
Setting expectations for grapheme clusters

Norbert Lindenberg, 2023-07-04

The UTC has decided to add conformance clauses to UAX 29, Unicode Text Segmentation, that let

implementations “describe their behavior in relation to the default behavior”. These clauses are

included in the current proposed update for UAX 29.

This makes it more urgent to accurately describe what the segments are that the default behavior

creates, and which use cases might require tailoring. In relation to grapheme clusters, the current

wording of UAX 29 unfortunately creates unrealistic expectations both for what default grapheme

clusters are and what they can be used for.

Proposal

I propose to update UAX 29, Unicode Text Segmentation, to:

• Remove the assumption that grapheme clusters represent “user-perceived characters”.

• Clarify that segmentation into grapheme clusters, although it may be useful in a range of use

cases, likely requires tailoring to meet the specific requirements of those use cases.

The text below provides the motivation for the proposed changes. The appendix provides

proposed changes (in cyan) relative to the current proposed update (yellow) for UAX 29. Similar

changes would have to be made to the Core Specification, but those will have to wait until Unicode

16.

Those less familiar with Brahmic scripts can find a good introduction in Richard Ishida’s

Typographic character units in complex scripts.

Setting expectations for grapheme clusters  |  1

L2/23-140

https://www.unicode.org/reports/tr29/proposed.html
https://www.w3.org/International/questions/qa-indic-graphemes.en

Grapheme clusters and user-perceived characters

UAX 29 describes grapheme clusters as “user-perceived characters”. For users of many scripts,

however, there’s not a single definition of “user-perceived character”. Instead, they perceive two

kinds of units:

• Base-level marks that represent individual consonants, vowels, or other linguistic entities, and

that typically are the units of text input. It’s quite common for these base-level components to

have names.

• Two-dimensional arrangements of these base-level marks that are important units for rendering,

line breaking, and editing.

Users of the Korean Hangul script, for example, know jamo as base-level marks, which represent

individual consonants and vowels, as well as the syllable blocks formed by combining jamo. The

jamo ㄱ giyeog, ㅣ i, and ㅁ mieum combine to the syllable block 김 gim. Users of Brahmic scripts

perceive individual base consonants, conjunct forms, vowel marks, tone marks, and other marks, as

well as the orthographic syllables formed by combining the base-level marks. The Khmer

characters ស sa, ◌្ coeng ta, ◌្រ coeng ro, ◌ី ei combine to the syllable ស្ត្រី strei.

Unicode grapheme clusters tend to be closer to the larger user-perceived units. Hangul text is

clearly segmented into syllable blocks. For Brahmic scripts, things are less clear. Grapheme clusters

may contain several base-level units, but up to Unicode 15 always broke after virama characters.

This broke not only within orthographic syllables, but for a number of scripts also within the

encoding of conjunct forms that users perceive as base-level units, such as Khmer coengs (see

subsection Subscript Consonant Signs of section 16.4 Khmer of the Unicode Standard). In Unicode

15.1, this is being corrected for six scripts, while leaving the others broken. So, while it might be

argued that for Hangul, grapheme clusters represent the larger user-perceived units, for many

Brahmic scripts grapheme clusters don’t correspond to anything users would perceive as

“characters”.

One might consider changing the definition of grapheme clusters such that for Brahmic scripts

they correspond to orthographic syllables. In fact, the UTC did consider this in 2017 – see

L2/17-167R, L2/17-258, and L2/17-222. Various complications and feedback, however, caused it to

give up on a fix in UAX 29 and instead to delegate the issue to CLDR – see the exclusions in

L2/17-258, feedback on PRI 355, and L2/18-055. CLDR then implemented the fix for six Brahmic

scripts that will now be integrated into UAX 29 for Unicode 15.1.

Setting expectations for grapheme clusters  |  2

https://www.unicode.org/versions/Unicode15.0.0/ch16.pdf
https://www.unicode.org/L2/L2017/17167r-aksara-support.pdf
https://www.unicode.org/L2/L2017/17258-uax29-32-draft.pdf
https://www.unicode.org/L2/L2017/17222.htm
https://www.unicode.org/L2/L2017/17258-uax29-32-draft.pdf
https://www.unicode.org/review/pri355/feedback.html
https://www.unicode.org/L2/L2018/18055-feedbk-uax29.pdf

Given that UAX 29 is a rather low-level specification whose specified behavior becomes visible to

end users only through use by higher-level functions, it doesn’t really matter whether grapheme

clusters correspond to “user-perceived characters”. More important is whether the default

segmentation behavior leads to appropriate behavior in the use cases where it might get applied.

Using the generic term “user-perceived characters” rather than specific use cases lets every

feedback provider project the needs of their favorite use case onto the generic term, resulting in

unnecessary confusion.

Use cases for grapheme clusters

UAX 29 suggests the use of grapheme clusters for a wide range of use cases:

• Identification of “a basic unit of a writing system for a language”.

• Collation.

• Regular expressions.

• UI interactions (without specifying which interactions are meant).

• Segmentation for vertical text.

• Identification of boundaries for first-letter styling.

• Counting “character” positions within text.

• Atomic units for word boundaries, line boundaries, and sentence boundaries.

• Implementation of text selection and arrow key movement.

• Backspacing through text (UAX 29 later proposes a distinction between Backspace and Delete

keys, with differing behavior).

Other sources suggest additional uses:

• Section 2.11 Combining Characters of the Unicode Standard suggests their use in rendering.

• UAX 14, Unicode Line-Breaking Algorithm, suggests the use for emergency line breaks.

• The CSS Text specification uses extended grapheme clusters as the foundation for its

“typographic character unit”, and adds tracking and justification as additional uses. However, it

warns that “the default rules are not always appropriate or ideal” and advises that user agents are

“expected to tailor them differently depending on the operation as needed”.

The phrase “differently depending on the operation” seems essential. There’s no single set of

segmentation rules that works for all the use cases listed above. Here are a few examples:

Setting expectations for grapheme clusters  |  3

https://www.w3.org/TR/css-text-3/#typographic-character-unit

• Line breaking rules need to ensure that the text before and after the line break can be rendered

independent of the segment that ends up on the other line. If a line would start with a (spacing)

combining mark that rendering systems draw with a dotted circle when encountered without a

base, then no line break can occur before that combining mark.

• When setting an insertion points to correct a typo, users likely want to set it so as to minimize

the number of characters they have to delete and retype. As L2/11-114 argues, and UAX 29

acknowledges with its exclusions from the SpacingMark category for some scripts, users should

be able to place an insertion point between a base and a spacing combining mark at least where

no reordering across the insertion point can occur. This tailoring, however, is in direct conflict

with the above requirement for line breaking.

• When deleting characters, it seems reasonable to expect that the base-level units of text are

deleted as atomic units, and that, where a base-level unit is encoded using multiple code points,

these code points are not exposed. This expectation is, however, contradicted both by the

statement in UAX 29 that “on a given system the backspace key might delete by code point” and

by the current grapheme cluster breaks after viramas, which in numerous scripts break apart

two-code point sequences encoding conjunct forms such as Khmer coengs.

• For “those relatively rare circumstances where programmers need to supply end users with user-

perceived character counts”, one would have to find out what units users of each script (or

language) want to have counted. The current grapheme clusters are unlikely to give expected

results for a number of scripts. Given that counting user-perceived characters is a rare need, it’s

not clear that the Unicode Standard needs to provide a ready-made solution for it.

At this point, it’s not clear which of these use cases is really the design focus for grapheme clusters.

With the proposed update, grapheme clusters correspond (mostly) to orthographic syllables in

some Brahmic scripts; in others they don’t. In some scripts, clusters break before spacing

combining marks, in others they don’t. It’s not clear if there’s any use case that’s visible to end users

for which grapheme clusters today work out of the box, without tailoring, across all of Unicode.

Making grapheme clusters usable out of the box requires at least specifying clearly which use case

is the design focus for default grapheme clusters, and making the necessary changes to make them

work for that use case. A good candidate might be a “string safe as a rendering unit”, taking in an

OpenType cluster, but sometimes more, e.g., as needed for Batak reordering.

Beyond that, UAX 29 might specify multiple tailorings for additional important use cases. One

tailoring might define the character sequences between which insertion points can be placed,

another the base-level units.

Setting expectations for grapheme clusters  |  4

https://www.unicode.org/L2/L2011/11114-uax29-changes.pdf

Until that happens, though, UAX 29 should advise implementers and users that they have to create

their own tailorings, as the CSS Text specification already does.

Acknowledgments

I’d like to thank Martin Hosken for feedback on a draft of this proposal.

Setting expectations for grapheme clusters  |  5

6

PROPOSED CHANGES TO:
Unicode® Standard Annex #29

UNICODE TEXT SEGMENTATION
Review note: Horizontal lines indicate where this document omits sections of UAX 29
for which no changes are proposed.

Summary

This annex describes guidelines for determining default segmentation boundaries
between certain significant text elements: grapheme clusters (“user-perceived
characters”), words, and sentences. For line boundaries, see [UAX14] .

1 Introduction

This annex describes guidelines for determining default boundaries between certain
significant text elements: user-perceived characters grapheme clusters, words, and
sentences. The process of boundary determination is also called segmentation.

A string of Unicode-encoded text often needs to be broken up into text elements
programmatically. Common examples of text elements include what users think of as
characters, the smallest spans of text suitable for selection or rendering, words, lines
(more precisely, where line breaks are allowed), and sentences. The precise
determination of text elements may vary according to orthographic conventions for a
given script or language. The goal of matching user perceptions cannot always be
met exactly because the text alone does not always contain enough information to
unambiguously decide boundaries. For example, the period (U+002E FULL STOP) is
used ambiguously, sometimes for end-of-sentence purposes, sometimes for
abbreviations, and sometimes for numbers. In most cases, however, programmatic
text boundaries can match user perceptions quite closely, although sometimes the
best that can be done is not to surprise the user.

Rather than concentrate on algorithmically searching for text elements (often called
segments), a simpler and more useful computation instead detects the boundaries
(or breaks) between those text elements. The determination of those boundaries is
often critical to performance, so it is important to be able to make such a
determination as quickly as possible. (For a general discussion of text elements, see
Chapter 2, General Structure, of [Unicode].)

The default boundary determination mechanism specified in this annex provides a
straightforward and efficient way to determine some of the most significant
boundaries in text: user-perceived characters grapheme clusters, words, and
sentences. Boundaries used in line breaking (also called word wrapping) are defined
in [UAX14].

https://www.unicode.org/reports/tr41/tr41-30.html#UAX14
https://www.unicode.org/reports/tr41/tr41-30.html#UAX14
https://www.unicode.org/reports/tr29/proposed.html#Introduction
https://www.unicode.org/reports/tr29/proposed.html#Introduction
https://www.unicode.org/reports/tr41/tr41-30.html#Unicode
https://www.unicode.org/reports/tr41/tr41-30.html#Unicode
https://www.unicode.org/reports/tr41/tr41-30.html#UAX14
https://www.unicode.org/reports/tr41/tr41-30.html#UAX14

7

representational power, place requirements on both the specification of text element
boundaries and the underlying implementation. The specification needs to allow the
designation of large sets of characters sharing the same characteristics (for example,
uppercase letters), while the implementation must provide quick access and matches
to those large sets. The mechanism also must handle special features of the Unicode
Standard, such as nonspacing marks and conjoining jamos.

The default boundary determination builds upon the uniform character representation
of the Unicode Standard, while handling the large number of characters and special
features such as nonspacing marks and conjoining jamos in an effective manner. As
this mechanism lends itself to a completely data-driven implementation, it can be
tailored to particular orthographic conventions or user preferences without recoding.

As in other Unicode algorithms, these specifications provide a logical description of
the processes: implementations can achieve the same results without using code or
data that follows these rules step-by-step. In particular, many production-grade
implementations will use a state-table approach. In that case, the performance does
not depend on the complexity or number of rules. Rather, performance is only
affected by the number of characters that may match after the boundary position in a
rule that applies.

2 Conformance

There are many different ways to divide text elements corresponding to user-
perceived characters grapheme clusters, words, and sentences, and the Unicode
Standard does not restrict the ways in which implementations can produce these
divisions. However, it does provide conformance clauses to enable implementations
to clearly describe their behavior in relation to the default behavior.

UAX29-C1. Extended Grapheme Cluster Boundaries: An implementation shall
choose either UAX29-C1-1 or UAX29-C1-2 to determine whether an offset within a
sequence of characters is an extended grapheme cluster boundary.

UAX29-C1-1. Use the property values defined in the Unicode Character Database
[UCD] and the extended rules in Section 3.1 Grapheme Cluster Boundary Rules to
determine the boundaries.

The default grapheme clusters are also known as extended grapheme clusters.

UAX29-C1-2. Declare the use of a profile of UAX29-C1-1, and define that profile
with a precise specification of any changes in property values or rules and/or provide
a description of programmatic overrides to the behavior of UAX29-C1-1.

!"Legacy grapheme clusters are such a profile.

UAX29-C2. Word Boundaries: An implementation shall choose either UAX29-C2-1
or UAX29-C2-2 to determine whether an offset within a sequence of characters is a
word boundary.

https://www.unicode.org/reports/tr29/proposed.html#Conformance
https://www.unicode.org/reports/tr29/proposed.html#Conformance
https://www.unicode.org/reports/tr29/proposed.html#C1
https://www.unicode.org/reports/tr29/proposed.html#C1
https://www.unicode.org/reports/tr29/proposed.html#C1-1
https://www.unicode.org/reports/tr29/proposed.html#C1-1
https://unicode.org/reports/tr41/tr41-30.html#UCD
https://unicode.org/reports/tr41/tr41-30.html#UCD
https://www.unicode.org/reports/tr29/proposed.html#Grapheme_Cluster_Boundary_Rules
https://www.unicode.org/reports/tr29/proposed.html#Grapheme_Cluster_Boundary_Rules
https://www.unicode.org/reports/tr29/proposed.html#C1-2
https://www.unicode.org/reports/tr29/proposed.html#C1-2
https://www.unicode.org/reports/tr29/proposed.html#C2
https://www.unicode.org/reports/tr29/proposed.html#C2

8

[UCD] and the rules in Section 4.1 Default Word Boundary Specification to determine
the boundaries.

UAX29-C2-2. Declare the use of a profile of UAX29-C2-1, and define that profile with
a precise specification of any changes in property values or rules and/or provide a
description of programmatic overrides to the behavior of UAX29-C2-1.

UAX29-C3. Sentence Boundaries: An implementation shall choose either UAX29-
C3-1 or UAX29-C3-2 to determine whether an offset within a sequence of characters
is a sentence boundary.

UAX29-C3-1. Use the property values defined in the Unicode Character Database
[UCD] and the rules in Section 5.1 Default Sentence Boundary Specification to
determine the boundaries.

UAX29-C3-2. Declare the use of a profile of UAX29-C3-1, and define that profile with
a precise specification of any changes in property values or rules and/or provide a
description of programmatic overrides to the behavior of UAX29-C3-1.

This specification defines default mechanisms; more sophisticated implementations
can and should tailor them for particular locales or environments and, for the purpose
of claiming conformance, document the tailoring in the form of a profile. For example,
reliable detection of word boundaries in languages such as Thai, Lao, Chinese, or
Japanese requires the use of dictionary lookup or other mechanisms, analogous to
English hyphenation. An implementation therefore may need to provide means for a
programmatic override of the default mechanisms described in this annex. Note that
a profile can both add and remove boundary positions, compared to the results
specified by UAX29-C1-1, UAX29-C2-1, or UAX29-C3-1.

Notes:

!"Locale-sensitive boundary specifications, including boundary
suppressions, can be expressed in LDML [UTS35]. Some profiles are
available in the Common Locale Data Repository [CLDR].

!"Some changes to rules and data are needed for best segmentation
behavior of additional emoji zwj sequences [UTS51]. Implementations are
strongly encouraged to use the extended text segmentation rules in the
latest version of CLDR.

To maintain canonical equivalence, all of the following specifications are defined on
text normalized in form NFD, as defined in Unicode Standard Annex #15, “Unicode
Normalization Forms” [UAX15]. Boundaries never occur within a combining character
sequence or conjoining sequence, so the boundaries within non-NFD text can be
derived from corresponding boundaries in the NFD form of that text. For
convenience, the default rules have been written so that they can be applied directly
to non-NFD text and and yield equivalent results. (This may not be the case with
tailored default rules.) For more information, see Section 6, Implementation Notes.

https://unicode.org/reports/tr41/tr41-30.html#UCD
https://unicode.org/reports/tr41/tr41-30.html#UCD
https://unicode.org/reports/tr29/#Default_Word_Boundaries
https://unicode.org/reports/tr29/#Default_Word_Boundaries
https://www.unicode.org/reports/tr29/proposed.html#C2-2
https://www.unicode.org/reports/tr29/proposed.html#C2-2
https://www.unicode.org/reports/tr29/proposed.html#C2-2
https://www.unicode.org/reports/tr29/proposed.html#C2-2
https://www.unicode.org/reports/tr29/proposed.html#C2-2
https://www.unicode.org/reports/tr29/proposed.html#C3
https://www.unicode.org/reports/tr29/proposed.html#C3
https://www.unicode.org/reports/tr29/proposed.html#C3
https://www.unicode.org/reports/tr29/proposed.html#C3
https://www.unicode.org/reports/tr29/proposed.html#C3
https://www.unicode.org/reports/tr29/proposed.html#C3-1
https://www.unicode.org/reports/tr29/proposed.html#C3-1
https://www.unicode.org/reports/tr29/proposed.html#C3-1
https://www.unicode.org/reports/tr29/proposed.html#C3-1
https://www.unicode.org/reports/tr29/proposed.html#C3-1
https://unicode.org/reports/tr41/tr41-30.html#UCD
https://unicode.org/reports/tr41/tr41-30.html#UCD
https://unicode.org/reports/tr29/#Default_Word_Boundaries
https://unicode.org/reports/tr29/#Default_Word_Boundaries
https://www.unicode.org/reports/tr29/proposed.html#C3-2
https://www.unicode.org/reports/tr29/proposed.html#C3-2
https://www.unicode.org/reports/tr29/proposed.html#C3-2
https://www.unicode.org/reports/tr29/proposed.html#C3-2
https://www.unicode.org/reports/tr29/proposed.html#C3-2
https://www.unicode.org/reports/tr41/tr41-30.html#UTS35
https://www.unicode.org/reports/tr41/tr41-30.html#UTS35
https://www.unicode.org/reports/tr41/tr41-30.html#CLDR
https://www.unicode.org/reports/tr41/tr41-30.html#CLDR
https://www.unicode.org/reports/tr41/tr41-30.html#UTS51
https://www.unicode.org/reports/tr41/tr41-30.html#UTS51
https://www.unicode.org/reports/tr41/tr41-30.html#UAX15
https://www.unicode.org/reports/tr41/tr41-30.html#UAX15
https://www.unicode.org/reports/tr29/proposed.html#Implementation_Notes
https://www.unicode.org/reports/tr29/proposed.html#Implementation_Notes
https://www.unicode.org/reports/tr29/proposed.html#Implementation_Notes

9

Grapheme clusters were originally, and for many scripts still are, intended to
approximate “user-perceived characters”. It is important to recognize that what the
user thinks of as a “character”—a basic unit of a writing system for a language—may
not be just a single Unicode code point. Instead, that basic unit may be made up of
multiple Unicode code points. To avoid ambiguity with the computer use of the term
character, this is called a user-perceived character. For example, “G” + grave-accent
is a user-perceived character: users think of it as a single character, yet is actually
represented by two Unicode code points. These user-perceived characters are
approximated by what is called a grapheme cluster, which can be determined
programmatically.

However, for a number of scripts users actually perceive two types of units:

!"Base-level marks that represent individual consonants, vowels, or other
linguistic entities, and that typically are the units of text input. It’s quite common
for these base-level components to have names.

!"Two-dimensional arrangements of these base-level marks that are important
units for rendering, line breaking, and editing.

Users of the Korean Hangul script, for example, know jamo as base-level marks,
which represent individual consonants and vowels, as well as the syllable blocks
formed by combining jamo. The jamo ㄱ giyeog, ㅣ i, and ㅁ mieum combine to the
syllable block 김 gim. Users of Brahmic scripts perceive individual base consonants,
conjunct forms, vowel marks, tone marks, and other marks, as well as the
orthographic syllables formed by combining the base-level marks. The Khmer
characters ស sa, ◌# coeng ta, ◌$ coeng ro, ◌ី ei combine to the syllable $ស#& strei.

The default behavior for grapheme clusters leans towards the larger user-perceived
units. Hangul text is segmented into syllable blocks, not into jamo. For Brahmic
scripts, grapheme clusters may be complete orthographic syllables or fragments
thereof, depending on script, but generally not individual base-level units.

Grapheme cluster boundaries are important for collation, regular expressions, UI
interactions, segmentation for vertical text, identification of boundaries for first-letter
styling, and counting “character” positions within text. It should be understood that
these operations differ somewhat in their requirements, and so the default behavior
often needs to be tailored, differently depending on the operation.

Word boundaries, line boundaries, and sentence boundaries should not occur within
a grapheme cluster: in other words, a grapheme cluster should be an atomic unit with
respect to the process of determining these other boundaries.

As far as a user is concerned, the underlying representation of text is not important,
but it is important that an editing interface present a uniform implementation of what
the user thinks of as characters. Grapheme clusters can be treated as units, by
default, for processes such as the formatting of drop caps, as well as the

10

and so forth. For example, when a grapheme cluster is represented internally by a
character sequence consisting of base character + accents, then using the right
arrow key would skip from the start of the base character to the end of the last
accent.

This document defines a default specification for grapheme clusters. It may be
customized for particular languages, operations, or other situations. The need to
customize to meet the requirements of specific operations has already been
mentioned. In addition For example, arrow key movement could be tailored by
language, or could use knowledge specific to particular fonts to move in a more
granular manner, in circumstances where it would be useful to edit individual
components. This could apply, for example, to the complex editorial requirements for
the Northern Thai script Tai Tham (Lanna). Similarly, editing a grapheme cluster
element by element may be preferable in some circumstances. For example, on a
given system the backspace key might delete by code point base-level mark, while
the delete key may delete an entire cluster.

Moreover, there is not a one-to-one relationship between grapheme clusters and
keys on a keyboard. A single key on a keyboard may correspond to a whole
grapheme cluster, a part of a grapheme cluster, or a sequence of more than one
grapheme cluster.

Grapheme clusters can only provide an approximation of where to put cursors.
Detailed cursor placement depends on the text editing framework. The text editing
framework determines where the edges of glyphs are, and how they correspond to
the underlying characters, based on information supplied by the lower-level text
rendering engine and font. For example, the text editing framework must know if a
digraph is represented as a single glyph in the font, and therefore may not be able to
position a cursor at the proper position separating its two components. That
framework must also be able to determine display representation in cases where two
glyphs overlap—this is true generally when a character is displayed together with a
subsequent nonspacing mark, but must also be determined in detail for complex
script rendering. For cursor placement, grapheme clusters boundaries can only
supply an approximate guide for cursor placement using least-common-denominator
fonts for the script.

In those relatively rare circumstances where programmers need to supply end users
with user-perceived character counts, the counts should correspond to the number of
segments delimited by grapheme cluster boundaries. Grapheme clusters may also
be used in searching and matching; for more information, see Unicode Technical
Standard #10, “Unicode Collation Algorithm” [UTS10], and Unicode Technical
Standard #18, “Unicode Regular Expressions” [UTS18].

The Unicode Standard provides a default algorithm for determining grapheme cluster
boundaries; the default grapheme clusters are also known as extended grapheme
clusters. For backwards compatibility with earlier versions of this specification, the
Standard also defines a profile for legacy grapheme clusters.

These algorithms can be adapted to produce tailored grapheme clusters for

https://www.unicode.org/reports/tr41/tr41-30.html#UTS10
https://www.unicode.org/reports/tr41/tr41-30.html#UTS10
https://www.unicode.org/reports/tr41/tr41-30.html#UTS18
https://www.unicode.org/reports/tr41/tr41-30.html#UTS18

11

between these concepts. The tailored examples are only for illustration: what
constitutes a grapheme cluster will depend on the customizations used by the
particular tailoring in question.

Table 1a. Sample Grapheme Clusters

Review note: No changes are proposed in this table; it is therefore omitted.

See also: Where is my Character?, and the UCD file NamedSequences.txt
[Data34].

A legacy grapheme cluster is defined as a base (such as A or カ) followed by zero
or more continuing characters. One way to think of this is as a sequence of
characters that form a “stack”.

The base can be single characters, or be any sequence of Hangul Jamo characters
that form a Hangul Syllable, as defined by D133 in The Unicode Standard, or be a
pair of Regional_Indicator (RI) characters. For more information about RI characters,
see [UTS51].

The continuing characters include nonspacing marks, the Join_Controls (U+200C
ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH JOINER) used in Indic
languages, and a few spacing combining marks to ensure canonical equivalence.
There are cases in Bangla, Khmer, Malayalam, and Odiya in which a ZWNJ occurs
after a consonant and before a virama or other combining mark. These cases should
not provide an opportunity for a grapheme cluster break. Therefore, ZWNJ has been
included in the Extend class. Additional cases need to be added for completeness,
so that any string of text can be divided up into a sequence of grapheme clusters.
Some of these may be degenerate cases, such as a control code, or an isolated
combining mark.

An extended grapheme cluster is the same as a legacy grapheme cluster, with the
addition of some other characters. The continuing characters are extended to include
all spacing combining marks, such as the spacing (but dependent) vowel signs in
Indic scripts. For example, this includes U+093F (i) DEVANAGARI VOWEL SIGN I.
The extended grapheme clusters should be used in implementations in preference to
legacy grapheme clusters, because they provide better results for Indic scripts such
as Tamil or Devanagari in which editing by orthographic syllable is typically preferred.
For scripts such as Thai, Lao, and certain other Southeast Asian scripts, editing by
visual unit is typically preferred, so for those scripts the behavior of extended
grapheme clusters is similar to (but not identical to) the behavior of legacy grapheme
clusters.

For the rules defining the boundaries for grapheme clusters, see Section 3.1. For
more information on the composition of Hangul syllables, see Chapter 3,
Conformance, of [Unicode].

Note: The boundary between default Unicode grapheme clusters can be
determined by just the two adjacent characters. See Section 7, Testing, for a

https://www.unicode.org/reports/tr29/proposed.html#Table_Sample_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Table_Sample_Grapheme_Clusters
https://www.unicode.org/standard/where/
https://www.unicode.org/standard/where/
https://www.unicode.org/reports/tr41/tr41-30.html#Data34
https://www.unicode.org/reports/tr41/tr41-30.html#Data34
https://www.unicode.org/reports/tr41/tr41-30.html#UTS51
https://www.unicode.org/reports/tr41/tr41-30.html#UTS51
https://www.unicode.org/reports/tr29/proposed.html#Default_Grapheme_Cluster_Table
https://www.unicode.org/reports/tr29/proposed.html#Default_Grapheme_Cluster_Table
https://www.unicode.org/reports/tr41/tr41-30.html#Unicode
https://www.unicode.org/reports/tr41/tr41-30.html#Unicode
https://www.unicode.org/reports/tr29/proposed.html#Testing
https://www.unicode.org/reports/tr29/proposed.html#Testing

12

A key feature of default Unicode grapheme clusters (both legacy and extended) is
that they remain unchanged across all canonically equivalent forms of the underlying
text. Thus the boundaries remain unchanged whether the text is in NFC or NFD.
Using a grapheme cluster as the fundamental unit of matching thus provides a very
clear and easily explained basis for canonically equivalent matching. This is
important for applications from searching to regular expressions.

Another key feature is that default Unicode grapheme clusters are atomic units with
respect to the process of determining the Unicode default word, and sentence
boundaries. They are usually—but not always—atomic units with respect to line
boundaries: there are exceptions due to the special handling of spaces. For more
information, see Section 9.2 Legacy Support for Space Character as Base for
Combining Marks in [UAX14].

Grapheme clusters can be tailored to meet further requirements. Such tailoring is
permitted, but the possible rules are outside of the scope of this document. One
example of such a tailoring would be for the aksaras, or orthographic syllables, used
in many Indic scripts. Aksaras usually consist of a consonant, sometimes with an
inherent vowel and sometimes followed by an explicit, dependent vowel whose
rendering may end up on any side of the consonant letter base. Extended grapheme
clusters include such simple combinations.

However, aksaras may also include one or more additional prefixed consonants,
typically with a virama (halant) character between each pair of consonants in the
sequence. Such consonant cluster aksaras are not incorporated into the default rules
for extended grapheme clusters, in part because not all such sequences are
considered to be single “characters” by users. Indic scripts vary considerably in how
they handle the rendering of such aksaras—in some cases stacking them up into
combined forms known as consonant conjuncts, and in other cases stringing them
out horizontally, with visible renditions of the halant on each consonant in the
sequence. There is even greater variability in how the typical liquid consonants (or
“medials”), ya, ra, la, and wa, are handled for display in combinations in aksaras. So
tailorings for aksaras may need to be script-, language-, font-, or context-specific to
be useful.

Note: Font-based information may be required to determine the appropriate unit
to use for UI purposes, such as identification of boundaries for first-letter
paragraph styling. For example, such a unit could be a ligature formed of two
grapheme clusters, such as لا (Arabic lam + alef).

The Unicode definitions of grapheme clusters are defaults: not meant to exclude the
use of more sophisticated definitions of tailored grapheme clusters where
appropriate. Such definitions may more precisely match the user expectations within
individual languages for given processes. For example, “ch” may be considered a
grapheme cluster in Slovak, for processes such as collation. The default definitions
are, however, designed to provide a much more accurate match to overall user
expectations for what the user perceives of as characters than is provided by
individual Unicode code points.

https://www.unicode.org/reports/tr41/tr41-30.html#UAX14
https://www.unicode.org/reports/tr41/tr41-30.html#UAX14

13

Note: The default Unicode grapheme clusters were previously referred to as
“locale-independent graphemes.” The term cluster is used to emphasize that
the term grapheme is used differently in linguistics. For simplicity and to align
terminology with Unicode Technical Standard #10, “Unicode Collation
Algorithm” [UTS10], the terms default and tailored are preferred over locale-
independent and locale-dependent, respectively.

Display of Grapheme Clusters. Grapheme clusters are not the same as ligatures.
For example, the grapheme cluster “ch” in Slovak is not normally a ligature and,
conversely, the ligature “fi” is not a grapheme cluster. Default grapheme clusters do
not necessarily reflect text display. For example, the sequence <f, i> may be
displayed as a single glyph on the screen, but would still be two grapheme clusters.

For information on the matching of grapheme clusters with regular expressions, see
Unicode Technical Standard #18, “Unicode Regular Expressions” [UTS18].

Degenerate Cases. The default specifications are designed to be simple to
implement, and provide an algorithmic determination of grapheme clusters. However,
they do not have to cover edge cases that will not occur in practice. For the purpose
of segmentation, they may also include degenerate cases that are not thought of as
grapheme clusters, such as an isolated control character or combining mark. In this,
they differ from the combining character sequences and extended combining
character sequences defined in [Unicode]. In addition, Unassigned (Cn) code points
and Private_Use (Co) characters are given property values that anticipate potential
usage.

Combining Character Sequences and Grapheme Clusters. For comparison, Table
1b shows the relationship between combining character sequences and grapheme
clusters, using regex notation. Note that given alternates (X|Y), the first match is
taken. The simple identifiers starting with lowercase are variables that are defined in
Table 1c; those starting with uppercase letters are Grapheme_Cluster_Break
Property Values defined in Table 2.

Table 1b. Combining Character Sequences and Grapheme Clusters

Review note: No changes are proposed in this table; it is therefore omitted.

Table 1b uses several symbols defined in Table 1c. Square brackets and \p{...} are
used to indicate sets of characters, using the normal UnicodeSet notion.

Table 1c. Regex Definitions

Review note: No changes are proposed in this table; it is therefore omitted.

Review Note: the new rule GB9c has been implemented in CLDR and ICU as a
profile for some years. However, the change to the Regex Definitions above are new,
so we'd appreciate review to ensure that they end up with the same result.

https://www.unicode.org/reports/tr41/tr41-30.html#UTS10
https://www.unicode.org/reports/tr41/tr41-30.html#UTS10
https://www.unicode.org/reports/tr41/tr41-30.html#UTS18
https://www.unicode.org/reports/tr41/tr41-30.html#UTS18
https://www.unicode.org/reports/tr41/tr41-30.html#Unicode
https://www.unicode.org/reports/tr41/tr41-30.html#Unicode
https://www.unicode.org/reports/tr29/proposed.html#Table_Combining_Char_Sequences_and_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Table_Combining_Char_Sequences_and_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Table_Combining_Char_Sequences_and_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Table_Combining_Char_Sequences_and_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Regex_Definitions
https://www.unicode.org/reports/tr29/proposed.html#Regex_Definitions
https://www.unicode.org/reports/tr29/proposed.html#Regex_Definitions
https://www.unicode.org/reports/tr29/proposed.html#Grapheme_Cluster_Break_Property_Values
https://www.unicode.org/reports/tr29/proposed.html#Grapheme_Cluster_Break_Property_Values
https://www.unicode.org/reports/tr29/proposed.html#Grapheme_Cluster_Break_Property_Values
https://www.unicode.org/reports/tr29/proposed.html#Table_Combining_Char_Sequences_and_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Table_Combining_Char_Sequences_and_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Table_Combining_Char_Sequences_and_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Table_Combining_Char_Sequences_and_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Table_Combining_Char_Sequences_and_Grapheme_Clusters
https://www.unicode.org/reports/tr29/proposed.html#Regex_Definitions
https://www.unicode.org/reports/tr29/proposed.html#Regex_Definitions
https://www.unicode.org/reports/tr29/proposed.html#Regex_Definitions
https://www.unicode.org/reports/tr29/proposed.html#Regex_Definitions
https://www.unicode.org/reports/tr29/proposed.html#Regex_Definitions

