UnicodeJsps/character.jsp?a=0664
https://util.unicode.org/UnicodeJsps/character.jsp?a=0666
https://util.unicode.org/UnicodeJsps/character.jsp?a=061C
https://util.unicode.org/UnicodeJsps/character.jsp?a=0600
https://util.unicode.org/UnicodeJsps/character.jsp?a=0664
https://util.unicode.org/UnicodeJsps/character.jsp?a=061C
https://util.unicode.org/UnicodeJsps/character.jsp?a=0600
https://util.unicode.org/UnicodeJsps/character.jsp?a=0664
https://util.unicode.org/UnicodeJsps/character.jsp?a=0600
https://util.unicode.org/UnicodeJsps/character.jsp?a=0664
http://www.unicode.org/reports/tr29/#WB4
http://www.unicode.org/reports/tr29/#Grapheme_Cluster_and_Format_Rules
http://www.unicode.org/reports/tr29/#Grapheme_Cluster_and_Format_Rules
http://www.unicode.org/reports/tr29/#WB4

 There is a GCB=Prepend value, but there is no WB=Prepend. The GCB=Prepend characters have either
 WB=Format or WB=ALetter.

 See Unicode 15.0, Figure 9-7. Arabic Signs Spanning Numbers .

 Characters mentioned in the feedback and in discussion:

 cp ARABIC... char chart heading gc GCB WB

 0600 NUMBER SIGN ؀ Subtending marks Cf Prepend Format

 0601 SIGN SANAH ؁ Subtending marks Cf Prepend Format

 0602 FOOTNOTE
 MARKER

 ؂ Subtending marks Cf Prepend Format

 0603 SIGN SAFHA ؃ Subtending marks Cf Prepend Format

 0604 SIGN SAMVAT ؄ Subtending marks Cf Prepend Format

 0605 NUMBER MARK
 ABOVE

 ؅ Supertending mark Cf Prepend Format

 061C LETTER MARK Format character Cf Control Format

 0664 DIGIT FOUR ٤ digits Nd Other Numeric

 0666 DIGIT SIX ٦ digits Nd Other Numeric

 06DD END OF AYAH ۝ Quranic annotation
 sign

 Cf Prepend Format

 U+061C U+0600 U+0664 U+0666 = ALM, NUMBER SIGN, DIGIT FOUR, DIGIT SIX

 10

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%3AGCB%3DPrepend%3A%5D&g=&i=gc+WB
https://www.unicode.org/versions/Unicode15.0.0/ch09.pdf#G27820
https://util.unicode.org/UnicodeJsps/character.jsp?a=061C
https://util.unicode.org/UnicodeJsps/character.jsp?a=0600
https://util.unicode.org/UnicodeJsps/character.jsp?a=0664
https://util.unicode.org/UnicodeJsps/character.jsp?a=0666

 5.3 Proposal to Update Properties for Two Khmer Characters
 L2/23-018 from Steven Loomis

 Recommended UTC actions

 1. Consensus: Add U+17D4 KHMER SIGN KHAN & U+17D5 KHMER SIGN BARIYOOSAN to
 Sentence_Terminal and Sentence_Break=STerm, for Unicode 15.1.

 2. Action Item for Josh Hadley, PAG: Add U+17D4 KHMER SIGN KHAN & U+17D5 KHMER SIGN
 BARIYOOSAN to Sentence_Terminal and Sentence_Break=STerm, for Unicode 15.1.

 Summary

 Add U+17D4 ។ KHMER SIGN KHAN & U+17D5 ៕ KHMER SIGN BARIYOOSAN to Sentence_Terminal and
 Sentence_Break=STerm.

 Background information / discussion

 These two characters have Line_Break=Break_After.

 5.4 Multiple notes of support for line-breaking at orthographic syllable
 boundaries
 PRI #472 “Line breaking at orthographic syllable boundaries”

 Recommended UTC actions

 1. No action. The UTC recognizes and appreciates the review feedback in favor of the proposal.

 Summary

 Several one-line (non-substantive) notes of support were received for the proposal to introduce line breaking at
 orthographic syllable boundaries.

 11

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-018
https://util.unicode.org/UnicodeJsps/character.jsp?a=17D4
https://util.unicode.org/UnicodeJsps/character.jsp?a=17D5
https://util.unicode.org/UnicodeJsps/character.jsp?a=17D4
https://util.unicode.org/UnicodeJsps/character.jsp?a=17D5
https://util.unicode.org/UnicodeJsps/character.jsp?a=17D4
https://util.unicode.org/UnicodeJsps/character.jsp?a=17D5
https://www.unicode.org/review/pri472/

 5.5 Grapheme clusters for Indic scripts

 Recommended UTC actions

 1. Consensus: Modify Indic grapheme clusters as described in L2/23-079 item 5.5, for Unicode 15.1.
 2. Action Item for Mark Davis, PAG: In UAX #29, add the three macros Virama, LinkingConsonant, and

 ExtCccZwj, as well as the new rule 9.c, as described in L2/23-079 item 5.5, for Unicode 15.1.

 Feedback

 From Mark Davis:

 We held back on changes to the grapheme clusters to Indic scripts, and said they should first go into CLDR.

 It has been 4 years since these were deployed in CLDR & ICU (which probably account for the majority of end-users
 affected by grapheme clusters) and there are no objections.

 I propose that we make the corresponding additions to UTS #29 , namely:

 1. Adding 3 new macros to https://unicode.org/reports/tr29/#Grapheme_Cluster_Break_Property_Values
 a.
 Virama=[\p{Gujr}\p{sc=Telu}\p{sc=Mlym}\p{sc=Orya}\p{sc=Beng}\p{sc=Deva}&\p{Indic_Syllabic_Cat
 egory=Virama}]
 b.
 LinkingConsonant=[\p{Gujr}\p{sc=Telu}\p{sc=Mlym}\p{sc=Orya}\p{sc=Beng}\p{sc=Deva}&\p{Indic_Sy
 llabic_Category=Consonant}]
 c. ExtCccZwj=[\p{gcb=Extend}-\p{ccc=0}] \p{gcb=ZWJ}]

 It is not necessary for the macros to have disjoint categories.
 The list of scripts can be added to over time, as test files for them become available.

 2. Adding a new rule:
 9.c LinkingConsonant ExtCccZwj* Virama ExtCccZwj* × LinkingConsonant

 12

https://github.com/unicode-org/properties/issues/29
https://unicode.org/reports/tr29/#Grapheme_Cluster_Break_Property_Values

 5.6 Proposed changes for line breaking on orthographic syllables
 L2/23-072 from Robin Leroy

 based on earlier feedback on

 PRI #472 “Line breaking at orthographic syllable boundaries”

 Recommended UTC actions

 1. Consensus: Add line breaking classes AF, AK, AP, AS, VI, and VF, as well as a new line breaking rule LB
 28b, and change Line_Break property values, as described in L2/23-072 .

 2. Action Item for Robin Leroy, PAG: Incorporate the changes to UAX # 14 described in L2/23-072 into the
 Proposed Update. For Unicode Version 15.1.

 3. Action Item for Robin Leroy, PAG: Incorporate the changes to UAX # 29 described in L2/23-072 into the
 Proposed Update. For Unicode Version 15.1.

 4. Action Item for Norbert Lindenberg, PAG: Provide an updated description for line breaking class BA,
 classifying the additions to that class from L2/23-072 . For Unicode Version 15.1.

 5. Action Item for Robin Leroy, PAG: Provide an updated description for line breaking class GL, conveying that
 characters such as hieroglyphic joiners and the Brahmi number joiner are included in this class. For Unicode
 Version 15.1.

 6. Action Item for Robin Leroy, PAG: Update LineBreak.txt and PropertyValueAliases.txt as described in
 L2/23-072 . For Unicode Version 15.1.

 Feedback (verbatim)

 Date/Time: Tue Mar 07 04:09:12 CST 2023
 Name: Robin Leroy
 Report Type: Public Review Issue
 Opt Subject: 472

 The proposal L2/22-080R2 affects a number of Brahmic scripts, for which it appears to be a clear improvement.
 However, its effect is not quite restricted to these scripts, as it changes line breaking class of the Common character
 ◌ (U+25CC DOTTED CIRCLE).
 This introduces line break opportunities, for instance, between a letter and a dotted circle, or between two dotted
 circles.

 See, for instance, a◌̀ and e◌̂◌ ̣ on the demo:
 https://www.unicode.org/review/pri472/background.html?text=a%E2%97%8C%CC%80%0Ae%E2%97%8C%CC%8
 2%E2%97%8C%CC%A3 .

 Such usage of the dotted circle is attested to describe a sequence of combining marks; see the comments in
 http://www.unicode.org/Public/UCD/latest/ucd/NormalizationTest.txt .
 While the use cases to which this change would be disruptive may be niche, any usage of the dotted circle is niche,
 including the one motivating the change.

 Refinement of the behaviour of the dotted circle could be relegated to a dedicated proposal.
 However, absent that change in line breaking class, the proposal would degrade the behaviour of sequences (dotted
 circle, virama) in the affected scripts.

 13

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-072
https://www.unicode.org/review/pri472/
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-072
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-072
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-072
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-072
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-072
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-080R2
https://util.unicode.org/UnicodeJsps/character.jsp?a=25CC
https://www.unicode.org/review/pri472/background.html?text=a%E2%97%8C%CC%80%0Ae%E2%97%8C%CC%82%E2%97%8C%CC%A3
https://www.unicode.org/review/pri472/background.html?text=a%E2%97%8C%CC%80%0Ae%E2%97%8C%CC%82%E2%97%8C%CC%A3
http://www.unicode.org/Public/UCD/latest/ucd/NormalizationTest.txt

 Instead, replacing AK | AS by AK | AL | AS in the first three sub-rules of the proposed rule LB28b would preserve
 the usability of the dotted circle as a placeholder base for

 1. pre-base consonants: AP × (AK | AL | AS) handles AP × ◌;
 2. virama: (AK | AL | AS) × (VF | VI) handles ◌ × (VF | VI);
 3. conjunct consonants: (AK | AL | AS) VI × AK handles ◌ VI × AK.

 At the same time, this would not affect the behaviour of class AL except in degenerate cases (cross-script virama or
 pre-base consonant usage).

 This would not support the usage of the dotted circle itself as a subjoined consonant to demonstrate the forms of
 combining marks or conjuncts thereon, as cited and demonstrated in Section “Enabling the use of dotted circle as a
 placeholder for subjoined consonants” of L2/22-080R2 : there would be a break in AK × VI ÷ ◌ × CM.

 Changing sub-rule 3 of LB28b to (AK | AL | AS) VI × (AK | AL) may have unwanted effects in nondegenerate
 mixed-script cases.
 Since both the cited example and the one shown in the proposal itself only subjoin the dotted circle to another
 dotted circle, an additional sub-rule
 5. AL VI × AL
 would address the use cases shown while not disrupting nondegenerate cases.

 Note: in the above, the term degenerate is used in the sense defined in UAX # 29 .

 14

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-080R2
https://www.unicode.org/reports/tr29/#Rule_Constraints

 5.7 clear statement that each emoji is a grapheme cluster

 Recommended UTC actions

 1. Action Item for Josh Hadley, PAG: In Unicode Standard Annex # 29, add a note to the Grapheme Cluster
 Boundary rules stating that each emoji sequence (UTS # 51 ED-17) is a single grapheme cluster. For
 Unicode Version 15.1.

 2. Action Item for Mark Davis, ESC: In Unicode Technical Standard # 51, update the section on emoji ZWJ
 sequences to state that an emoji sequence is a single grapheme cluster, with a reference to UAX # 29, and
 reword the section on emoji modifier sequences accordingly. For Unicode Version 15.1.

 3. Action item for Manish Goregaokar, PAG: Provide a proposal for changes to Unicode Standard Annex # 29
 and Unicode Technical Standard # 51 highlighting that, depending on fonts and rendering engines, some
 grapheme clusters can be rendered as multiple glyphs, which are perceived as separate units by the user;
 and some single code points can appear to be multiple grapheme clusters. For Unicode Version 16.0.

 Feedback

 From Markus Scherer:

 Someone asked whether each emoji is a single grapheme cluster.
 One could look at all possible, well-formed emoji sequences and compare them with the grapheme cluster
 properties and rules and conclude that this is the case.
 However, the rules are complex enough to make this not obvious.

 Please add clear, simple statements to each of UAX #29 and UTS #51 to the effect of "each emoji is a single
 grapheme cluster".

 15

https://www.unicode.org/reports/tr51/#def_emoji_sequence
https://unicode.org/reports/tr29
https://unicode.org/reports/tr51

 6. IDNA

 6.1 UTS #46: declare the transition period to be over

 Recommended UTC actions

 1. Consensus: Change UTS #46 to say that the transitional processing and the deviation mappings are
 deprecated, and that implementations generally only use the nontransitional processing, for Unicode 15.1.

 2. Action Item for Markus Scherer, PAG: Change UTS #46 to say that the transitional processing and the
 deviation mappings are deprecated, and that implementations generally only use the nontransitional
 processing, for Unicode 15.1.

 Feedback (verbatim)

 Date/Time: Mon Jan 23 04:59:25 CST 2023
 Name: Anne van Kesteren
 Report Type: Error Report
 Opt Subject: UTS46

 Chromium will ship Nontransitional Processing soon:
 https://chromestatus.com/feature/5105856067141632 . That covers all browser
 engines. I suggest taking that opportunity to simplify this document and
 its test suite and declare the transition period for which this conditional
 existed to be over.

 6.2 UTS #46: change U+2260 (≠), U+226E (≮), and U+226F (≯) from
 disallowed_STD3_valid to valid

 Recommended UTC actions

 1. Consensus: In IdnaMappingTable.txt, change U+2260 (≠), U+226E (≮), and U+226F (≯) from
 disallowed_STD3_valid to valid, for Unicode 15.1.

 2. Action Item for Mark Davis, Markus Scherer, PAG: In IdnaMappingTable.txt, change U+2260 (≠), U+226E
 (≮), and U+226F (≯) from disallowed_STD3_valid to valid, for Unicode 15.1.

 3. Action Item for Mark Davis, Markus Scherer, PAG: In UTS46 section 4.1.1 UseSTD3ASCIIRules, remove the
 special behavior of U+2260 (≠), U+226E (≮), and U+226F (≯); modify section 6 Mapping Table Derivation
 (especially Step 7) as necessary so that these characters are no longer disallowed; for Unicode 15.1.

 Feedback (verbatim)

 Date/Time: Mon Jan 23 05:13:16 CST 2023
 Name: Anne van Kesteren
 Report Type: Error Report
 Opt Subject: UTS46

 16

https://unicode.org/reports/tr46
https://unicode.org/reports/tr46
https://unicode.org/reports/tr46
https://chromestatus.com/feature/5105856067141632
https://util.unicode.org/UnicodeJsps/character.jsp?a=2260
https://util.unicode.org/UnicodeJsps/character.jsp?a=226E
https://util.unicode.org/UnicodeJsps/character.jsp?a=226F
https://util.unicode.org/UnicodeJsps/character.jsp?a=2260
https://util.unicode.org/UnicodeJsps/character.jsp?a=226E
https://util.unicode.org/UnicodeJsps/character.jsp?a=226F
https://unicode.org/reports/tr46
https://util.unicode.org/UnicodeJsps/character.jsp?a=2260
https://util.unicode.org/UnicodeJsps/character.jsp?a=226E
https://util.unicode.org/UnicodeJsps/character.jsp?a=226F
https://www.unicode.org/reports/tr46/#TableDerivationStep7
https://unicode.org/reports/tr46

 Please change U+2260 (≠), U+226E (≮), and U+226F (≯) from
 disallowed_STD3_valid to valid.

 These code points are not decomposed so they can never conflict with
 =, <, and >. And they are not inherently more confusing than any of
 the other allowed code points, which include hieroglyphics and emoji. These
 code points also work as-is in all browser engines (while < and > are
 forbidden) and on balance preference ought to be given to retaining
 compatibility so end users are not prevented from visiting websites or
 seeing subresources that might use these code points in their domain for
 one reason or another.

 For further background and discussion please see
 whatwg/url#733 .

 Thank you!

 6.3 IdnaTestV2.txt issues mostly with status annotation

 Recommended UTC actions

 1. Action Item for Mark Davis, PAG: Review IdnaTestV2.txt and ensure that the documentation and output
 of status codes conforms to the specification; see (doc & item) for a report of mismatches; for Unicode
 15.1.

 Feedback (verbatim)

 Date/Time: Mon Jan 23 06:35:46 CST 2023
 Name: Anne van Kesteren
 Report Type: Error Report
 Opt Subject: IdnaTestV2.txt

 I have worked on importing IdnaTestV2.txt into web-platform-tests, the test
 framework used by all web browsers. The goal was to meet the requirements
 of the domain to ASCII algorithm specified at
 https://url.spec.whatwg.org/#idna with beStrict initialized to false.

 As such, I attempted to filter out ToASCII statuses for UseSTD3ASCIIRules,
 CheckHyphens, and VerifyDnsLength. Hoping that any statuses that are left
 would indicate a failure requirement.

 You can find my work at
 web-platform-tests/wpt#38080 .

 I ran into the following issues. Most of them relate to status annotation.
 IPv4 address confusion was the one issue that did not relate to statuses.

 ● VerifyDnsLength is not P4, but rather A4_1 and A4_2.
 ● Tests that use trailing ASCII digit labels (or such a label followed by a

 dot) are not useful for browsers as that will trigger the IPv4 parser.

 17

https://util.unicode.org/UnicodeJsps/character.jsp?a=2260
https://util.unicode.org/UnicodeJsps/character.jsp?a=226E
https://util.unicode.org/UnicodeJsps/character.jsp?a=226F
https://github.com/whatwg/url/issues/733
https://url.spec.whatwg.org/#idna
https://github.com/web-platform-tests/wpt/pull/38080

 Which will then usually return failure as the input was not actually an
 IPv4 address string. This is a problem for a number of the A4_1 and A4_2
 tests. And also a large number of tests later on, such as ToASCII
 ("xn--gl0as212a.8.") or ToASCII("1.27"). I wrote a filter to exclude
 them, but it would be better if they were adjusted slightly (e.g., made
 to contain one non-EN code point) so what they aim to test can also be
 tested in browsers. (Note that the IPv4 parser runs after domain to
 ASCII, but the web platform doesn't provide a way to invoke domain to
 ASCII on its own and probably never will.)

 ● The test for ToASCII("$") is marked P1 and V6, not U1. This also effects
 numerous tests with <, >, and =. If they continue to have multiple
 statuses that will also make it impossible to filter them in an automated
 fashion. (This also applies to non-ASCII UseSTD3ASCIIRules code points,
 but I filed a separate request to remove those.)

 ● NV8 is not used as a status.
 ● A3 and X3 do not appear to be used as a status. (These are catered for by

 P4 presumably.)
 ● CheckBidi is not V8. V8 does not appear to be used. You'd have to filter

 out all B1-6 statuses instead.

 Background information / discussion

 https://www.unicode.org/Public/idna/15.0.0/IdnaTestV2.txt

 7. Regex

 7.1 Proposed Update for UTS #18

 Recommended UTC actions

 1. Consensus: The UTC authorizes a proposed update of UTS # 18 for the purpose of addressing action
 items 174-A9, 174-A22, 173-A16, 172-A87, 172-A104, 170-A17, 168-A13, and 166-A70, and 162-A23 if
 appropriate.

 Feedback

 From Robin Leroy:

 There are a number of open action items targeting UTS18 , namely: 174-A9 , 174-A22 , 173-A16 , 173-A74 , 172-A87 ,
 172-A104 , 170-A17 , 168-A13 , 166-A70 , 162-A23 .
 Many of these are requests for specific edits that could be done when anyone finds some time; but there is no
 proposed update, which means a separate consolidated proposal would have to be submitted instead.
 We should have a proposed update to help us get through that backlog.

 It is unclear whether 162-A23 is still relevant; that one is fairly nonspecific so it should probably have its own
 proposal (or at least discussion in the background section of a PAG report). The others seem clear enough.

 18

https://www.unicode.org/Public/idna/15.0.0/IdnaTestV2.txt
https://unicode.org/reports/tr18
https://www.unicode.org/cgi-bin/GetL2Ref.pl?174-A9
https://www.unicode.org/cgi-bin/GetL2Ref.pl?174-A22
https://www.unicode.org/cgi-bin/GetL2Ref.pl?173-A16
https://www.unicode.org/cgi-bin/GetL2Ref.pl?173-A74
https://www.unicode.org/cgi-bin/GetL2Ref.pl?172-A87
https://www.unicode.org/cgi-bin/GetL2Ref.pl?172-A104
https://www.unicode.org/cgi-bin/GetL2Ref.pl?170-A17
https://www.unicode.org/cgi-bin/GetL2Ref.pl?168-A13
https://www.unicode.org/cgi-bin/GetL2Ref.pl?166-A70
https://www.unicode.org/cgi-bin/GetL2Ref.pl?162-A23

 8. Security

 8.1 UTS39: Confusables: Letter coptic vida 'Ⲃ'
 PRI #463 Proposed Update UTS #39, Unicode Security Mechanisms

 Recommended UTC actions

 1. Action Item for Mark Davis, PAG: Consider the feedback in L2/23-079 item 8.1 for a future update of the
 confusables data.

 Feedback (verbatim)

 Date/Time: Sun Mar 12 07:37:17 CDT 2023
 Name: Ray
 Report Type: Error Report
 Opt Subject: Confusables Sheet

 Letter coptic vedi 'Ⲃ' is not listed as confusable. It is in fact confusable with latin B and its lookalike characters.
 This leads to unicode text normalization errors where presense of these characters fail to reduce the unicoded string
 to its ASCII form.

 8.2 Add bidi URL display order recommendations

 Recommended UTC actions

 1. Action Item for Robin Leroy, PAG: add an example of the application of protocol HL4 to URL display to
 the Proposed Update for Unicode Standard Annex # 9, Unicode Bidirectional Algorithm. See L2/23-079
 item 8.2. For Unicode Version 15.1.

 2. Action Item for Mark Davis, PAG: In a future revision of Unicode Technical Report # 36, add a mention of
 the applicability of the UTS # 55 Basic Ordering to URLs and a reference to the example in UAX # 9.
 See L2/23-079 item 8.2.

 Feedback:

 Regarding PRI #185 “Extension of UBA for improved display of URL/IRIs” (2011)

 Robin Leroy writes:

 As this had been brought up in another place, Mark mentioned it in the SCWG, thinking it was similar albeit off-topic.
 The SCWG noted that this it is on topic, and a special case of the UTS #55 Basic Ordering.

 However, it seems unlikely that anyone thinking about URLs would look at Unicode Source Code Handling , so this
 should be referenced in a more appropriate place; either UAX #9 or UTR #36 .

 Mark proposed the text below for addition to UAX# 9 .

 19

https://www.unicode.org/review/pri463/
https://www.unicode.org/review/pri185/
https://unicode.org/reports/tr55
https://unicode.org/reports/tr9
https://unicode.org/reports/tr36
https://unicode.org/reports/tr9

 HL4 Example 2 for URLs
 When a URL is displayed simply using the BIDI algorithm, the following results (as per convention, uppercase
 represents RTL letters)

 Environment Display

 LTR http://ab.cd.com/mn/op

 http://ab.cd. HG.FE. com/ LK/JI/ mn/op

 http:// LK/JI/HG.FE

 RTL http://ab.cd.com/mn/op

 mn/op/ LK/JI /com .HG.FE .http://ab.cd

 LK/JI/HG.FE //:http

 Note that the various �elds of the URL can appear to the user in an jumbled order. Moreover, if any of the �elds
 contain mixed bidi text (including digits), part of the contents of a �eld may �ip around a delimiter, as in the following:

 Memory Positions

 Memory pos. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Character / 0 1 ב א a b 2 / 3 c d 4 5 ד ו /

 Display Positions

 Display pos. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Memory pos. 16 15 14 13 4 5 6 7 8 9 10 11 12 3 2 1 0

 Character / 5 1 ו ד a b 2 / 3 c d 4 0 א ב /

 The BIDI display process described in Section 4.1 Bidirectional Ordering of [UTS55] can be applied to URLs to
 remedy this situation.

 In applying the rules of that section, the atoms are the delimiters and the text between them (aka literals). Those
 delimiters include the characters that separate the scheme, host, path, query, and fragment, plus the delimiters within
 each of those parts. For example:

 http : // foo . com / dir1 / dir2 ? hl = fr & rl = CA # �i

 20

https://unicode.org/reports/tr9/#HL4Example2
https://unicode.org/reports/tr55/#Ordering

 The atoms are then displayed in monotonic order (RTL or LTR), and each literal is displayed with a paragraph
 direction equal to that monotonic order. This results in the following orders:

 Environment Display

 LTR http://ab.cd.com/mn/op

 http://ab.cd. FE.HG. com/ JI/LK/ mn/op

 http:// FE.HG / JI / LK

 RTL op/mn/com.cd.ab//:http

 op/mn /LK/JI /com .HG.FE .cd.ab//:http

 LK/JI/HG.FE //:http

 Background information / discussion

 Asmus Freytag requests that UAX #9 or maybe UTR #36 explicitly states that it is not in contention with RFC
 5893.

 21

 8.3 SCWG update

 Recommended UTC actions

 1. Note: The UTC notes the amendments to Draft Unicode Technical Standard # 55, Unicode Source Code
 Handling, mentioned in L2/23-079 item 8.3.

 Summary

 The SCWG does not plan to produce a separate report document this time around, as there have been changes to
 only one document (UTS #55). However, the UTC should take note of these changes.

 The modifications since UTC #174 looked at it are:

 ● Advanced from Proposed Draft to Draft Unicode Technical Standard.
 ● Addressed comments made at UTC #174.
 ● Added a note highlighting the possibility of tailoring confusable data to the font in programming

 environments where the font is known.
 ● Clarified that atom order should be a user preference, not a heuristic.
 ● Clarified the implications of the basic ordering on the content of string literals, and added an implementation

 permission for an override.
 ● Clarified that the General Security Profile excludes letters that are confusable with ASCII punctuation or

 symbols.
 ● Added a section describing the compatibility considerations when migrating from Unicode 3.0 identifier

 definitions.

 22

https://unicode.org/reports/tr55
https://www.unicode.org/cgi-bin/GetL2Ref.pl?174

