
4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 1/34

Technical Reports

Proposed Update Unicode® Technical Standard #39

UNICODE SECURITY MECHANISMS
Version 15.1.0 (draft 4)

Editors Mark Davis (markdavis@google.com),
Michel Suignard (michel@suignard.com)

Date 2023-02-21

This Version https://www.unicode.org/reports/tr39/tr39-27.html

Previous
Version

https://www.unicode.org/reports/tr39/tr39-26.html

Latest Version https://www.unicode.org/reports/tr39/

Latest
Proposed
Update

https://www.unicode.org/reports/tr39/proposed.html

Revision 27

Summary

Because Unicode contains such a large number of characters and incorporates the varied
writing systems of the world, incorrect usage can expose programs or systems to possible
security attacks. This document specifies mechanisms that can be used to detect possible
security problems.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as
other than a work in progress.

A Unicode Technical Standard (UTS) is an independent specification.
Conformance to the Unicode Standard does not imply conformance to any UTS.

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this document is found in the
References. For the latest version of the Unicode Standard, see [Unicode]. For a list of
current Unicode Technical Reports, see [Reports]. For more information about versions of
the Unicode Standard, see [Versions].

Contents

1 Introduction
2 Conformance

https://www.unicode.org/
https://www.unicode.org/reports/
mailto:markdavis@google.com
mailto:michel@suignard.com
https://www.unicode.org/reports/tr39/tr39-27.html
https://www.unicode.org/reports/tr39/tr39-26.html
https://www.unicode.org/reports/tr39/
https://www.unicode.org/reports/tr39/proposed.html
https://www.unicode.org/reporting.html
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/
https://www.unicode.org/versions/
rick
Text Box
L2/23-095

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 2/34

3 Identifier Characters
3.1 General Security Profile for Identifiers

Table 1. Identifier_Status and Identifier_Type
3.1.1 Joining Controls

3.1.1.1 Limited Contexts for Joining Controls
3.1.1.2 Limitations

3.2 IDN Security Profiles for Identifiers
3.3 Email Security Profiles for Identifiers

4 Confusable Detection
4.1 Whole-Script Confusables
4.2 Mixed-Script Confusables

5 Detection Mechanisms
5.1 Mixed-Script Detection

Table 1a. Mixed Script Examples
5.2 Restriction-Level Detection
5.3 Mixed-Number Detection
5.4 Optional Detection

6 Development Process
6.1 Confusables Data Collection
6.2 Identifier Modification Data Collection

7 Data Files
Table 2. Data File List

Migration
Table 3. Version Correspondence
Migrating Persistent Data
Version 8.0 Migration
Version 7.0 Migration

Acknowledgments
References
Modifications

1 Introduction

Unicode Technical Report #36, "Unicode Security Considerations" [UTR36] provides
guidelines for detecting and avoiding security problems connected with the use of Unicode.
This document specifies mechanisms that are used in that document, and can be used
elsewhere. Readers should be familiar with [UTR36] before continuing. See also the
Unicode FAQ on Security Issues [FAQSec].

2 Conformance

An implementation claiming conformance to this specification must do so in conformance
to the following clauses:

C1 An implementation claiming to implement the General Profile for Identifiers shall do so
in accordance with the specifications in Section 3.1, General Security Profile for Identifiers.

Alternatively, it shall declare that it uses a modification, and provide a precise list of
characters that are added to or removed from the profile.

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 3/34

C1.1 An implementation claiming to implement the IDN Security Profiles for Identifiers shall
do so in accordance with the specifications in Section 3.2, IDN Security Profiles for
Identifiers.

Alternatively, it shall declare that it uses a modification, and provide a precise list of
characters that are added to or removed from the profile.

C1.2 An implementation claiming to implement the Email Security Profiles for Identifiers
shall do so in accordance with the specifications in Section 3.3, Email Security Profiles for
Identifiers.

Alternatively, it shall declare that it uses a modification, and provide a precise list of
characters that are added to or removed from the profile.

C2 An implementation claiming to implement any of the following confusable-detection
functions must do so in accordance with the specifications in Section 4, Confusable
Detection.

1. X and Y are single-script confusables
2. X and Y are mixed-script confusables
3. X and Y are whole-script confusables
4. X has whole-script confusables in set of scripts S

Alternatively, it shall declare that it uses a modification, and provide a precise list of
character mappings that are added to or removed from the provided ones.

C3 An implementation claiming to detect mixed scripts must do so in accordance with the
specifications in Section 5.1, Mixed-Script Detection.

Alternatively, it shall declare that it uses a modification, and provide a precise
specification of the differences in behavior.

C4 An implementation claiming to detect Restriction Levels must do so in accordance with
the specifications in Section 5.2, Restriction-Level Detection.

Alternatively, it shall declare that it uses a modification, and provide a precise
specification of the differences in behavior.

C5 An implementation claiming to detect mixed numbers must do so in accordance with
the specifications in Section 5.3, Mixed-Number Detection.

Alternatively, it shall declare that it uses a modification, and provide a precise
specification of the differences in behavior.

3 Identifier Characters

Identifiers ("IDs") are strings used in application contexts to refer to specific entities of
certain significance in the given application. In a given application, an identifier will map to
at most one specific entity. Many applications have security requirements related to
identifiers. A common example is URLs referring to pages or other resources on the
Internet: when a user wishes to access a resource, it is important that the user can be
certain what resource they are interacting with. For example, they need to know that they

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 4/34

are interacting with a particular financial service and not some other entity that is spoofing
the intended service for malicious purposes. This illustrates a general security concern for
identifiers: potential ambiguity of strings. While a machine has no difficulty distinguishing
between any two different character sequences, it could be very difficult for humans to
recognize and distinguish identifiers if an application did not limit which Unicode characters
could be in identifiers. The focus of this specification is mitigation of such issues related to
the security of identifiers.

Deliberately restricting the characters that can be used in identifiers is an important
security technique. The exclusion of characters from identifiers does not affect the general
use of those characters for other purposes, such as for general text in documents. Unicode
Standard Annex #31, "Unicode Identifier and Pattern Syntax" [UAX31] provides a
recommended method of determining which strings should qualify as identifiers. The UAX
#31 specification extends the common practice of defining identifiers in terms of letters and
numbers to the Unicode repertoire.

That specification also permits other protocols to use that method as a base, and to define
a profile that adds or removes characters. For example, identifiers for specific
programming languages typically add some characters like "$", and remove others like "-"
(because of the use as minus), while IDNA removes "_" (among others)—see Unicode
Technical Standard #46, "Unicode IDNA Compatibility Processing" [UTS46], as well as
[IDNA2003], and [IDNA2008].

This document provides for additional identifier profiles for environments where security is
an issue. These are profiles of the extended identifiers based on properties and
specifications of the Unicode Standard [Unicode], including:

The XID_Start and XID_Continue properties defined in the Unicode Character
Database (see [DCore])
The toCasefold(X) operation defined in Chapter 3, Conformance of [Unicode]
The NFKC and NFKD normalizations defined in Chapter 3, Conformance of
[Unicode]

The data files used in defining these profiles follow the UCD File Format, which has a
semicolon-delimited list of data fields associated with given characters, with each field
referenced by number. For more details, see [UCDFormat].

3.1 General Security Profile for Identifiers

The files under [idmod] provide data for a profile of identifiers in environments where
security is at issue. The files contain a set of characters recommended to be restricted
from use. They also contain a small set of characters that are recommended as additions
to the list of characters defined by the XID_Start and XID_Continue properties, because
they may be used in identifiers in a broader context than programming identifiers.

The Restricted characters are characters not in common use, and they can be blocked to
further reduce the possibilities for visual confusion. They include the following:

characters not in modern use
characters only used in specialized fields, such as liturgical characters, phonetic
letters, and mathematical letter-like symbols
characters in limited use by very small communities

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 5/34

The choice of which characters to specify as Restricted starts conservatively, but allows
additions in the future as requirements for characters are refined. For information on
handling modifications over time, see 2.10.1, Backward Compatibility in Unicode Technical
Report #36, "Unicode Security Considerations" [UTR36].

An implementation following the General Security Profile does not permit any characters in
\p{Identifier_Status=Restricted}, unless it documents the additional characters that it does
allow. Such documentation can specify characters via properties, such as
\p{Identifier_Status=Technical}, or by explicit lists, or by combinations of these.
Implementations may also specify that fewer characters are allowed than implied by
\p{Identifier_Status=Restricted}; for example, they can restrict characters to only those
permitted by [IDNA2008].

Common candidates for such additions include characters for scripts listed in Table 7,
Limited Use Scripts of [UAX31]. However, characters from these scripts have not been a
priority for examination for confusables or to determine specialized, non-modern, or
uncommon-use characters.

Canonical equivalence is applied when testing candidate identifiers for inclusion of Allowed
characters. For example, suppose the candidate string is the sequence

<u, combining-diaeresis>

The target string would be Allowed in either of the following 2 situations:

1. u is Allowed and ¨ is Allowed, or
2. ü is Allowed

For details of the format for the [idmod] files, see Section 7, Data Files.

Table 1. Identifier_Status and Identifier_Type

Identifier_Status Identifier_Type Description

Restricted Not_Character Unassigned characters, private use characters,
surrogates, non-whitespace control characters.

Deprecated Characters with the Unicode property
Deprecated=Yes.

Default_Ignorable Characters with the Unicode property
Default_Ignorable_Code_Point=Yes.

Not_NFKC Characters that cannot occur in strings normalized
to NFKC.

Not_XID Characters that do not qualify as default Unicode
identifiers; that is, they do not have the Unicode
property XID_Continue=True.

Exclusion Characters with Script_Extensions values
containing a script in Table 4, Excluded Scripts
from [UAX31], and no script from Table 7, Limited
Use Scripts or Table 5, Recommended Scripts,
other than “Common” or “Inherited”.

https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/#Table_Candidate_Characters_for_Exclusion_from_Identifiers
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 6/34

Obsolete Characters that are no longer in modern use, or
that are not commonly used in modern text.

Technical Specialized usage: technical, liturgical, etc.

Uncommon_Use Characters that are uncommon, or are limited in
use (even though they are in scripts that are not
"Limited_Use"), or whose usage is uncertain.

Limited_Use Characters from scripts that are in limited use:
with Script_Extensions values containing a script
in Table 7, Limited Use Scripts in [UAX31], and no
script from Table 5, Recommended Scripts, other
than “Common” or “Inherited”.

Allowed Inclusion Exceptionally allowed characters, including Table
3a, Optional Characters for Medial and Table 3b,
Optional Characters for Continue in [UAX31], and
some characters for [IDNA2008], except for
certain characters that are Restricted above.

Recommended Characters from scripts that are in widespread
everyday common use: with Script_Extensions
values containing a script in Table 5,
Recommended Scripts in [UAX31], except for
those characters that are Restricted above.

Note: In Unicode 15.0, the Joiner_Control characters (ZWJ/ZWNJ) have been
removed from Identifier_Type=Inclusion. They thereby have the properties
Identifier_Type=Default_Ignorable and Identifier_Status=Restricted. Their inclusion in
programming language identifier profiles has usability and security implications.

Implementations of the General Profile for Identifiers that wish to retain ZWJ and
ZWNJ should declare that they use a modification of the profile per Section 2,
Conformance, and should ensure that they implement the restrictions described in
Section 3.1.1, Joining Controls.

Identifier_Status and Identifier_Type are properties of characters (code points). See UTS
#18: Unicode Regular Expressions [UTS18] and UTR #23: The Unicode Character
Property Model [UTR23] for more discussion.

For stability considerations, see Migrating Persistent Data.

There may be multiple reasons for restricting a character; therefore, the Identifier_Type
property allows multiple values that correspond with Restricted. For example, some
characters have Identifier_Type values of Limited_Use and Technical. Multiple values are
not assigned to characters with strong restrictions: Not_Character, Deprecated,
Default_Ignorable, Not_NFKC. For example, if a character is Deprecated, there is little
value in also marking it as Uncommon_Use. For the qualifiers on usage, Obsolete,
Uncommon_Use and Technical, the distinctions among the Identifier_Type values is not
strict and only one might be given. The important characteristic is the Identifier_Status:
whether or not the character is Restricted.

The default Identifier_Type property value should be Uncommon_Use if no other
categories apply.

https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts
https://www.unicode.org/reports/tr31/#Table_Optional_Medial
https://www.unicode.org/reports/tr31/#Table_Optional_Continue
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Type=Inclusion:]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Type=Default_Ignorable:]
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=[:Identifier_Status=Restricted:]

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 7/34

As more information is gathered about characters, this data may change in successive
versions. That can cause either the Identifier_Status or Identifier_Type to change for a
particular character. Thus users of this data should be prepared for changes in successive
versions, such as by having a grandfathering policy in place for previously supported
characters or registrations. Both Identifier_Status and Identifier_Type values are to be
compared case-insensitively and ignoring hyphens and underbars.

Restricted characters should be treated with caution when considering possible use in
identifiers, and should be disallowed unless there is good reason to allow them in the
environment in question. However, the set of Identifier_Status=Allowed characters are not
typically used as is by implementations. Instead, they are applied as filters to the set of
characters C that are supported by the identifier syntax, generating a new set C′. Typically
there are also particular characters or classes of characters from C that are retained as
Exception characters.

C′ = (C ∩ {Identifier_Status=Allowed}) ∪ Exception

The implementation may simply restrict use of new identifiers to C′, or may apply some
other strategy. For example, there might be an appeal process for registrations of ids that
contain characters outside of C′ (but still inside of C), or in user interfaces for lookup of
identifiers, warnings of some kind may be appropriate. For more information, see [UTR36].

The Exception characters would be implementation-specific. For example, a particular
implementation might extend the default Unicode identifier syntax by adding Exception
characters with the Unicode property XID_Continue=False, such as “$”, “-”, and “.”. Those
characters are specific to that identifier syntax, and would be retained even though they
are not in the Identifier_Status=Allowed set. Some implementations may also wish to add
some [CLDR] exemplar characters for particular supported languages that have unusual
characters.

The Identifier_Type=Inclusion characters already contain some characters that are not
letters or numbers, but that are used within words in some languages. For example, it is
recommended that U+00B7 (·) MIDDLE DOT be allowed in identifiers, because it is
required for Catalan.

The implementation may also apply other restrictions discussed in this document, such as
checking for confusable characters or doing mixed-script detection.

3.1.1 Joining Controls

Review note: The following text was moved from Section 2.3 of UAX #31.

For the above reasons, default-ignorable characters are normally excluded from Unicode
identifiers. However, vVisible distinctions created by certain format characters excluded by
the General Security Profile because their Identifier_Type is Default_Ignorable (particularly
the Join_Control characters) are necessary in certain languages. A blanket exclusion of
these characters makes it impossible to create identifiers with the correct visual
appearance for common words or phrases in those languages.

Identifier systems that attempt to provide more natural representations of terms in
"modern, customary usage" should allow these characters in input and display, but limit
them to contexts in which they are necessary. The term modern customary usage includes
characters that are in common use in newspapers, journals, lay publications; on street
signs; in commercial signage; and as part of common geographic names and company

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 8/34

names, and so on. It does not include technical or academic usage such as in
mathematical expressions, using archaic scripts or words, or pedagogical use (such as
illustration of half-forms or joining forms in isolation), or liturgical use.

The goals for such a restriction of format characters to particular contexts are to:

Allow the use of these characters where required in normal text
Exclude as many cases as possible where no visible distinction results
Be simple enough to be easily implemented with standard mechanisms such as
regular expressions

Review note: The above text was moved from Section 2.3 of UAX #31.

An implementation following the General Security Profile that allows the additional
characters ZWJ and ZWNJ shall only permit them where they satisfy the conditions A1, A2,
and B in Section 3.1.1.1, 2.3.1, Limited Contexts for Joiner Controls of [UAX31], unless it
documents the additional contexts where it allows them.

More advanced implementations may use script-specific information for more detailed
testing. In particular, they can:

1. Disallow joining controls in sequences that meet the conditions of A1, A2, and B, where
in common fonts the resulting appearance of the sequence is normally not distinct from
appearance in the same sequences with the joining controls removed.

2. Allow joining controls in sequences that don't meet the conditions of A1, A2, and B (such
as the following), where in common fonts the resulting appearance of the sequence is
normally distinct from the appearance in the same sequences with the joining controls
removed.

/$L ZWNJ $V $L/

/$L ZWJ $V $L/

The notation is from [UAX31].

3.1.1.1 Limited Contexts for Joining Controls

Review note: The following section was moved from Section 2.3.1 of UAX #31.

An implementation that attempts to provide more natural representations of terms in
"modern, customary usage" should allow the following Join_Control characters in the
limited contexts specified in A1, A2, and B below.

U+200C ZERO WIDTH NON-JOINER (ZWNJ)
U+200D ZERO WIDTH JOINER (ZWJ)

There are also two global conditions incorporated in each of A1, A2, and B:

Script Restriction. In each of the following cases, the specified sequence must only
consist of characters from a single script (after ignoring Common and Inherited script
characters).

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 9/34

Normalization. In each of the following cases, the specified sequence must be in
NFC format. (To test an identifier that is not required to be in NFC, first transform into
NFC format and then test the condition.)

Implementations may also impose tighter restrictions than provided below, in order to
eliminate some other circumstances where the characters either have no visual effect or
the effect has no semantic importance.

A1. Allow ZWNJ in the following context:

Breaking a cursive connection. That is, in the context based on the Joining_Type
property, consisting of:

A Left-Joining or Dual-Joining character, followed by zero or more Transparent
characters, followed by a ZWNJ, followed by zero or more Transparent characters,
followed by a Right-Joining or Dual-Joining character

This corresponds to the following regular expression (in Perl-style syntax): /$LJ $T* ZWNJ
$T* $RJ/
where the character classes like $T could be defined with Unicode properties (similar to
UnicodeSet notation) like this:

$T = \p{Joining_Type=Transparent}
$RJ = [\p{Joining_Type=Dual_Joining}\p{Joining_Type=Right_Joining}]
$LJ = [\p{Joining_Type=Dual_Joining}\p{Joining_Type=Left_Joining}]

For example, consider Farsi <Noon, Alef, Meem, Heh, Alef, Farsi Yeh>. Without a ZWNJ, it
translates to "names", as shown in the first row; with a ZWNJ between Heh and Alef, it
means "a letter", as shown in the second row of Figure 1.

Figure 1. Persian Example with ZWNJ

Appearance Code Points Abbreviated Names

diagram1 0646 + 0627 + 0645 + 0647 +
0627 + 06CC

NOON + ALEF + MEEM + HEH + ALEF
+ FARSI YEH

diagram2 0646 + 0627 + 0645 + 0647 +
200C + 0627 + 06CC

NOON + ALEF + MEEM + HEH + ZWNJ
+ ALEF + FARSI YEH

A2. Allow ZWNJ in the following context:

In a conjunct context. That is, a sequence of the form:

A Letter, followed by a Virama, followed by a ZWNJ (optionally preceded or followed
by certain nonspacing marks), followed by a Letter.

This corresponds to the following regular expression (in Perl-style syntax): /$L $M* $V
$M₁* ZWNJ $M₁* $L/
where:

$L = \p{General_Category=Letter}
$V = \p{Canonical_Combining_Class=Virama}

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 10/34

$M = \p{General_Category=Mn}
$M₁ = [\p{General_Category=Mn}&\p{CCC≠0}]

For example, the Malayalam word for eyewitness is shown in Figure 3. The form without
the ZWNJ in the second row is incorrect in this case.

Figure 2. Malayalam Example with ZWNJ

Appearance Code Points Abbreviated Names

 diagram3 0D26 + 0D43 + 0D15 +
0D4D + 200C + 0D38 +
0D3E + 0D15 + 0D4D +

0D37 + 0D3F

DA + VOWEL SIGN VOCALIC R + KA +
VIRAMA + ZWNJ + SA + VOWEL SIGN AA
+ KA + VIRAMA + SSA + VOWEL SIGN I

diagram4 0D26 + 0D43 + 0D15 +
0D4D + 0D38 + 0D3E +
0D15 + 0D4D + 0D37 +

0D3F

DA + VOWEL SIGN VOCALIC R + KA +
VIRAMA + SA + VOWEL SIGN AA + KA +

VIRAMA + SSA + VOWEL SIGN I

B. Allow ZWJ in the following context:

In a conjunct context. That is, a sequence of the form:

A Letter, followed by a Virama, followed by a ZWJ (optionally preceded or followed by
certain nonspacing marks), and not followed by a character of type
Indic_Syllabic_Category=Vowel_Dependent

This corresponds to the following regular expression (in Perl-style syntax): /$L $M* $V
$M₁* ZWJ (?!$D)/
where:

$L= \p{General_Category=Letter}
$V = \p{Canonical_Combining_Class=Virama}
$M = \p{General_Category=Mn}
$M₁ = [\p{General_Category=Mn}&\p{CCC≠0}]
$D = \p{Indic_Syllabic_Category=Vowel_Dependent}

For example, the Sinhala word for the country 'Sri Lanka' is shown in the first row of Figure
3, which uses both a space character and a ZWJ. Removing the space results in the text
shown in the second row of Figure 3, which is still legible, but removing the ZWJ
completely modifies the appearance of the 'Sri' cluster and results in the unacceptable text
appearance shown in the third row of Figure 3.

Figure 3. Sinhala Example with ZWJ

Appearance Code Points Abbreviated Names

 diagram5 0DC1 + 0DCA + 200D + 0DBB
+ 0DD3 + 0020 + 0DBD +

0D82 + 0D9A + 0DCF

SHA + VIRAMA + ZWJ + RA + VOWEL
SIGN II + SPACE + LA + ANUSVARA +

KA + VOWEL SIGN AA

 diagram6 0DC1 + 0DCA + 200D + 0DBB
+ 0DD3 + 0DBD + 0D82 +

SHA + VIRAMA + ZWJ + RA + VOWEL
SIGN II + LA + ANUSVARA + KA +

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 11/34

0D9A + 0DCF VOWEL SIGN AA

 diagram7 0DC1 + 0DCA + 0DBB +
0DD3 + 0020 + 0DBD + 0D82

+ 0D9A + 0DCF

SHA + VIRAMA + RA + VOWEL SIGN II +
SPACE + LA + ANUSVARA + KA +

VOWEL SIGN AA

Note: The restrictions in A1, A2, and B are similar to the CONTEXTJ rules defined in
Appendix A, Contextual Rules Registry, in The Unicode Code Points and
Internationalized Domain Names for Applications (IDNA) [IDNA2008].

Implementations that allow emoji characters in identifiers should also normally allow emoji
sequences. These are defined in ED-17, emoji sequence in [UTS51]. In particular, that
means allowing ZWJ characters, emoji presentation selector (U+FE0F), and TAG
characters, but only in the particular defined contexts described in [UTS51].

Review Note: The above paragraph was deleted, but recommendations for identifiers
containing emoji remain in UAX #31, Section 7.2, including considerations on
interactions with profiles that remove default ignorable code points.

3.1.1.2 Limitations

Review note: The following section was moved from Section 2.3.2 of UAX #31.

While the restrictions in A1, A2, and B greatly limit visual confusability, they do not prevent
it. For example, because Tamil only uses a Join_Control character in one specific case,
most of the sequences these rules allow in Tamil are, in fact, visually confusable. Therefore
based on their knowledge of the script concerned, implementations may choose to have
tighter restrictions than specified in Section 3.1.1.2, 2.3.1, Limited Contexts for Joining
Controls. There are also cases where a joiner preceding a virama makes a visual
distinction in some scripts. It is currently unclear whether this distinction is important
enough in identifiers to warrant retention of a joiner. For more information, see UTR #36:
Unicode Security Considerations [UTR36].

Performance. Parsing identifiers can be a performance-sensitive task. However, these
characters are quite rare in practice, thus the regular expressions (or equivalent
processing) only rarely would need to be invoked. Thus these tests should not add any
significant performance cost overall.

Comparison. Typically the identifiers with and without these characters should compare
as equivalent, to prevent security issues. See Section 2.4, Specific Character Adjustments.

Review Note: While the above paragraph was deleted, clearer guidelines for
comparison in the presence of default ignorable code points remain in UAX #31,
Section 2.3

3.2 IDN Security Profiles for Identifiers

Version 1 of this document defined operations and data that apply to [IDNA2003], which
has been superseded by [IDNA2008] and Unicode Technical Standard #46, "Unicode IDNA
Compatibility Processing" [UTS46]. The identifier modification data can be applied to
whichever specification of IDNA is being used. For more information, see the [IDN FAQ].

https://www.unicode.org/reports/tr41/tr41-30.html#UTS51
https://www.unicode.org/reports/tr41/tr41-30.html#UTS51
https://www.unicode.org/reports/tr41/tr41-30.html#UTR36

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 12/34

However, implementations can claim conformance to other features of this document as
applied to domain names, such as Restriction Levels.

3.3 Email Security Profiles for Identifiers

The SMTP Extension for Internationalized Email provides for specifications of
internationalized email addresses [EAI]. However, it does not provide for testing those
addresses for security issues. This section provides an email security profiles that may be
used for that. It can be applied for different purposes, such as:

1. When an email address is registered, flag anything that does not meet the profile:
Either forbid the registration, or
Allow for an appeals process.

2. When an email address is detected in linkification of plain text:
Do not linkify if the identifier does not meet the profile.

3. When an email address is displayed in incoming email:
Flag it as suspicious with a wavy underline, if it does not meet the profile.
Filter characters from the quoted-string-part to prevent display problems.

This profile does not exclude characters from EAI. Instead, it provides a profile that can be
used for registration, linkification, and notification. The goal is to flag "structurally unsound"
and “unexpectedly garbagy” addresses.

An email address is formed from three main parts. (There are more elements of an email
address, but these are the ones for which Unicode security is important.) For example:

"Joey" <joe31834@gmail.com>

The domain-part is "gmail.com"
The local-part is "joe31834"
The quoted-string-part is "Joey"

To meet the requirements of the Email Security Profiles for Identifiers section of this
specification, an identifier must satisfy the following conditions for the specified <restriction
level>.

Domain-Part

The domain-part of an email address must satisfy Section 3.2, IDN Security Profiles for
Identifiers, and satisfy the conformance clauses of [UTS46].

Local-Part

The local-part of an email address must satisfy all the following conditions:

1. It must be in NFKC format
2. It must have level = <restriction level> or less, from Restriction_Level_Detection
3. It must not have mixed number systems according to Mixed_Number_Detection
4. It must satisfy dot-atom-text from RFC 5322 §3.2.3, where atext is extended as

follows:

https://www.rfc-editor.org/rfc/rfc5322.html#section-3.2.3

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 13/34

Where C ≤ U+007F, C is defined as in §3.2.3. (That is, C ∈ [!#-'*+\-/-9=?A-Z\^-~]. This
list copies what is already in §3.2.3, and follows HTML5 for ASCII.)

Where C > U+007F, both of the following conditions are true:

1. C has Identifier_Status=Allowed from General_Security_Profile
2. If C is the first character, it must be XID_Start from Default_Identifier_Syntax in

[UAX31]

Note that in RFC 5322 §3.2.3:

dot-atom-text = 1*atext *("." 1*atext)

That is, dots can also occur in the local-part, but not leading, trailing, or two in a row. In
more conventional regex syntax, this would be:

dot-atom-text = atext+ ("." atext+)*

Note that bidirectional controls and other format characters are specifically disallowed in
the local-part, according to the above.

Quoted-String-Part

The quoted-string-part of an email address must satisfy the following conditions:

1. It must be in NFC.
2. It must not contain any stateful bidirectional format characters.

That is, no [:bidicontrol:] except for the LRM, RLM, and ALM, since the
bidirectional controls could influence the ordering of characters outside the
quotes.

3. It must not contain more than four nonspacing marks in a row, and no sequence of
two of the same nonspacing marks.

4. It may contain mixed scripts, symbols (including emoji), and so on.

Other Issues

The restrictions above are insufficient to prevent bidirectional-reordering that could intermix
the quoted-string-part with the local-part or the domain-part in display. To prevent that,
implementations could use bidirectional isolates (or equivalent) around the each of these
parts in display.

Implementations may also want to use other checks, such as for confusability, or services
such as Safe Browsing.

A serious practical issue is that clients do not know what the identity rules are for any
particular email server: that is, when two email addresses are considered equivalent. For
example, are mark@macchiato.com and Mark@macchiato.com treated the same by the
server? Unfortunately, there is no way to query a server to see what identity rules it follows.
One of the techniques used to deal with this problem is having whitelists of email providers
indicating which of them are case-insensitive, dot-insensitive, or both.

4 Confusable Detection

https://www.rfc-editor.org/rfc/rfc5322.html#section-3.2.3
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%21%23-%27*%2B%5C-%2F-9%3D%3FA-Z%5C%5E-~%5D&abb=on&g=
https://www.w3.org/TR/html5/sec-forms.html#email-state-typeemail
https://www.unicode.org/reports/tr31/#Default_Identifier_Syntax
https://www.rfc-editor.org/rfc/rfc5322.html#section-3.2.3

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 14/34

The data in [confusables] provide a mechanism for determining when two strings are
visually confusable. The data in these files may be refined and extended over time. For
information on handling modifications over time, see Section 2.10.1, Backward
Compatibility in Unicode Technical Report #36, "Unicode Security Considerations" [UTR36]
and the Migration section of this document.

Collection of data for detecting gatekeeper-confusable strings is not currently a goal for the
confusable detection mechanism in this document. For more information, see Section 2,
Visual Security Issues in [UTR36].

The data provides a mapping from source characters to their prototypes. A prototype
should be thought of as a sequence of one or more classes of symbols, where each class
has an exemplar character. For example, the character U+0153 (œ), LATIN SMALL
LIGATURE OE, has a prototype consisting of two symbol classes: the one with exemplar
character U+006F (o), and the one with exemplar character U+0065 (e). If an input
character does not have a prototype explicitly defined in the data file, the prototype is
assumed to consist of the class of symbols with the input character as the exemplar
character.

For an input string X, define skeleton(X) to be the following transformation on the string:

1. Convert X to NFD format, as described in [UAX15].
2. Remove any characters in X that have the property Default_Ignorable_Code_Point.
3. Concatenate the prototypes for each character in X according to the specified data,

producing a string of exemplar characters.
4. Reapply NFD.

The strings X and Y are defined to be confusable if and only if skeleton(X) = skeleton(Y).
This is abbreviated as X ≅ Y.

This mechanism imposes transitivity on the data, so if X ≅ Y and Y ≅ Z, then X ≅ Z. It is
possible to provide a more sophisticated confusable detection, by providing a metric
between given characters, indicating their "closeness." However, that is computationally
much more expensive, and requires more sophisticated data, so at this point in time the
simpler mechanism has been chosen. That means that in some cases the test may be
overly inclusive.

Note: The strings skeleton(X) and skeleton(Y) are not intended for display, storage
or transmission. They should be thought of as an intermediate processing form,
similar to a hashcode. The exemplar characters are not guaranteed to be identifier
characters.

Note: Some implementations of confusable detection outside Unicode use different
terminology. In particular, in the ICANN Root Zone Label Generation Rules
[RZLGR5], the term variant of X is used for a property similar to confusable with X,
and the term index variant is used for the equivalent of skeleton.

For an input string X and a direction 𝑑 ∈ {RTL, LTR, FS}, define bidiSkeleton(𝑑, X) to be
the following transformation on the string:

1. Reorder the code points in X for display by applying the rules of the Unicode
Bidirectional Algorithm [UAX9] up to and including L2, treating X in isolation; if 𝑑≠FS,

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 15/34

apply protocol HL1 to set the paragraph level to 1 if 𝑑=RTL, and to 0 if 𝑑=LTR; this
yields the reordered sequence of characters R.

2. Apply rule L3 of the UBA: move combining marks after their base in Z; this yields the
sequence R′.

3. Replace any character whose glyph would be mirrored by rule L4 of the UBA by the
value of its Bidi_Mirroring_Glyph property, yielding R″.

4. bidiSkeleton(𝑑, X) is then skeleton(R″).
5. The strings X and Y are defined to be 𝑑-confusable if and only if bidiSkeleton(𝑑, X) =

bidiSkeleton(𝑑, Y). This is abbreviated as X ≒ Y (𝑑).
6. Like confusability, 𝑑-confusability is an equivalence relation; in particular, it is

transitive: if X ≒ Y (𝑑) and Y ≒ Z (𝑑), then X ≒ Z (𝑑).

Note: The operation skeleton may change the Bidi_Class of characters, so it does
not commute with the reordering and mirroring steps, and needs to be performed
after them.

Example: The sequences of code points S₁ and S₂ are LTR-confusable:

S₁ ≔ "A1<ׂש" = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN,
HEBREW LETTER SHIN, HEBREW POINT SIN DOT)
S₂ ≔ "Α1> ,GREEK CAPITAL LETTER ALPHA, HEBREW LETTER SHIN) = "שֺ
HEBREW POINT HOLAM HASER FOR VAV, GREATER-THAN SIGN, DIGIT
ONE)

Computation of bidiSkeleton(LTR, S₁):

R₁ = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN, HEBREW POINT
SIN DOT, HEBREW LETTER SHIN)
R′₁ = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN, HEBREW
LETTER SHIN, HEBREW POINT SIN DOT)
R″₁ = (LATIN CAPITAL LETTER A, DIGIT ONE, LESS-THAN SIGN, HEBREW
LETTER SHIN, HEBREW POINT SIN DOT)
bidiskeleton(LTR, S₁) = skeleton(R″₁) = (LATIN CAPITAL LETTER A, LATIN SMALL
LETTER L, LESS-THAN SIGN, HEBREW LETTER SHIN, COMBINING DOT
ABOVE)

Computation of bidiSkeleton(LTR, S₂):

R₂ = (GREEK CAPITAL LETTER ALPHA, DIGIT ONE, GREATER-THAN SIGN,
HEBREW POINT HOLAM HASER FOR VAV, HEBREW LETTER SHIN)
R′₂ = (GREEK CAPITAL LETTER ALPHA, DIGIT ONE, GREATER-THAN SIGN,
HEBREW LETTER SHIN, HEBREW POINT HOLAM HASER FOR VAV)
R″₂ = (GREEK CAPITAL LETTER ALPHA, DIGIT ONE, LESS-THAN SIGN,
HEBREW LETTER SHIN, HEBREW POINT HOLAM HASER FOR VAV)
bidiskeleton(LTR, S₂) = skeleton(R″₂) = (LATIN CAPITAL LETTER A, LATIN SMALL
LETTER L, LESS-THAN SIGN, HEBREW LETTER SHIN, COMBINING DOT
ABOVE)

Review note: Consider moving the details of the computation (but not the basic
example) to an appendix.

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 16/34

Note that these sequences are not RTL-confusable; indeed in a right-to-left
paragraph, the strings look distinct:

S₁ = "ׂש<A1"
S₂ = "1> "Αשֺ

LTR, and RTL, and FS confusability should be used when it is inappropriate to enforce that
strings be single-script, or at least single-directionality; this is the case in programming
language identifiers. See Section 5.1, Confusability Mitigation Diagnostics, in Unicode
Technical Standard #55, Unicode Source Code Handling [UTS55].

Bidirectional confusability is costlier to check than confusability, as the bidirectional
algorithm must be applied. However, a fast path can be used: if 𝑑=LTR and X has no
characters with bidi classes R or AL, bidiSkeleton(X) = skeleton(X).

Further, if the strings are known not to contain explicit directional formatting characters (as
is the case for UAX31-R1 Default Identifiers defined in Unicode Standard Annex #31,
Identifiers and Syntax [UAX31]), the algorithm can be drastically simplified, as the X rules
are trivial, obviating the need for the directional status stack of the Unicode Bidirectional
Algorithm. The highest possible resolved level is then 2; see Table 5, Resolving Implicit
Levels, in Unicode Standard Annex #9, Unicode Bidirectional Algorithm [UAX9].

Note: As is the case for skeleton, the strings bidiSkeleton(d, X) and bidiSkeleton(d,
Y) are not intended for display, storage or transmission.

Definitions

Confusables are divided into three classes: single-script confusables, mixed-script
confusables, and whole-script confusables, defined below. All confusables are either a
single-script confusable or a mixed-script confusable, but not both. All whole-script
confusables are also mixed-script confusables.

The definitions of these three classes of confusables depend on the definitions of resolved
script set and single-script, which are provided in Section 5, Mixed-Script Detection.

X and Y are single-script confusables if and only if they are confusable, and their resolved
script sets have at least one element in common.

Examples: “ǉeto” and “ljeto” in Latin (the Croatian word for “summer”), where the first
word uses only four codepoints, the first of which is U+01C9 (ǉ) LATIN SMALL
LETTER LJ.

X and Y are mixed-script confusables if and only if they are confusable but their resolved
script sets have no elements in common.

Examples: "paypal" and "pаypаl", where the second word has the character U+0430
(а) CYRILLIC SMALL LETTER A.

X and Y are whole-script confusables if and only if they are mixed-script confusables, and
each of them is a single-script string.

Example: "scope" in Latin and "ѕсоре" in Cyrillic.

https://util.unicode.org/UnicodeJsps/character.jsp?a=0430

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 17/34

As noted in Section 5, the resolved script set ignores characters with Script_Extensions
{Common} and {Inherited} and augments characters with CJK scripts with their respective
writing systems. Characters with the Script_Extension property values COMMON or
INHERITED are ignored when testing for differences in script.

Data File Format

Each line in the data file has the following format: Field 1 is the source, Field 2 is the
target, and Field 3 is obsolete, always containing the letters “MA” for backwards
compatibility. For example:

0441 ; 0063 ; MA # (с → c) CYRILLIC SMALL LETTER ES → LATIN SMALL
LETTER C #

2CA5 ; 0063 ; MA # (ⲥ → c) COPTIC SMALL LETTER SIMA → LATIN SMALL
LETTER C # →ϲ→

Everything after the # is a comment and is purely informative. A asterisk after the comment
indicates that the character is not an XID character [UAX31]. The comments provide the
character names.

Implementations that use the confusable data do not have to recursively apply the
mappings, because the transforms are idempotent. That is,

skeleton(skeleton(X)) = skeleton(X)

If the data was derived via transitivity, there is an extra comment at the end. For instance,
in the above example the derivation was:

1. ⲥ (U+2CA5 COPTIC SMALL LETTER SIMA)
2. → ϲ (U+03F2 GREEK LUNATE SIGMA SYMBOL)
3. → c (U+0063 LATIN SMALL LETTER C)

To reduce security risks, it is advised that identifiers use casefolded forms, thus eliminating
uppercase variants where possible.

The data may change between versions. Even where the data is the same, the order of
lines in the files may change between versions. For more information, see Migration.

Note: Due to production problems, versions before 7.0 did not maintain idempotency
in all cases. For more information, see Migration.

4.1 Whole-Script Confusables

For some applications, it is useful to determine if a given input string has any whole-script
confusable. For example, the identifier "ѕсоре" using Cyrillic characters would pass the
single-script test described in Section 5.2, Restriction-Level Detection, even though it is
likely to be a spoof attempt.

It is possible to determine whether a single-script string X has a whole-script confusable:

1. Consider Q, the set of all strings that are confusable with X.
2. Remove all strings from Q whose resolved script set intersects with the resolved

script set of X.

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 18/34

3. If Q is nonempty and contains any single-script string, return TRUE.
4. Otherwise, return FALSE.

The logical description above can be used for a reference implementation for testing, but is
not particularly efficient. A production implementation can be optimized as long as it
produces the same results.

Note that the confusables data include a large number of mappings between Latin and
Cyrillic text. For this reason, the above algorithm is likely to flag a large number of
legitimate strings written in Latin or Cyrillic as potential whole-script confusables. To
effectively use whole-script confusables, it is often useful to determine both whether a
string has a whole-script confusable, and which scripts those whole-script confusables
have.

This information can be used, for example, to distinguish between reasonable versus
suspect whole-script confusables. Consider the Latin-script domain-name label “circle”. It
would be appropropriate to have that in the domain name “circle.com”. It would also be
appropriate to have the Cyrillic confusable “сігсӀе” in the Cyrillic domain name “сігсӀе.рф”.
However, a browser may want to alert the user to possible spoofs if the Cyrillic “сігсӀе” is
used with .com or the Latin “circle” is used with .рф.

The process of determining suspect usage of whole-script confusables is more
complicated than simply looking at the scripts of the labels in a domain name. For
example, it can be perfectly legitimate to have scripts in a SLD (second level domain) not
be the same as scripts in a TLD (top-level domain), such as:

Cyrillic labels in a domain name with a TLD of .ru or .рф
Chinese labels in a domain name with a TLD of .com.au or .com
Cyrillic labels that aren’t confusable with Latin with a TLD of .com.au or .com

The following high-level algorithm can be used to determine all scripts that contain a
whole-script confusable with a string X:

1. Consider Q, the set of all strings confusable with X.
2. Remove all strings from Q whose resolved script set is ∅ or ALL (that is, keep only

single-script strings plus those with characters only in Common).
3. Take the union of the resolved script sets of all strings remaining in Q.

As usual, this algorithm is intended only as a definition; implementations should use an
optimized routine that produces the same result.

4.2 Mixed-Script Confusables

To determine the existence of a mixed-script confusable, a similar process could be used:

1. Consider Q, the set of all strings that are confusable with X.
2. Remove all strings from Q whose resolved script set intersects with the resolved

script set of X.
3. If Q is nonempty, return TRUE.
4. Otherwise, return FALSE.

The logical description above can be used for a reference implementation for testing, but is
not particularly efficient. A production implementation can be optimized as long as it

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 19/34

produces the same results.

Note that due to the number of mappings provided by the confusables data, the above
algorithm is likely to flag a large number of legitimate strings as potential mixed-script
confusables.

5 Detection Mechanisms

5.1 Mixed-Script Detection

The Unicode Standard supplies information that can be used for determining the script of
characters and detecting mixed-script text. The determination of script is according to the
UAX #24, Unicode Script Property [UAX24], using data from the Unicode Character
Database [UCD].

Define a character's augmented script set to be a character's Script_Extensions with the
following two modifications.

1. Entries for the writing systems containing multiple scripts — Hanb (Han with
Bopomofo), Jpan (Japanese), and Kore (Korean) — are added according to the
following rules.

1. If Script_Extensions contains Hani (Han), add Hanb, Jpan, and Kore.
2. If Script_Extensions contains Hira (Hiragana), add Jpan.
3. If Script_Extensions contains Kana (Katakana), add Jpan.
4. If Script_Extensions contains Hang (Hangul), add Kore.
5. If Script_Extensions contains Bopo (Bopomofo), add Hanb.

2. Sets containing Zyyy (Common) or Zinh (Inherited) are treated as ALL, the set of all
script values.

The Script_Extensions data is from the Unicode Character Database [UCD]. For more
information on the Script_Extensions property and Jpan, Kore, and Hanb, see UAX #24,
Unicode Script Property [UAX24].

Define the resolved script set for a string to be the intersection of the augmented script
sets over all characters in the string.

A string is defined to be mixed-script if its resolved script set is empty and defined to be
single-script if its resolved script set is nonempty.

Note: The term “single-script string” may be confusing. It means that there is at least
one script in the resolved script set, not that there is only one. For example, the string
“〆切” is single-script, because it has four scripts {Hani, Hanb, Jpan, Kore} in its
resolved script set.

As well as providing an API to detect whether a string has mixed-scripts, is also useful to
offer an API that returns those scripts. Look at the examples below.

Table 1a. Mixed Script Examples

String Code
Point

Script_Extensions Augmented Script
Sets

Resolved
Script Set

Single-
Script?

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 20/34

Circle U+0043
U+0069
U+0072
U+0063
U+006C
U+0065

{Latn}
{Latn}
{Latn}
{Latn}
{Latn}
{Latn}

{Latn}
{Latn}
{Latn}
{Latn}
{Latn}
{Latn}

{Latn} Yes

СігсӀе U+0421
U+0456
U+0433
U+0441
U+04C0
U+0435

{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}

{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}
{Cyrl}

{Cyrl} Yes

Сirсlе U+0421
U+0069
U+0072
U+0441
U+006C
U+0435

{Cyrl}
{Latn}
{Latn}
{Cyrl}
{Latn}
{Cyrl}

{Cyrl}
{Latn}
{Latn}
{Cyrl}
{Latn}
{Cyrl}

∅ No

Circ1e U+0043
U+0069
U+0072
U+0063
U+0031
U+0065

{Latn}
{Latn}
{Latn}
{Latn}
{Zyyy}
{Latn}

{Latn}
{Latn}
{Latn}
{Latn}
ALL
{Latn}

{Latn} Yes

C𝗂𝗋𝖼𝗅𝖾 U+0043
U+1D5C2
U+1D5CB
U+1D5BC
U+1D5C5
U+1D5BE

{Latn}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}

{Latn}
ALL
ALL
ALL
ALL
ALL

{Latn} Yes

𝖢𝗂𝗋𝖼𝗅𝖾 U+1D5A2
U+1D5C2
U+1D5CB
U+1D5BC
U+1D5C5
U+1D5BE

{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}
{Zyyy}

ALL
ALL
ALL
ALL
ALL
ALL

ALL Yes

〆切 U+3006
U+5207

{Hani, Hira,
KataKana}
{Hani}

{Hani, Hira,
KataKana, Hanb,
Jpan, Kore}
{Hani, Hanb, Jpan,
Kore}

{Hani, Hanb,
Jpan, Kore}

Yes

ねガ U+306D
U+30AC

{Hira}
{KataKana}

{Hira, Jpan}
{KataKana, Jpan}

{Jpan} Yes

A set of scripts is defined to cover a string if the intersection of that set with the augmented
script sets of all characters in the string is nonempty; in other words, if every character in
the string shares at least one script with the cover set. For example, {Latn, Cyrl} covers
"Сirсlе", the third example in Table 1a.

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 21/34

A cover set is defined to be minimal if there is no smaller cover set. For example, {Hira,
Hani} covers "〆切", the seventh example in Table 1a, but it is not minimal, since {Hira}
also covers the string, and {Hira} is smaller than {Hira, Hani}. Note that minimal cover sets
are not unique: a string may have different minimal cover sets.

Typically an API that returns the scripts in a string will return one of the minimal cover sets.

For computational efficiency, a set of script sets (SOSS) can be computed, where the
augmented script sets for each character in the string map to one entry in the SOSS. For
example, { {Latn}, {Cyrl} } would be the SOSS for "Сirсlе". A set of scripts that covers the
SOSS also covers the input string. Likewise, the intersection of all entries of the SOSS will
be the input string's resolved script set.

5.2 Restriction-Level Detection

Restriction Levels 1-5 are defined here for use in implementations. These place restrictions
on the use of identifiers according to the appropriate Identifier Profile as specified in
Section 3, Identifier Characters. The lists of Recommended scripts are taken from Table 5,
Recommended Scripts of [UAX31]. For more information on the use of Restriction Levels,
see Section 2.9, Restriction Levels and Alerts in [UTR36].

For each of the Restriction Levels 1-6, the identifier must be well-formed according to
whatever general syntactic constraints are in force, such as the Default Identifier Syntax in
[UAX31].

In addition, an application may provide an Identifier Profile such as the General Security
Profile for Identifiers, which restricts the allowed characters further. For each of the
Restriction Levels 1-5, characters in the string must also be in the Identifier Profile. Where
there is no such Identifier Profile, Levels 5 and 6 are identical.

1. ASCII-Only
All characters in the string are in the ASCII range.

2. Single Script
The string qualifies as ASCII-Only, or
The string is single-script, according to the definition in Section 5.1.

3. Highly Restrictive
The string qualifies as Single Script, or
The string is covered by any of the following sets of scripts, according to the
definition in Section 5.1:

Latin + Han + Hiragana + Katakana; or equivalently: Latn + Jpan
Latin + Han + Bopomofo; or equivalently: Latn + Hanb
Latin + Han + Hangul; or equivalently: Latn + Kore

4. Moderately Restrictive
The string qualifies as Highly Restrictive, or
The string is covered by Latin and any one other Recommended script, except
Cyrillic, Greek

5. Minimally Restrictive
There are no restrictions on the set of scripts that cover the string.
The only restrictions are the identifier well-formedness criteria and Identifier
Profile, allowing arbitrary mixtures of scripts such as Ωmega, Teχ, HλLF-LIFE,
Toys-Я-Us.

https://www.unicode.org/reports/tr39/#Identifier_Characters
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 22/34

6. Unrestricted
There are no restrictions on the script coverage of the string.
The only restrictions are the criteria on identifier well-formedness. Characters
may be outside of the Identifier Profile.
This level is primarily for use in detection APIs, providing return value indicating
that the string does not match any of the levels 1-5.

Note that in all levels except ASCII-Only, any character having Script_Extensions
{Common} or {Inherited} are allowed in the identifier, as long as those characters meet the
Identifier Profile requirements.

These levels can be detected by reusing some of the mechanisms of Section 5.1. For a
given input string, the Restriction Level is determined by the following logical process:

1. If the string contains any characters outside of the Identifer Profile, return
Unrestricted.

2. If no character in the string is above 0x7F, return ASCII-Only.
3. Compute the string's SOSS according to Section 5.1.
4. If the SOSS is empty or the intersection of all entries in the SOSS is nonempty, return

Single Script.
5. Remove all the entries from the SOSS that contain Latin.
6. If any of the following sets cover SOSS, return Highly Restrictive.

{Kore}
{Hanb}
{Japn}

7. If the intersection of all entries in the SOSS contains any single Recommended
script except Cyrillic or Greek, return Moderately Restrictive.

8. Otherwise, return Minimally Restrictive.

The actual implementation of this algorithm can be optimized; as usual, the specification
only depends on the results.

5.3 Mixed-Number Detection

There are three different types of numbers in Unicode. Only numbers with
General_Category = Decimal_Numbers (Nd) should be allowed in identifiers. However,
characters from different decimal number systems can be easily confused. For example,
U+0660 (٠) ARABIC-INDIC DIGIT ZERO can be confused with U+06F0 (۰) EXTENDED
ARABIC-INDIC DIGIT ZERO, and U+09EA (৪) BENGALI DIGIT FOUR can be confused
with U+0038 (8) DIGIT EIGHT. There are other reasons for disallowing mixed number
systems in identifers, just as there are for mixing scripts.

For a given input string which does not contain non-decimal numbers, the logical process
of detecting mixed numbers is the following:

For each character in the string:

1. Find the decimal number value for that character, if any.
2. Map the value to the unique zero character for that number system.

If there is more than one such zero character, then the string contains multiple decimal
number systems.

https://util.unicode.org/UnicodeJsps/character.jsp?a=0660
https://util.unicode.org/UnicodeJsps/character.jsp?a=06F0
https://util.unicode.org/UnicodeJsps/character.jsp?a=09EA
https://util.unicode.org/UnicodeJsps/character.jsp?a=0038

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 23/34

The actual implementation of this algorithm can be optimized; as usual, the specification
only depends on the results. The following Java sample using [ICU] shows how this can be
done :

 public UnicodeSet getNumberRepresentatives(String identifier) {
 int cp;
 UnicodeSet numerics = new UnicodeSet();
 for (int i = 0; i < identifier.length(); i += Character.charCount(i)) {
 cp = Character.codePointAt(identifier, i);
 // Store a representative character for each kind of decimal digit
 switch (UCharacter.getType(cp)) {
 case UCharacterCategory.DECIMAL_DIGIT_NUMBER:
 // Just store the zero character as a representative for comparison.
 // Unicode guarantees it is cp - value.
 numerics.add(cp - UCharacter.getNumericValue(cp));
 break;
 case UCharacterCategory.OTHER_NUMBER:
 case UCharacterCategory.LETTER_NUMBER:
 throw new IllegalArgumentException("Should not be in identifiers.");
 }
 }
 return numerics;
 }
...
 UnicodeSet numerics = getMixedNumbers(String identifier);
 if (numerics.size() > 1) reject(identifer, numerics);

5.4 Optional Detection

There are additional enhancements that may be useful in spoof detection, such as:

1. Check to see that all the characters are in the sets of exemplar characters for at least
one language in the Unicode Common Locale Data Repository [CLDR].

2. Check for unlikely sequences of combining marks:
a. Forbid sequences of the same nonspacing mark.
b. Forbid sequences of more than 4 nonspacing marks (gc=Mn or gc=Me).
c. Forbid sequences of base character + nonspacing mark that look the same as

or confusingly similar to the base character alone (because the nonspacing
mark overlays a portion of the base character). An example is U+0069
LOWERCASE LETTER I + U+0307 COMBINING DOT ABOVE.

3. Add support for detecting two distinct sequences that have identical representations.
The current data files only handle cases where a single code point is confusable with
another code point or sequence. It does not handle cases like shri, as below.

The characters U+0BB6 TAMIL LETTER SHA and U+0BB8 TAMIL LETTER SA are
normally quite distinct. However, they can both be used in the representation of the the
Tamil word shri. On some very common platforms, the following sequences result in
exactly the same visual appearance:

U+0BB6 U+0BCD U+0BB0 U+0BC0

SHA VIRAMA RA II

ஶ ் ர ◌ீ
= ஶ்ரீ

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 24/34

U+0BB8 U+0BCD U+0BB0 U+0BC0

SA VIRAMA RA II

ஸ ் ர ◌ீ
= ஸ்ரீ

6 Development Process

As discussed in Unicode Technical Report #36, "Unicode Security Considerations"
[UTR36], confusability among characters cannot be an exact science. There are many
factors that make confusability a matter of degree:

Shapes of characters vary greatly among fonts used to represent them. The Unicode
Standard uses representative glyphs in the code charts, but font designers are free to
create their own glyphs. Because fonts can easily be created using an arbitrary glyph
to represent any Unicode code point, character confusability with arbitrary fonts can
never be avoided. For example, one could design a font where the ‘a’ looks like a ‘b’ ,
‘c’ like a ‘d’, and so on.
Writing systems using contextual shaping (such as Arabic, and many South Asian
systems) introduce even more variation in text rendering. Characters do not really
have an abstract shape in isolation and are only rendered as part of cluster of
characters making words, expressions, and sentences. It is a fairly common
occurrence to find the same visual text representation corresponding to very different
logical words that can only be recognized by context, if at all.
Font style variants such as italics may introduce a confusability which does not exist
in another style. For example, in the Cyrillic script, the U+0442 (т) CYRILLIC
SMALL LETTER TE looks like a small caps Latin ‘T’ in normal style, while it looks like
a small Latin ‘m’ in italic style.

In-script confusability is extremely user-dependent. For example, in the Latin script,
characters with accents or appendices may look similar to the unadorned characters for
some users, especially if they are not familiar with their meaning in a particular language.
However, most users will have at least a minimum understanding of the range of
characters in their own script, and there are separate mechanisms available to deal with
other scripts, as discussed in [UTR36].

As described elsewhere, there are cases where the confusable data may be different than
expected. Sometimes this is because two characters or two strings may only be
confusable in some fonts. In other cases, it is because of transitivity. For example, the
dotless and dotted I are considered equivalent (ı ↔ i), because they look the same when
accents such as an acute are applied to each. However, for practical implementation
usage, transitivity is sufficiently important that some oddities are accepted.

The data may be enhanced in future versions of this specification. For information on
handling changes in data over time, see 2.10.1, Backward Compatibility of [UTR36].

6.1 Confusables Data Collection

The confusability data was created by collecting a number of prospective confusables,
examining those confusables according to a set of common fonts, and processing the
result for transitive closure.

The primary goal is to include characters that would be Identifier_Status=Allowed as in
Table 1, Identifier_Status and Identifier_Type. Other characters, such as NFKC variants,

https://util.unicode.org/UnicodeJsps/character.jsp?a=0442

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 25/34

are not a primary focus for data collection. However, such variants may certainly be
included in the data, and may be submitted using the online forms at [Feedback].

The prospective confusables were gathered from a number of sources. Erik van der Poel
contributed a list derived from running a program over a large number of fonts to catch
characters that shared identical glyphs within a font, and Mark Davis did the same more
recently for fonts on Windows and the Macintosh. Volunteers from Google, IBM, Microsoft
and other companies gathered other lists of characters. These included native speakers for
languages with different writing systems. The Unicode compatibility mappings were also
used as a source. The process of gathering visual confusables is ongoing: the Unicode
Consortium welcomes submission of additional mappings. The complex scripts of South
and Southeast Asia need special attention. The focus is on characters that can be in the
Recommended profile for identifiers, because they are of most concern.

The fonts used to assess the confusables included those used by the major operating
systems in user interfaces. In addition, the representative glyphs used in the Unicode
Standard were also considered. Fonts used for the user interface in operating systems are
an important source, because they are the ones that will usually be seen by users in
circumstances where confusability is important, such such as when using IRIS
(Internationalized Resource Identifiers) and their sub-elements (such as domain names).
These fonts have a number of other relevant characteristics:

They rarely changed in updates to operating systems and applications; changes
brought by system upgrades tend to be gradual to avoid usability disruption.
Because user interface elements need to be legible at low screen resolution
(implying a low number of pixels per EM), fonts used in these contexts tend to be
designed in sans-serif style, which has the tendency to increase the possibility of
confusables. There are, however, some languages such as Chinese where a serif
style is in common use.
Strict bounding box requirements create even more constraints for scripts which use
relatively large ascenders and descenders. This also limits space allocated for accent
or tone marks, and can also create more opportunities for confusability.

Pairs of prospective confusables were removed if they were always visually distinct at
common sizes, both within and across fonts. The data was then closed under transitivity,
so that if X≅Y and Y≅Z, then X≅Z. In addition, the data was closed under substring
operations, so that if X≅Y then AXB≅AYB. It was then processed to produce the in-script
and cross-script data, so that a single data table can be used to map an input string to a
resulting skeleton.

A skeleton is intended only for internal use for testing confusability of strings; the resulting
text is not suitable for display to users, because it will appear to be a hodgepodge of
different scripts. In particular, the result of mapping an identifier will not necessary be an
identifier. Thus the confusability mappings can be used to test whether two identifiers are
confusable (if their skeletons are the same), but should definitely not be used as a
"normalization" of identifiers.

6.2 Identifier Modification Data Collection

The idmod data is gathered in the following way. The basic assignments are derived
based on UCD character properties, information in [UAX31], and a curated list of
exceptions based on information from various sources, including the core specification of
the Unicode Standard, annotations in the code charts, information regarding CLDR
exemplar characters, and external feedback.

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 26/34

The first condition that matches in the order of the items from top to bottom in Table 1.
Identifier_Status and Identifier_Type is used, with a few exceptions:

1. When a character is in Table 3a, Optional Characters for Medial or Table 3b, Optional
Characters for Continue in [UAX31], then it is given the Identifier_Type=Inclusion,
regardless of other properties.

2. When the Script_Extensions property value for a character contains multiple Script
property values, the Script used for the derivation is the first in the following list:

1. Table 5, Recommended Scripts
2. Table 7, Limited Use Scripts
3. Table 4, Excluded Scripts

The script information in Table 4, Table 5, and Table 7 is in machine-readable form in
CLDR, as scriptMetadata.txt.

7 Data Files

The following files provide data used to implement the recommendations in this document.
The data may be refined in future versions of this specification. For more information, see
2.10.1, Backward Compatibility of [UTR36]. For illustration, this UTS shows sample data
values, but for the actual data for the current version of Unicode always refer to the data
files.

The Unicode Consortium welcomes feedback on additional confusables or identifier
restrictions. There are online forms at [Feedback] where you can suggest additional
characters or corrections.

The files are in https://www.unicode.org/Public/security/. The directories there contain data
files associated with a given version. The directory for this version is:

https://www.unicode.org/Public/security/15.0.0/

The data files for the latest approved version are also in the directory:

https://www.unicode.org/Public/security/latest

The format for IdentifierStatus.txt follows the normal conventions for UCD data files, and is
described in the header of that file. All characters not listed in the file default to
Identifier_Type=Restricted. Thus the file only lists characters with
Identifier_Status=Allowed. For example:

002D..002E ; Allowed # 1.1 HYPHEN-MINUS..FULL STOP

The format for IdentifierType.txt follows the normal conventions for UCD data files, and is
described in the header of that file. The value is a set whose elements are delimited by
spaces. This format is identical to that used for ScriptExtensions.txt. This differs from prior
versions which only listed the strongest reason for exclusion. This new convention allows
the values to be used for more nuanced filtering. For example, if an implementation wants
to allow an Exclusion script, it could still exclude Obsolete and Deprecated characters in
that script. All characters not listed in the file default to Identifier_Type=Recommended. For
example:

2460..24EA ; Technical Not_XID Not_NFKC # 1.1 CIRCLED DIGIT ONE..CIRCLED DIGIT ZERO

https://www.unicode.org/reports/tr31/#Table_Optional_Medial
https://www.unicode.org/reports/tr31/#Table_Optional_Continue
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/#Table_Candidate_Characters_for_Exclusion_from_Identifiers
https://www.unicode.org/reports/tr31/#Table_Candidate_Characters_for_Exclusion_from_Identifiers
https://www.unicode.org/reports/tr31/#Table_Recommended_Scripts
https://www.unicode.org/reports/tr31/#Table_Limited_Use_Scripts
https://www.unicode.org/Public/security/
https://www.unicode.org/Public/security/15.0.0/
https://www.unicode.org/Public/security/latest

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 27/34

Both of these files have machine-readable # @missing lines for the default property values,
as in many UCD files. For details about this syntax see Section 4.2.10, @missing
Conventions in [UAX44].

Table 2. Data File List

Reference File Name(s) Contents

[idmod] IdentifierStatus.txt
IdentifierType.txt

Identifier_Type and
Identifier_Status: Provides the list of
additions and restrictions
recommended for building a profile of
identifiers for environments where
security is at issue.

[confusables] confusables.txt Visually Confusable Characters:
Provides a mapping for visual
confusables for use in detecting
possible security problems. The usage
of the file is described in Section 4,
Confusable Detection.

[confusablesSummary] confusablesSummary.txt A summary view of the
confusables: Groups each set of
confusables together, listing them first
on a line starting with #, then
individually with names and code
points. See Section 4, Confusable
Detection

[intentional] intentional.txt Intentional Confusable Mappings: A
selection of characters whose glyphs
in any particular typeface would
probably be designed to be identical in
shape when using a harmonized
typeface design.

Migration

Beginning with version 6.3.0, the version numbering of this document has been changed to
indicate the version of the UCD that the data is based on. For versions up to and including
6.3.0, the following table shows the correspondence between the versions of this
document and UCD versions that they were based on.

Table 3. Version Correspondence

Version Release Date Data File Directory UCD Version UCD Date

Version 1 2006-08-15 /Public/security/revision-02/ 5.1.0 2008-04

draft only 2006-08-11 /Public/security/revision-03/ n/a n/a

Version 2 2010-08-05 /Public/security/revision-04/ 6.0.0 2010-10

Version 3 2012-07-23 /Public/security/revision-05/ 6.1.0 2012-01

6.3.0 2013-11-11 /Public/security/6.3.0/ 6.3.0 2013-09

https://www.unicode.org/reports/tr44/#Missing_Conventions

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 28/34

If an update version of this standard is required between the associated UCD versions, the
version numbering will include an update number in the 3rd field. For example, if a version
of this document and its associated data is needed between UCD 6.3.0 and UCD 7.0.0,
then a version 6.3.1 could be used.

Migrating Persistent Data

Implementations must migrate their persistent data stores (such as database indexes)
whenever those implementations update to use the data files from a new version of this
specification.

Stability is never guaranteed between versions, although it is maintained where feasible. In
particular, an updated version of confusable mapping data may use a mapping for a
particular character that is different from the mapping used for that character in an earlier
version. Thus there may be cases where X → Y in Version N, and X → Z in Version N+1,
where Z may or may not have mapped to Y in Version N. Even in cases where the logical
data has not changed between versions, the order of lines in the data files may have been
changed.

The Identifier_Status does not have stability guarantees (such as “Once a character is
Allowed, it will not become Restricted in future versions”), because the data is changing
over time as we find out more about character usage. Certain of the Identifier_Type values,
such as Not_XID, are backward compatible but most may change as new data becomes
available. The identifier data may also not appear to be completely consistent when just
viewed from the perspective of script and general category. For example, it may well be
that one character out of a set of nonspacing marks in a script is Restricted, while others
are not. But that can be just a reflection of the fact that that character is obsolete and the
others are not.

For identifier lookup, the data is aimed more at flagging possibly questionable characters,
thus serving as one factor (among perhaps many, like using the "Safe Browsing" service)
in determining whether the user should be notified in some way. For registration, flagged
characters can result in a "soft no", that is, require the user to appeal a denial with more
information.

For dealing with characters whose status changes to Restricted, implementations can use
a grandfathering mechanism to maintain backwards compatibility.

Implementations should therefore have a strategy for migrating their persistent data stores
(such as database indexes) that use any of the confusable mapping data or other data
files.

Version 13.0 Migration

As of Unicode 13.0, the Identifier_Status and Identifier_Type are consistently written with
underbars. This may cause parsers to malfunction, those that do not follow Unicode
conventions for matching of property names.

Version 10.0 Migration

As of Unicode 10.0, Identifier_Type=Aspirational is now empty; for more information, see
[UAX31].

Version 9.0 Migration

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 29/34

There is an important data format change between versions 8.0 and 9.0. In particular, the
xidmodifications.txt file from Version 8.0 has been split into two files for Version 9.0:
IdentifierStatus.txt and IdentifierType.txt.

Version 9.0 Version 8.0

Field 1 of IdentifierStatus.txt Field 1 of xidmodifications.txt

Field 1 of IdentifierType.txt Field 2 of xidmodifications.txt

Multiple values are listed in field 1 of IdentifierType.txt. To convert to the old format of
xidmodifications.txt, use the last value of that field. For example, the following values would
correspond:

File Field Content

IdentifierType.txt 1 180A ; Limited_Use Exclusion Not_XID

xidmodifications.txt 2 180A ; Restricted ; Not_XID

Version 8.0 Migration

In Version 8.0, the following changes were made to the Identifier_Status and
Identifier_Type:

Changed to the standard UCD formatting. For example, limited-use → Limited_Use.
Usually this was simply changing the case and hyphen, but not-chars changed
to Not_Character.

Aligned the Identifier_Type better with UAX 31 and Unicode properties
historic

→ Exclusion, where from Table 4, Candidate Characters for Exclusion
from Identifiers,
→ Obsolete, otherwise

limited-use
→ Limited_Use, where from Table 7, Limited Use Scripts,
→ Aspirational, where from Table 6, Aspirational Use Scripts (later
incorporated into Limited_Use in Version 10.0)
→ Uncommon-Use, otherwise

obsolete
→ Deprecated, where matching the Unicode property

Version 7.0 Migration

Due to production problems, versions of the confusable mapping tables before 7.0 did not
maintain idempotency in all cases, so updating to version 8.0 is strongly advised.

Anyone using the skeleton mappings needs to rebuild any persistent uses of skeletons,
such as in database indexes.

The SL, SA, and ML mappings in 7.0 were significantly changed to address the
idempotency problem. However, the tables SL, SA, and ML were still problematic, and
discouraged from use in 7.0. They were thus removed from version 8.0.

https://www.unicode.org/reports/tr31/tr31-23.html#Table_Candidate_Characters_for_Exclusion_from_Identifiers
https://www.unicode.org/reports/tr31/tr31-23.html#Table_Limited_Use_Scripts
https://www.unicode.org/reports/tr31/tr31-23.html#Aspirational_Use_Scripts

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 30/34

All of the data necessary for an implementation to recreate the removed tables is available
in the remaining data (MA) plus the Unicode Character Database properties (script, casing,
etc.). Such a recreation would examine each of the equivalence classes from the MA data,
and filter out instances that did not fit the constraints (of script or casing). For the target
character, it would choose the most neutral character, typically a symbol. However, the
reasons for deprecating them still stand, so it is not recommended that implementations
recreate them.

Note also that as the Script_Extensions data is made more complete, it may cause
characters in the whole-script confusables data file to no longer match. For more
information, see Section 4, Confusable Detection.

Acknowledgments

Mark Davis and Michel Suignard authored the bulk of the text, under direction from the
Unicode Technical Committee. Steven Loomis and other people on the ICU team were
very helpful in developing the original proposal for this technical report. Shane Carr
analyzed the algorithms and supplied the source text for the rewrite of Sections 4 and 5 in
version 10.

The attendees of the Source Code Working Group meetings assisted with the substantial
changes made in Versions 15.0 and 15.1: Peter Constable, Elnar Dakeshov, Mark Davis,
Barry Dorrans, Steve Dower, Michael Fanning, Asmus Freytag, Dante Gagne, Rich Gillam,
Manish Goregaokar, Tom Honermann, Jan Lahoda, Nathan Lawrence, Robin Leroy, Chris
Ries, Markus Scherer, Richard Smith.

Thanks also to the following people for their feedback or contributions to this document or
earlier versions of it, or to the source data for confusables or idmod: Julie Allen, Andrew
Arnold, Vernon Cole, David Corbett (specal thanks for the many contributions), Douglas
Davidson, Rob Dawson, Alex Dejarnatt, Chris Fynn, Martin Dürst, Asmus Freytag, Deborah
Goldsmith, Manish Goregaokar, Paul Hoffman, Ned Holbrook, Denis Jacquerye, Cibu
Johny, Patrick L. Jones, Peter Karlsson, Robin Leroy, Mike Kaplinskiy, Gervase Markham,
Eric Muller, David Patterson, Erik van der Poel, Roozbeh Pournader, Michael van Riper,
Marcos Sanz, Alexander Savenkov, Dominikus Scherkl, Manuel Strehl, Chris Weber, Ken
Whistler, and Waïl Yahyaoui. Thanks to Peter Peng for his assistance with font
confusables.

References

[CLDR] Unicode Locales Project (Unicode Common Locale Data Repository)
http://cldr.unicode.org/

[DCore] Derived Core Properties
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt

[DemoConf] https://util.unicode.org/UnicodeJsps/confusables.jsp

[DemoIDN] https://util.unicode.org/UnicodeJsps/idna.jsp

[DemoIDNChars] https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?
a=\p{age%3D3.2}-\p{cn}-\p{cs}-\p{co}&abb=on&uts46+idna+idna2008

[EAI] https://www.rfc-editor.org/info/rfc6531

http://cldr.unicode.org/
https://www.unicode.org/Public/UCD/latest/ucd/DerivedCoreProperties.txt
https://util.unicode.org/UnicodeJsps/confusables.jsp
https://util.unicode.org/UnicodeJsps/idna.jsp
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=\p{age%3D3.2}-\p{cn}-\p{cs}-\p{co}&abb=on&g=uts46+idna+idna2008
https://www.rfc-editor.org/info/rfc6531

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 31/34

[FAQSec] Unicode FAQ on Security Issues
https://www.unicode.org/faq/security.html

[Feedback] To suggest additions or changes to confusables or identifier restriction
data, please see:
https://www.unicode.org/reports/tr39/suggestions.html

For issues in the text, please see:
Reporting Errors and Requesting Information Online
https://www.unicode.org/reporting.html

[ICANN] ICANN Documents:
Internationalized Domain Names
https://www.icann.org/en/topics/idn/
The IDN Variant Issues Project
https://www.icann.org/en/topics/new-gtlds/idn-vip-integrated-issues-
23dec11-en.pdf
Maximal Starting Repertoire Version 2 (MSR-2)
https://www.icann.org/news/announcement-2-2015-04-27-en

[ICU] International Components for Unicode
http://site.icu-project.org/

[IDNA2003] The IDNA2003 specification is defined by a cluster of IETF RFCs:

IDNA [RFC3490]
Nameprep [RFC3491]
Punycode [RFC3492]
Stringprep [RFC3454].

[IDNA2008] The IDNA2008 specification is defined by a cluster of IETF RFCs:

Internationalized Domain Names for Applications (IDNA):
Definitions and Document Framework
https://www.rfc-editor.org/info/rfc5890
Internationalized Domain Names in Applications (IDNA) Protocol
https://www.rfc-editor.org/info/rfc5891
The Unicode Code Points and Internationalized Domain Names for
Applications (IDNA)
https://www.rfc-editor.org/info/rfc5892
Right-to-Left Scripts for Internationalized Domain Names for
Applications (IDNA)
https://www.rfc-editor.org/info/rfc5893

There are also informative documents:

Internationalized Domain Names for Applications (IDNA):
Background, Explanation, and Rationale
https://www.rfc-editor.org/info/rfc5894
The Unicode Code Points and Internationalized Domain Names for
Applications (IDNA) - Unicode 6.0
https://www.rfc-editor.org/info/rfc6452

https://www.unicode.org/faq/security.html
https://www.unicode.org/reports/tr39/suggestions.html
https://www.unicode.org/reporting.html
https://www.icann.org/en/topics/idn/
https://www.icann.org/en/topics/new-gtlds/idn-vip-integrated-issues-23dec11-en.pdf
https://www.icann.org/news/announcement-2-2015-04-27-en
http://site.icu-project.org/
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5891
https://www.rfc-editor.org/info/rfc5892
https://www.rfc-editor.org/info/rfc5893
https://www.rfc-editor.org/info/rfc5894
https://www.rfc-editor.org/info/rfc6452

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 32/34

[IDN-FAQ] https://www.unicode.org/faq/idn.html

[Reports] Unicode Technical Reports
https://www.unicode.org/reports/
For information on the status and development process for technical
reports, and for a list of technical reports.

[RFC3454] P. Hoffman, M. Blanchet. "Preparation of Internationalized Strings
("stringprep")", RFC 3454, December 2002.
https://www.rfc-editor.org/info/rfc3454

[RFC3490] Faltstrom, P., Hoffman, P. and A. Costello, "Internationalizing Domain
Names in Applications (IDNA)", RFC 3490, March 2003.
https://www.rfc-editor.org/info/rfc3490

[RFC3491] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN)", RFC 3491, March 2003.
https://www.rfc-editor.org/info/rfc3491

[RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA)", RFC 3492,
March 2003.
https://www.rfc-editor.org/info/rfc3492

[RZLGR5] Integration Panel, “Integration Panel: Root Zone Label Generation Rules
— LGR-5”, 22 May 2022
https://www.icann.org/sites/default/files/lgr/rz-lgr-5-overview-26may22-
en.pdf

[Security-FAQ] https://www.unicode.org/faq/security.html

[UCD] Unicode Character Database.
https://www.unicode.org/ucd/
For an overview of the Unicode Character Database and a list of its
associated files.

[UCDFormat] UCD File Format
https://www.unicode.org/reports/tr44/#Format_Conventions

[UAX9] UAX #9: Unicode Bidirectional Algorithm
https://www.unicode.org/reports/tr9/

[UAX15] UAX #15: Unicode Normalization Forms
https://www.unicode.org/reports/tr15/

[UAX24] UAX #24: Unicode Script Property
https://www.unicode.org/reports/tr24/

[UAX29] UAX #29: Unicode Text Segmentation
https://www.unicode.org/reports/tr29/

[UAX31] UAX #31: Unicode Identifier and Pattern Syntax
https://www.unicode.org/reports/tr31/

https://www.unicode.org/faq/idn.html
https://www.unicode.org/reports/
https://www.rfc-editor.org/info/rfc3454
https://www.rfc-editor.org/info/rfc3490
https://www.rfc-editor.org/info/rfc3491
https://www.rfc-editor.org/info/rfc3492
https://www.icann.org/sites/default/files/lgr/rz-lgr-5-overview-26may22-en.pdf
https://www.unicode.org/faq/security.html
https://www.unicode.org/ucd/
https://www.unicode.org/reports/tr44/#Format_Conventions
https://www.unicode.org/reports/tr9/
https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr24/
https://www.unicode.org/reports/tr29/
https://www.unicode.org/reports/tr31/

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 33/34

[UAX44] UAX #44: Unicode Character Database
https://www.unicode.org/reports/tr44/

[Unicode] The Unicode Standard
For the latest version, see:
https://www.unicode.org/versions/latest/

[UTR23] UTR #23: The Unicode Character Property Model
https://www.unicode.org/reports/tr23/

[UTR36] UTR #36: Unicode Security Considerations
https://www.unicode.org/reports/tr36/

[UTS18] UTS #18: Unicode Regular Expressions
https://www.unicode.org/reports/tr18/

[UTS39] UTS #39: Unicode Security Mechanisms
https://www.unicode.org/reports/tr39/

[UTS46] Unicode IDNA Compatibility Processing
https://www.unicode.org/reports/tr46/

[UTS55] Unicode Source Code Handling
https://www.unicode.org/reports/tr55/

[Versions] Versions of the Unicode Standard
https://www.unicode.org/standard/versions/
For information on version numbering, and citing and referencing the
Unicode Standard, the Unicode Character Database, and Unicode
Technical Reports.

Modifications

The following summarizes modifications from the previous published version of this
document.

Revision 27

Reissued for Unicode 15.1
Section 3.1.1 Joining Controls

Moved the definition and discussion of the contexts for Joining controls from
UAX #31 to this section; they are no longer used in UAX #31.

Section 4 Confusable Detection
Added a note with a gloss to RZ-LGR terminology.
Changed the definition of confusability to take default ignorable code points
into account.
Added a new confusability relation suitable for identifiers containing
bidirectional text.

Section 5.1 Mixed-Script Detection
Fixed typo in code for Katakana script (again).

https://www.unicode.org/reports/tr44/
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/tr23/
https://www.unicode.org/reports/tr36/
https://www.unicode.org/reports/tr18/
https://www.unicode.org/reports/tr39/
https://www.unicode.org/reports/tr46/
https://www.unicode.org/reports/tr55/
https://www.unicode.org/standard/versions/

4/5/23, 12:25 PM UTS #39: Unicode Security Mechanisms

https://www.unicode.org/reports/tr39/tr39-27.html 34/34

Revision 26

Reissued for Unicode 15.0
Section 3 Identifier Characters

Changed the description of Uncommon_Use in Table 1. Identifier_Status and
Identifier_Type to be more inclusive: “Characters that are uncommon, or are
limited in use (even though they are in scripts that are not "Limited_Use"), or
whose usage is uncertain.”
Added a note about the change of Identifier_Type and Identifier_Status of ZWJ
and ZWNJ.

Section 3.1.1 Joining Controls
Changed the first paragraph for consistency with the change of
Identifier_Status.

Section 7 Data Files
IdentifierStatus.txt and IdentifierType.txt now contain machine-readable #
@missing lines for the default values of their respective properties.

Modifications for previous versions are listed in those respective versions.

© 2022 Unicode, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any kind,
and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in
connection with or arising out of the use of the information or programs contained or accompanying this technical report.
The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

https://www.unicode.org/copyright.html

