
Opposition to and Comment on L2/23–107

Fredrick R. Brennan <copypaste@kittens.ph>

June 30, 2023

1 Abstract
Microsoft submitted at Unicode Technical Committee № 175 (25th–27th April
2023) a document entitled “Proper Complex Script Support in Text Terminals”.1
While I certainly agree with the need for standardization in this area, and fur-
thermore support the creation of the new Unicode project therein proposed,
the Terminal Complex Script Support Working Group (TCSS WG), I believe
Microsoft has failed to take into account existing standards and the way they
propose to do text shaping in text terminals is fundamentally flawed.

2 The Actual State of the Art
Microsoft cited only three examples of text terminals in its document:

1. An IBM 5550 displaying mixed Japanese/Latin text circa 1980;

2. Windows Terminal (cmd.exe)

3. Apple Terminal.app

None of these examples adequately reflect the state of the art. Text terminal
development primarily happens in the free software community, of which Mi-
crosoft is only occassionally a member. This is not a slight against Microsoft,
merely a statement of fact that they are unlikely to be aware of the true state
of the art due to their separation from the spaces it has been developed in.

In actuality, it is already very possible to display properly shaped OpenType
text in text terminals (also, and more correctly, known as “terminal emulators” )
in the two most common terminal emulators found on GNU/Linux desktops:2
GNOME Terminal and Konsole. I believe the true current state of the art to
be best reflected in mlterm (the multilingual terminal). Below, the resulting
output to the pseudo-tty the motd3 of my FTP server4 is displayed in all three,
from left to right.

1Li, Renzhi; Howett, Dustin; Constable, Peter (2023). Proper Complex Script Support in
Text Terminals. Unicode Technical Committee Meeting № 175. L2/23–107.

2And other desktops of similar pedigree such as FreeBSD desktops, Haiku OS desktops,
et cetera.

3Message of the Day
4ftps://デブ.狸.agency; although for the convenience of readers it is also both attached

to this document and available from https://debu.tanuki.agency.

1

ftps://デブ.狸.agency
https://debu.tanuki.agency
rick
Text Box
L2/23-153



2.1 デブ.狸.agency motd as displayed on GNU/Linux
While as yet imperfect, all three of these terminals do a far better job than
either Windows Terminal or Terminal.app:

Figure 1: From left: Konsole 23.04.2, GNOME Terminal 3.48.17, and mlterm
version 3.9.38.

I will in the following section attempt to explain in brief (please excuse any
errors) how this works.

3 The free software text stack
In free software operating systems, the text stack is essentially thus when com-
plex shaping is desired:

FreeType
Responsible for rasterization only.

Fribidi
Implements Unicode’s bi-directional algorithm.

ICU
Implements Unicode’s linebreaking algorithm.

HarfBuzz
Moves the bitmaps produced by FreeType into position according to rules
defined either in OpenType Layout, Graphite, or Apple Advanced Typog-
raphy (AAT) rules in a way that is cognizant of Fribidi’s results.

Fontconfig
Chooses an appropriate font for a given TUS script.

7using VTE 0.72.2 +BIDI +GNUTLS +ICU +SYSTEMD
8post/2023-06-11, using features: otl ssh implugin imagelib(builtin) utmp

2



Pango9

Does the actual rendering, and is responsible for linebreaking, which Harf-
Buzz cannot do on its own.10

1. Calls Fontconfig multiple times to find fonts to display a given string.
2. Loads those fonts with FreeType, ignoring unloadable fonts.
3. Shapes the strings with HarfBuzz.
4. Returns either a vector (e.g. PDF output) or a raster.

Immediately a problem emerges, which Microsoft’s authors are right to point
out: Pango assumes it does not need to fit text into grid spaces, and can return
a raster of any width, or, indeed, zero-width.

Two standards that I’m aware of exist to address this.

4 ECMA TR-53
The European Computer Manufacturer’s Association in June of 1993 released
Technical Report № 53 entitled “Handling of Bi-Directional Texts”.11

It is curious that this paper is not mentioned by the Microsoft authors.
Nevertheless, it has a lot of issues; it predates Unicode BIDI, and it may indeed
be unimplementable according to the author of libvte.12

5 Freedesktop BiDiTE WG Recommendation
Anton Kochkov’s implementation is by far the most robust and he has put the
most thought into the problem of any free software developer as far as I can
tell.

His is the (still draft) recommendation of Freedesktop.org’s BiDi in Terminal
Emulators (BiDiTE) WG.13

6 Incompatibilities
A large oversight is noticed immediately in Microsoft’s document in that line-
breaking is to be figured out at a “later time”. Certainly this is why they have
invited a WG. However, the whole way that Microsoft intends that complex
shaping and BiDi be done, with a “working area” for each word, is both incom-
patible and likely to lead to issues.

In my opinion the most logical process looks something more like:14

1. Divide the input into words;

9Often combined with Cairo as Pangocairo.
10See What HarfBuzz doesn’t do.
11https://www.ecma-international.org/wp-content/uploads/ECMA_TR-53_2nd_

edition_june_1992.pdf
12Kochkov, Anton (@XVilka). Review of TR-53. Freedesktop.org BiDi in Terminal Emu-

lators Working Group.
13Kochkov, Anton. https://terminal-wg.pages.freedesktop.org/bidi/
14Though much like Microsoft’s document, this proposal is nowhere near final.

3

https://harfbuzz.github.io/what-harfbuzz-doesnt-do.html
https://www.ecma-international.org/wp-content/uploads/ECMA_TR-53_2nd_edition_june_1992.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA_TR-53_2nd_edition_june_1992.pdf
https://terminal-wg.pages.freedesktop.org/bidi/ecma-tr53-review.html
https://terminal-wg.pages.freedesktop.org/bidi/


2. Run the Unicode BiDi and line-breaking algorithms;

3. Run wcswidth() on all the words or word segments in the case of a hy-
phenated word;

4. Measure the text’s width and fit it into the minimum number of spaces,
or else if it could be stretched or compressed ±5% to fit into the number
of text spaces, do so;

5. Recommend monospace fonts be used wherever possible;

6. Keep the existing norm that CJK characters are equal to two grid spaces
without exception.

I look forward to discussing these issues at the TCSS WG.

4


	Abstract
	The Actual State of the Art
	デブ.狸.agency motd as displayed on GNU/Linux

	The free software text stack
	ECMA TR-53



