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Proper Complex Script Support 
in Text Terminals. 
Renzhi LI, Dustin HOWETT, Peter CONSTABLE 

Summary 
Terminal environments and text-based command-line interface (CLI) applications are typically 
associated with simple text layout implementations that are not capable of supporting many 
scripts, such as Arabic or Devanagari. 

This document proposes a new Unicode project to develop specifications (Terminal Complex Script 
Support, or TCSS) that will allow terminal environments and CLIs to provide comprehensive 
support for Unicode scripts. These specifications could eventually be published as a new UTS or 
other Unicode publication. Standardization of such specifications would facilitate 
interoperability between different CLIs and terminal environments. We will outline TCSS’ main 
requirements and provide examples for them. 

Our goal is to start a project in the Unicode Technical Committee (UTC) to create a detailed 
specification for TCSS, and if necessary, coordinate with other standardization organizations to 
standardize any parts of TCSS that might lie outside UTC’s scope. 

Introduction 
Command-line interface (CLI) and Text-based user interface (TUI) applications play important 
roles in computer systems, especially for software developers and system administrators. When 
operating such applications, users use text terminals to interact with them. 

 
Figure 1 Example of modern CLI and TUI application 

A “terminal”, in general, is a hardware device or piece of software that can be used for entering 
data into and transcribing data from a computer or a computing system. There are many types 
of computer terminals that have existed in history and currently exist in modern industry, but 
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the most common subtype is the text terminal, which operate over text streams. It is this type of 
terminal that we will primarily refer to throughout this document. 

For a long time, text terminals only supported European writing systems, mainly Latin. Starting 
in the 1980s, they were adopted in East Asia and gained support for CJK (Chinese, Japanese and 
Korean) writing systems. However, even as of today (2023), most text terminals still lack proper 
support for more complicated writing systems, like Devanagari and Arabic, which makes them 
difficult to interact with for almost half of the world’s population. Compared to other text-related 
applications such as word processors, typesetting software and web browsers, text terminals 
have fallen far behind the rest of the industry. 

Features of a Text Terminal 
Text terminals descended from teletypewriter (“TTY”, or “teletype”) machines, which produced 
immutable hard copy and had a single unidirectional “print head”. When connected to a 
computer, a teletype will accept user input from its keyboard and print out the text it received 
from the computer on a roll of paper. Teletypes provided one of the earliest user interfaces for 
computers. 

 
Figure 2 Teletype Model 33, a widely used teletype used as a computer terminal. 

Later, text terminals equipped with a video display unit (such as a CRT screen) became widely 
adopted by computer operators. Early models of video text terminals usually emulated the 
teletypes, allowing them to replace teletype machines as part of cost-saving measures. 

Starting from the 1970s, video text terminals like Lear Siegler’s ADM-3A, DEC VT52 and DEC 
VT100 started to go beyond teletype emulation with many more features. The “print head” of yore 
became addressable, and this gave them the ability to freely print information at any location on 
the screen. These devices were closely intertwined with the era of time-sharing minicomputers. 
Many hardware terminals support specialized control sequences to manipulate the screen 
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display and input, some of which became standardized as “ANSI” (American National Standards 
Institute) escape sequences.1 

The basic operation remains the same, however: terminals receive a stream of text data for 
presentation to a user, who can act on it and respond via an input device, which sends a text 
stream back to the computer connected to the terminal.  

 
Figure 3 ADM-3A, a famous video text terminal used in 1970s. 

Starting in the late 1980s, as a side effect of increasing use of graphical user interfaces, software-
implemented text terminal emulators gradually replaced hardware terminals. Famous examples 
of terminal emulators include xterm on Unix-like systems, iTerm2 on Macintosh, and Windows 
Terminal on Windows. 

Because of that history, there are a few implementation details that are conserved in both 
hardware terminals and software terminal emulators: 

• There is a text surface, the screen, that is presented to the user. 
• Text displayed on the screen will be aligned to a grid, which is divided into rows and 

columns. The intersection of one column and one row is called a cell. 
• The terminal will receive another process’ or another machine’s output as a text stream. 

The output stream contains either control sequences to be consumed by the terminal to 
perform specific operations, or graphic characters to be displayed on the screen. 

• There is a cursor representing the point at which incoming text will be written. When text 
is written, it overstrikes the existing content in the cell(s) at the cursor position. 

 
1  Escape control sequences were standardized by ANSI in 1979 as ANSI X3.64. Other related standards 
include ECMA-48 and ISO/IEC 6429. In addition to standardized functions of individual character codes, 
such as CARRIAGE RETURN, terminals and CLIs use control sequences to achieve certain behaviors, such 
as ESC [ n D, which moves the cursor back by n cells. 

https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code
https://www.ecma-international.org/wp-content/uploads/ECMA-48_4th_edition_december_1986.pdf
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• Applications on the “other end” of a terminal session cannot easily determine the 
terminal’s preferred text layout parameters, as there are only limited mechanisms for 
querying those parameters. 

In the pre-Unicode era, text layout in terminals was straightforward to implement. As 
applications were just handling Latin, they could simply map one character to one screen cell. 
However, this simple solution becomes problematic in the face of a larger supported character 
set. 

East-Asian countries adopted computers shortly after the western hemisphere. The problem they 
face is the large character sets they require. Their early character sets like Shift-JIS, BIG5 and 
GB2312 contain thousands of characters, and have a variable-length encoding scheme, while the 
terminals at the time were designed for single-byte character sets. In addition, glyphs for those 
characters were generally larger than their Latin counterparts. They solved this latter problem 
by allowing the terminal to combine two adjacent cells together into a “wide cell” and putting all 
the “wide” characters in their character set into wide cells by putting each byte of the wide 
character’s code into each half of a wide cell. Such a solution created a false connection between 
the quantity of the bytes used for encoding and the character’s visual width in fixed pitch 
(monospace) fonts. This is one of the origins of the East Asian Width property defined in UAX #11. 

 
Figure 4 One screen of IBM 5550's Japanese application, showing wide characters. IBM 5550 is one of the widely adopted 

business computers in the late 1980s in Japan. It could be operated as an MS-DOS computer, a word processing machine, or a 
Japanese online terminal. 

However, this mechanism could not be further extended to more complicated writing systems 
such as Arabic or Devanagari. In these writing systems, characters build up visuals in a much 
more complicated way: a grapheme may be a composite of multiple characters and one 
character’s visual, and width may change depending on its context. As a result, almost all existing 
terminals’ implementations produce broken results for these writing systems. 
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Figure 5 Display of Article I of Universal Declaration of Human Rights in Windows Terminal. 

 
Figure 6 Display of Article I of Universal Declaration of Human Rights in Apple’s “Terminal.app”.  

In addition, many modern CLI and TUI applications provide “rich” terminal displays based on 
“drawing” characters (such as those defined in Unicode’s Box Drawing and Block Elements 
blocks) to provide a more pleasant or navigable user interface. These applications usually 
analyze the text they are going to handle, perform some internal layout processing, and send 
complicated control sequences—such as cursor movement and style changes—to the terminal to 
produce these rich text user interfaces. As a result, these applications must be able to predict 
their hosting terminals’ text layout behavior so they can determine the correct controls sent to 
the terminal. 

 
Figure 7 Example of a TUI application using Box Drawing characters and text styling 
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However, as mentioned above, applications know little about the terminal’s text layout 
parameters and overall user-specified configuration. Therefore, there is no way apart from 
guessing—or a shared standard—for an application to determine how complex writing systems’ 
text is going to be displayed, or how much space a string is going to occupy. 

As a result, we find that a standardized specification for how to handle text in terminals is 
important work for the modern community of developers, and all other people that use text 
terminals. 

 
Figure 8 Sample of Python library "Rich", showing its ability to do send complex controls to the terminal to produce a rich TUI. 
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Key Requirements 
Normally when we do text layout in graphical user interface applications, aside from knowing 
the actual text being processed, we need to know its style (its font, its size, and other additional 
information). This applies to almost all existing text layout applications, like word processors, 
web browsers, etc. But this approach doesn’t work for terminals since, as discussed in the 
previous section, both the hosting terminal and guest application need to be able to do text layout, and 
the guest application does not fully know the text style being used in the terminal. 

Therefore, if we are going to create a TCSS specification, its layout algorithm can only rely on the 
text string being processed. Instead of taking fonts as input, the specification will define a set of 
requirements of fonts. Fonts that meet these requirements, referred to as “terminal fonts”, will 
work properly with the layout algorithm defined in the specification. The results of layout, such 
as positions and metrics of the characters in the text, will be measured in terminal rows and 
cells. 

As a result, a TCSS needs to contain the following: 

• A specification for terminal behaviors, including: 
o Text writing behavior. 
o Cursor motion. 
o Selection and hit testing. 

• A specification for terminal text layout, including: 
o Segmentation (clustering). 
o Measurement. 
o BiDi. 

• Requirements for “terminal fonts”. 
• Additional control sequences, if required. 

Text Writing Behavior 
When a terminal receives text from its client applications, that text needs to be written into its 
screen buffer. The screen buffer will contain multiple lines, where one line corresponds to one row 
in the final visual screen. The terminal will also keep a cursor, representing the place that the text 
manipulation will happen. 

Historically, one character is mapped into one visual cell, however, to support complex scripts, 
this constraint can no longer be satisfied. As a result, for terminals supporting complex scripts, 
each character in the screen buffer will have a metric measuring its width, denoting how many 
cells it will occupy. This is a non-negative integer, ranging from zero (for combining characters, 
etc.) to some relatively large number (e.g., for certain dependent vowels in Tamil) bounded only 
by the terminal emulator’s available width. 

In addition to width, characters may have other properties. For example, due to the requirements 
for BiDi reordering discussed in later sections, characters in the screen buffer will need to keep 
track of a BiDi embedding level, and the cursor will maintain both a logical position and visual 
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position. Characters in the buffer will be ordered logically, since text editing manipulations are 
done in logical order. 

Characters in one line will further be grouped into terminal clusters. A terminal cluster contains 
the characters that are combined together in the terminal environment. It is an instance of the 
tailored grapheme cluster defined in UAX #29. In Indic scripts, for example, syllables with virama 
conjoiners in the middle will be considered one single terminal cluster, while they are treated as 
multiple extended grapheme clusters in UAX #29. 

 
Figure 9 An example of one line in the screen buffer, showing characters, their width and the cluster boundaries. Characters 

measured in zero-width are marked with a striped background. 

 
Figure 10 The screen buffer line shown visually. The 6th cluster (Devanagari क्षि) will occupy 3 cells but will contain 4 characters. 

Text output in terminals typically works in overstrike mode: when writing, the terminal will 
always erase all cells occupied by any cluster that intersects any part of the incoming text, and 
then insert the new content. The erasing procedure will be done by replacing the existing clusters 
that occupy the needed space with blank clusters. 

 
Figure 11 Example of writing U+65B0 over cell 4. In the erasing stage clusters 4 and 5 will be cleared into blanks, then the new 

content is overwritten. 

https://unicode.org/reports/tr29/
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In some writing systems, the form of a character may depend on the characters that follow it. 
One example of this is Devanagari’s repha forms. This requires the establishment of a work zone 
that contains the most recent characters, and the property of the characters in the work zone is 
considered volatile and may change depending on the incoming text from the guest. 

When the terminal receives text, it will first append the text into the work zone and measure the 
entire work zone to process potential property changes. If the measurement result says that the 
text in the work zone could be broken into multiple clusters, then the work zone will be shrunk 
to only contain the last (maybe incomplete) cluster. The text before that will be committed, and 
its properties will no longer change. As a result, at any time the work zone will contain at most 
one cluster. When the cursor moves (via the terminal receiving a cursor move command or a 
newline), all the text in the work zone will be committed—even if it is incomplete—and the work 
zone will be cleared. 

  
Figure 12 The process of writing U+0B95, 0BCD, 0BB7, 0BCC. The dark red zone is the work zone. The right column shows the 

form and width of each character in the work zone. After U+0BB7 is written, the width of U+0B95 is set to 3, and its form is set 
to “Akhand”. As a result, the work zone expands and overstrikes the U+5B89 cluster after it. 

Soft line breaks in the terminal are done at cluster boundaries, instead of following UAX #14. 
Considering that the work zone only contains the last cluster, line breaking in a terminal could 
be summarized as follows: when the work zone grows too wide to be contained within the current 
line, it will be moved to the beginning of the next line, and the cells it used to occupy will be 
erased by spaces. 
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Measurement 
The core part of a TCSS is measurement. A terminal must know the space a text occupies before it 
can allocate cells in its screen buffer. As shown in previous sections, many existing terminal 
implementations produce broken results when dealing with complex scripts such as Devanagari 
and Tamil. The glyphs are placed at incorrect places, showing that the existing implementations’ 
current means of measuring text is not compatible with those complex scripts. 

At status quo, most terminals and their guest applications use very simple methods to measure 
the text. Most of them are derived from UAX #11 East Asian width, extended to support more 
characters. Terminal implementations on Unix-like systems usually use a POSIX function called 
wcwidth to query the space that a Unicode character occupies. However, this function only takes 
one argument—which is a single codepoint—and returns a fixed value representing its width, 
which is clearly insufficient for complex scripts where multiple codepoints contribute to each 
grapheme cluster. 

For those complex scripts, a character’s form varies depending on its surrounding context. 
Therefore, its width varies as well. One well-known example manifesting this issue is Emoji: if 
an Emoji character is joined with a preceding emoji character in a Zero-Width Joiner (ZWJ) emoji 
sequence, that character will no longer occupy any space since it is now “fused” with the 
character before it (Table 1). If the terminal uses wcwidth to measure the space a composite Emoji 
occupies, it will allocate too much space for the Emoji, leaving a lot of space around the actual 
text (see Figure 13). 

Table 1 A small collection of text, wcwidth results and "expected" results. 

              
Character U+1F469 U+1F3FB U+200D U+1F4BB 
wcwidth result 2 2 0 2 
Expected width 2 0 0 0 
Expected form “Base” “Modifier” “Joiner” “Fused” 

क्षि 
Character U+0915 U+094D U+0937 U+093F 
wcwidth result 1  0 1 1 
Expected width 2 0 0 1 
Expected form “Akhand” “Joiner” “Fused” “MatraL” 

க்ஷௌ 
Character U+0B95 U+0BCD U+0BB7 U+0BCC 
wcwidth result 1  0 1 1 
Expected width 3 0 0 4 
Expected form “Akhand” “Joiner” “Fused” “MatraLR” 

ರ್ಝೈ 
Character U+0CB0 U+0CCD U+0C9D U+0CC8 
wcwidth result 1  0 1 1 
Expected width 2 0 3 1 
Expected form “Repha” “Joiner” “Base” “MatraUR” 

ರ಼್ಚ  
Character U+0CB0 U+0CBC U+0CCD U+0C9A 
wcwidth result 1  0 0 1 
Expected width 2 0 0 1 
Expected form “Base” “Nukta” “Joiner” “Subjoin” 
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Figure 13 Windows Terminal showing an Emoji with skin tone modifier and ZWJ components. Due to incorrect measurement, 

extra spaces are added around the Emoji. 

Therefore, a proper measurer has the following requirements: 

1. It must take a string as input to fully understand the context. 
2. It must be able to break down the string into terminal clusters. 
3. It must determine the form for every character in the input. 
4. It must determine the width for every character in the input. 

Objective 2 suggests that the measurement algorithm should have a cluster model that applies for 
most of the writing systems. As a result, we propose the creation of a cluster model that is 
simplified from the cluster model of Andrew Glass’ Universal Shaping Engine. The basic cluster 
model applies as follows: 

Cluster𝓈 = PreControl𝓈
∗  Pre𝓈

∗  (Base𝓈 Post𝓈
∗) (Joiner𝓈

+ Base𝓈 Post𝓈
∗ )∗ PostControl𝓈

∗  

Cluster = ⋃ Cluster𝓈

𝓈

 

For each script 𝓈, there will be a collection of character sets: 

• PreControl𝓈: the pre-cluster control characters. 
• PostControl𝓈: the post-cluster control characters. 
• Base𝓈: the base characters. 
• Pre𝓈: the pre-base additional characters, like the pre-consonant modifiers in Thai. 
• Post𝓈: the post-base additional characters, like diacritics. 
• Joiner𝓈: the joiners that combines multiple bases, like Virama or ZWJ. 

The character sets Base𝓈 for different scripts will be mutually exclusive, while the other character 
sets may have common characters across different scripts (for example, ZWJ may be used as 
joiner among many scripts). Since the definition of “Cluster” is a regular language, the clustering 
procedure could be efficiently implemented using a finite state machine. 

To accomplish objective 3, the algorithm needs to assign a “form” information for each character 
in the string. Considering the complexity of the writing systems that Unicode supports, the form 
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decision process will need to be rule-driven, i.e., there will be one single algorithm, and a set of 
rules that is used as the knowledge database for the algorithm. We could have the form-decision 
rules for Latin, Devanagari, Arabic and Emoji, then they combined will be used as the rule set of 
the algorithm. 

The form assignment process could be implemented as the “side effects” of the state machine 
that does the clustering: when the state machine identifies additional parts of the cluster, we will 
be able to use the current state and the incoming character to determine the form of the 
incoming character and change the forms of the existing characters in the cluster if necessary. 

As a result, the measurement part of the specification will contain the following components: 

• Measurement algorithms, mostly the form analyzer and the segmenter. 
• The measurement algorithm’s rule set. 
• Database for character widths, using code point and form as query keys. 

Considering the wide adoption of wcwidth, the proposed measuring algorithms should return the 
same results as wcwidth if the input is considered to contain only “simple” characters. 

BiDi and Cursor Movement 
Supporting bidirectional text (BiDi) is another important feature for TCSS. To support BiDi, the 
terminal’s screen buffer will need to retain the following information: 

• Boundaries of paragraphs, since BiDi embedding level analysis is done per-paragraph. 
• Embedding level, which is recalculated every time the text inside a paragraph is changed. 
• Potential special controlling data (such as an embedding level override) which will be 

useful for complex TUI applications that do the text layout on their own, e.g., full-screen 
text editors and IDEs. 

 
 

Figure 14 Logical buffer and its visual representation of a 
line containing both Latin and Arabic. The embedding level 

is shown in the logical buffer row. After reordering, the order 
of characters in the visual representation is no longer 

identical to that in the logical buffer. As a result of 
reordering, the cursor will have both a logical position and a 

visual position. 

 
 

Figure 15 The cursor after moving left by one cell. Logically, 
it moves to the end of the line. 
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Every time text is written into the terminal, UAX #9 embedding level analysis is run on the 
paragraphs being modified, and the resulting embedding levels will be used for the final 
reordering. Reordering is done line-by-line: the text in the same line will be reordered according 
to its embedding level, and the result will be sent to the display. 

As a result of reordering, the cursor will have a logical position and a visual position. While doing 
text writing is mainly using the logical position, the cursor movement operates at visual level, 
i.e., when the terminal decides to move the cursor upward, it will need to look up a logical 
position in the previous line that has the same column in its visual counterpart. 

Selection and Hit Testing 
In modern terminals, selection could be done in two ways: either to select a range of the text in 
the logical order or select a rectangle of the text in visual order. To perform all these selections, 
as well as the cursor movement, the terminal must be able to perform hit testing, which is 
converting visual positions (row, column) into logical positions (line, character, cell). 

We would define two procedures, “find the first character that occupies a certain cell” and “find 
the last character that occupies a certain cell”, which takes the visual position and a screen buffer 
line, and then find the first or last character in the line that occupies a cell. Using these 
procedures, terminals could implement selection. 

Font Requirements 
Since in TCSS all the text measurement is done without the font, to produce a correct final display, 
the font used in the terminal might need to also meet certain conditions, making the glyphs’ 
metrics or shaping behavior match TCSS’ expectations. The TCSS project could define a series of 
typographic features so the fonts could be applied with those features enabled to produce the 
correct results.  

Control Sequences 
In some cases, we may need a series of control sequences that client applications could send to 
the terminal for special purposes, including: 

• Overriding specific text metrics. 
• Overriding the default BiDi behavior or information, such as the embedding level. 
• Breaking a BiDi paragraph in the middle of a line without introducing a carriage return 

or line feed. 

The TCSS project should figure out the places that special controls may be present and design the 
control sequences that could be discussed in other standardization organizations, like ECMA or 
ISO. 

[End of document] 
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