
 L2/23-234

 UTC #177 properties feedback & recommendations
 Markus Scherer & Josh Hadley / Unicode properties & algorithms group , 2023-oct-25

 Participants
 The following people have contributed to this document:

 Markus Scherer (chair), Josh Hadley (vice chair), Asmus Freytag, Elango Cheran, Ken Whistler, Manish
 Goregaokar, Mark Davis, Ned Holbrook, Peter Constable, Rick McGowan, Robin Leroy

 1. Core spec

 1.1 Clarify guidance for use of a BOM as a UTF-8 encoding signature
 L2/21-038 from Tom Honermann (C++ SG16)

 Recommended UTC actions

 1. Action Item for Robin Leroy, EDC: In the core specification, amend the text of Section 2.6, sub “Byte Order”,
 and Section 2.13, sub “Unicode Signature”, as described in Option 1 of L2/21-038 . In addition, in Section
 3.10, reword the third bullet under D95, changing “neither required nor recommended” to “not required”. For
 Unicode 16. See L2/23-234 item 1.1.

 2. Action Item for Robin Leroy, EDC: In the core specification, section 23.8 Specials, add guidance for the use
 of a BOM in UTF-8 similar to L2/21-038 option 2. For Unicode 16. See L2/23-234 item 1.1.

 Summary

 From the abstract of the document:

 The Unicode standard is clear that a BOM may be used as an encoding signature for UTF-8 encoded data, but its
 guidance regarding when a BOM is or is not recommended for such use is not consistently interpreted.

 This paper seeks to clarify the guidance offered by the Unicode standard for use of a BOM as an encoding signature
 and proposes several possible resolutions ranging from removal of existing guidance to expanding guidance tailored
 to protocol designers, software developers, and text authors.

 PAG recommended changes

 We agree with the core spec changes in option 1 of the document, plus adding guidance similar to option 2 to core
 spec section 23.8 Specials.

 We might modify the first bullet on L2/21-038 page 6 recommending that consumers strip the BOM (as in other
 bullets) rather than diagnose it as an error.

 1

https://www.unicode.org/consortium/props-algorithms.html
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/21-038
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/21-038
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/21-038
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/21-038

 Consider for UTF-8, where we already explain that byte order does not apply, whether to use the term “signature”
 (short for “Unicode signature byte sequence”) rather than “BOM”. (Core spec section 23.8 Specials already uses
 “signature” and “signature byte sequence”.)

 1.2 Remove ambiguity from D14 Noncharacters for Unicode 16.0
 L2/23-201 by Asmus Freytag (copied here in full)

 Recommended UTC actions

 1. Action Item for Asmus Freytag, EDC: Clarify D14 Noncharacters according to L2/23-201 Alternative A. For
 Unicode 16. See L2/23-234 item 1.2.

 Summary

 Problem

 The word “internal” is ambiguous in definition D14 Noncharacters.
 In reviewing an IETF internet draft I came across language that cited the “reserved for internal use” language from
 D14. However, without the context of text passages in §2.13 “Special Character“ or §23.7 “Noncharacters” the
 meaning of this reservation is not unambiguous to the reader of that internet draft.
 In the context of a body of work defining protocols (like the IETF RFCs) “reserved for internal use” may refer to items
 that are reserved to be used solely for protocol internal purposes, whereas the sense in Unicode encompasses use
 that is internal to a system or application (or protocol) that implements the Unicode Standard. Instead of
 noncharacters being somehow for internal use by the Unicode Standard, they are internal in the sense of not being
 intended for interchange.
 The existing language does not make that distinction, or, in other words, does not prevent a reader from applying
 their understanding of the word “internal”, leading to an ambiguity.

 D14 Noncharacter: A code point that is permanently reserved for internal use. Noncharacters consist of the values
 U+nFFFE and U+nFFFF (where n is from 0 to 10 [base] 16) and the values U+FDD0..U+FDEF.
 with one of the bullets just repeating the statement without any help in disambiguation
 • These code points are permanently reserved as noncharacters

 Other text in the Standard spells out the key features of noncharacters in different ways that make the intent much
 clearer and rule out alternative interpretation of the word “internal”. Those statements describe noncharacters as
 follows:

 1. They are code points that can never be assigned to abstract characters
 2. They are not intended for interchange
 3. Applications may (freely) use them for application internal purposes
 4. Some may be suitable as sentinel values
 5. If encountered outside of an implementation they have no interpretable semantics other than their status as

 noncharacter code point.

 Preferred Solution

 The preferred fix would be to update the language of D14 as follows:

 2

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-201
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-201
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://www.unicode.org/versions/Unicode15.0.0/ch03.pdf#G2212

 D14 Noncharacter: A code point that is permanently reserved and will never be assigned to an abstract character.
 Noncharacters consist of the values U+nFFFE and U+nFFFF (where n is from 0 to 10 16) and the values
 U+FDD0..U+FDEF. They are not intended for interchange, but may be used by an implementation for internal
 purposes.
 • Possible use cases include application internal sentinel values
 • For more information, see Section 23.7, Noncharacters.

 Alternatives:

 A. Same as preferred solution, but with the final sentence moved into a bullet
 B. Same as existing, but with new bullets covering items (1) through (5) added and the existing duplicative bullet
 removed.

 Glossary

 Change the glossary item to match the suggested language for the “preferred solution” instead of repeating the
 current definition with its ambiguous use of the word “internal”.

 Discussion

 We do want most low-level tools and protocols to treat noncharacters the same as private use or as unassigned
 code points.

 Example of CLDR using noncharacters: We have some additional contractions in the CLDR version of the default
 sort order data, and in some tailorings. These contractions map to collation elements with primary weights at the
 start of each script, and each CLDR reordering group (spaces, digits, ...), in order to support parametric script
 reordering and alphabetic-index processing. In order not to interfere with real text, and to make it easy to enumerate
 them, each of the contraction strings starts with one of two noncharacters. They can show up unescaped in some
 data files.

 Including noncharacters in a transformation form does not make it ill-formed. May want to reject some for internal
 use. Similar to other types of input validations.

 2. UCD

 2.1 Future maintenance of UAX #42 (UCDXML)
 UTC-176-A5 Action item for Markus Scherer, PAG: Evaluate alternatives for future maintenance of UAX # 42 and
 provide a recommendation to UTC at meeting # 177.

 Recommended UTC actions

 1. Consensus: Authorize a Public Review Issue announcing the stabilization of UAX #42 UCDXML with spec
 and data frozen at Unicode 15.1.

 2. Action Item for Markus Scherer, Rick McGowan, PAG: Post a Public Review Issue announcing the
 stabilization of UAX #42 UCDXML with spec and data frozen at Unicode 15.1. For Unicode 16.0. See draft
 PRI text in L2/23-234 item 2.1.

 3

https://www.unicode.org/cgi-bin/GetL2Ref.pl?176-A5
https://unicode.org/reports/tr42
https://unicode.org/reports/tr42
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234

 Summary

 During UTC-176 , PAG noted that so far none of its members had committed to maintaining UAX #42 (UCDXML).
 Ken Whistler noted that, if no new (capable, committed) maintainer can be found, the proper approach would be to
 “stabilize” UAX #42 (keeping old versions available and documented).
 We could issue a PRI announcing this step and giving reviewers an opportunity to respond if they are able and
 committing to taking over maintenance of UAX #42 . We could also write a blog post about it to add visibility.

 We might point to ICU’s “preparsed UCD” (https://unicode-org.github.io/icu/design/props/ppucd) as a possible
 alternative format for the UCD, although its intended scope is currently limited to use in ICU.

 Draft PRI text

 PRI title:
 Stabilization of UAX #42 , Unicode Character Database in XML (UCDXML)

 Description of Issue:
 As noted in L2/23-187 Release Management Group Report to UTC #176 , the editors of UAX #42 are no longer
 available to continue maintaining the spec and data for future versions of Unicode.
 In the absence of committed maintainers, the UTC is proposing to stabilize UAX # 42 and freeze the UAX and its
 data at the Unicode 15.1 level.
 Users of UCDXML are encouraged to either parse the UCD files directly or use libraries that provide API access to
 Unicode properties.
 Please let us know of other standards or projects which refer to UAX # 42 or use the UCDXML data.

 (When we actually publish the PRI, we should elaborate on what it means to stabilize a UAX.)

 2.2 Changes for new characters in 16.0, continued
 From Robin Leroy, Ken Whistler, et al., PAG

 Recommended UTC actions

 1. Consensus: The UTC approves correcting the Indic_Syllabic_Category range 13B8..113BA ;
 Vowel_Dependent (spanning 65539 code points) originally proposed in L2/22-031 and approved by
 UTC-170-C9 , to 113B8..113BA ; Vowel_Dependent (spanning three code points). For Unicode Version 16.0.
 See L2/23-234 Section 2.2.

 2. Note: The first proposed line of UnicodeData.txt in L2/23-191 has one semicolon too many; U+A7DB should
 be the Simple_Lowercase_Mapping of U+A7DA , not its Simple_Titlecase_Mapping.

 3. Consensus: The UTC approves the code point change for GARAY HYPHEN to U+10D6E , from the
 conflicting U+10D6D approved by UTC-171-C18 . GARAY CONSONANT NASALIZATION MARK remains at
 U+10D6D . For Unicode Version 16.0. See L2/23-234 Section 2.2.

 4. Consensus: The UTC approves the change in canonical combining class for the GARAY DIGITS ONE
 through NINE U+10D40 .. U+10D49 , from equal to their numeric value as approved by UTC-171-C18 to 0
 (Not_Reordered). For Unicode Version 16.0. See L2/23-234 Section 2.2.

 5. Consensus: The UTC approves the change in Titlecase_Mapping for U+1C8A CYRILLIC SMALL LETTER
 TJE from itself as approved by UTC-172-C4 to U+1C89 CYRILLIC CAPITAL LETTER TJE. For Unicode
 Version 16.0. See L2/23-234 Section 2.2.

 4

https://www.unicode.org/cgi-bin/GetL2Ref.pl?176
https://unicode.org/reports/tr42
https://unicode.org/reports/tr42
https://unicode.org/reports/tr42
https://unicode-org.github.io/icu/design/props/ppucd
https://github.com/unicode-org/properties/issues/42
https://www.unicode.org/L2/L2023/23187-utc176-rmg-report.pdf
https://www.unicode.org/reports/tr42/
https://www.unicode.org/reports/about-reports.html#Withdrawn
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-031
https://www.unicode.org/cgi-bin/GetL2Ref.pl?170-C9
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-191
https://util.unicode.org/UnicodeJsps/character.jsp?a=A7DB
https://util.unicode.org/UnicodeJsps/character.jsp?a=A7DA
https://util.unicode.org/UnicodeJsps/character.jsp?a=10D6E
https://util.unicode.org/UnicodeJsps/character.jsp?a=10D6D
https://www.unicode.org/cgi-bin/GetL2Ref.pl?171-C18
https://util.unicode.org/UnicodeJsps/character.jsp?a=10D6D
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://util.unicode.org/UnicodeJsps/character.jsp?a=10D40
https://util.unicode.org/UnicodeJsps/character.jsp?a=10D49
https://www.unicode.org/cgi-bin/GetL2Ref.pl?171-C18
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://util.unicode.org/UnicodeJsps/character.jsp?a=1C8A
https://www.unicode.org/cgi-bin/GetL2Ref.pl?172-C4
https://util.unicode.org/UnicodeJsps/character.jsp?a=1C89
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234

 Unset

 Unset

 6. Consensus: The UTC approves the change in General_Category for U+106DF GARAY REDUPLICATION
 MARK from Other_Symbol (So) as approved by UTC-171-C18 to Modifier_Letter (Lm). For Unicode Version
 16.0. See L2/23-234 Section 2.2.

 7. Consensus: The UTC approves the change in General_Category for U+10D4E GARAY VOWEL LENGTH
 MARK from Other_Letter (Lo) as approved by UTC-171-C18 to Modifier_Letter (Lm). For Unicode Version
 16.0. See L2/23-234 Section 2.2.

 8. Note: The Script_Extensions values suggested in L2/21-157R should not be added to the UCD; see the
 comments about a similar proposal in Section 6 of L2/23-012 .

 Summary

 The PAG spotted some issues while preparing the UCD changes for the Unicode Version 16.0 pipeline.

 There is a bad InSC range in L2/22-031 :

 13B8..113BA ; Vowel_Dependent # Mc [3] TULU-TIGALARI VOWEL SIGN AA..TIGALARI VOWEL SIGN
 VOCALIC II

 This should be

 113B8..113BA ; Vowel_Dependent # Mc [3] TULU-TIGALARI VOWEL SIGN AA..TIGALARI VOWEL SIGN
 VOCALIC II

 instead of setting an entire plane to InSC=Vowel_Dependent.

 See unicode-org/unicodetools@ d0fcc53 .

 There is one semicolon too many in the first proposed UnicodeData.txt line in L2/23-191 ; see
 unicode-org/unicodetools@ 044597d .

 There is a duplicate code point in the proposed UnicodeData.txt lines in L2/22-048 . See
 unicode-org/unicodetools@ bbfffdc .

 Further, the digits are given CCC=NV, which is a bad idea for the nonzero digits.

 The CYRILLIC SMALL LETTER TJE approved by UTC-172-C4 has a Titlecase_Mapping to itself rather than to the
 CAPITAL LETTER TJE; see unicode-org/unicodetools#554 . This was caught by comparison against Ken’s
 UnicodeData draft.

 Scripsit Ken Whistler:

 The gc value for 106DF GARAY REDUPLICATION MARK in L2/22-048 is clearly
 wrong.

 5

https://util.unicode.org/UnicodeJsps/character.jsp?a=106DF
https://www.unicode.org/cgi-bin/GetL2Ref.pl?171-C18
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://util.unicode.org/UnicodeJsps/character.jsp?a=10D4E
https://www.unicode.org/cgi-bin/GetL2Ref.pl?171-C18
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/21-157R
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-012
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-031
https://github.com/unicode-org/unicodetools/commit/d0fcc53f9728e1a9aed304f73b68cd9b817c99d1
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-191
https://github.com/unicode-org/unicodetools/commit/044597daeb31ff736e5d7ef7304e43935b66e559
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/22-048
https://github.com/unicode-org/unicodetools/commit/bbfffdc499fade67283dc8fe38c2d9474678ffa4
https://www.unicode.org/cgi-bin/GetL2Ref.pl?172-C4
https://github.com/unicode-org/unicodetools/pull/554

 Unset

 Unset

 It is assigned gc=So there, but iteration and reduplication marks should
 typically be assigned gc=Lm and Extender=True.

 The mark in question is discussed under Section 4.1 Punctuation, but it
 clearly is neither punctuation nor a symbol. It just looks like a
 symbol in the author's mind because it is shaped like an x.

 In discussion of the Garay length mark, we concluded that it should be gc=Lm instead of gc=Lo.
 See unicode-org/unicodetools#552 (comment)

 2.3 Discrepancy between the numeric values for U+5146 and U+79ED

 Recommended UTC actions

 1. Action Item for Josh Hadley, PAG: Update the documentation for DerivedNumericValues.txt to indicate that
 the first-listed value of kAccountingNumeric, kOtherNumeric, or kPrimaryNumeric is what is used for the
 derived numeric value. For Unicode 16.0. See L2/23-234 item 2.3.

 2. Action Item for Ken Whistler, PAG: Update UAX # 44, Table 9, description of Numeric_Value and the
 description following Table 10 to indicate that the value comes from the first-listed of kAccountingNumeric,
 kOtherNumeric, or kPrimaryNumeric. For Unicode 16.0. See L2/23-234 item 2.3.

 3. Action Item for Eric Muller, Laurentiu Iancu, PAG: update the UCDXML generator and data to list
 nv=Numeric_Value with at most one number. For Unicode 16.0. See L2/23-234 item 2.3.

 Feedback (verbatim)

 Date/Time: Tue Aug 22 05:57:09 CDT 2023
 ReportID: ID20230822055709
 Name: Andrew West
 Report Type: Error Report
 Opt Subject: DerivedNumericValues.txt

 For Unicode 15.1, there is a discrepancy between the numeric values for
 U+5146 and U+79ED as given in DerivedNumericValues.txt (single value only)
 and Unihan and ucd.xml (two values each):

 https://www.unicode.org/Public/draft/UCD/ucd/extracted/DerivedNumericValues.txt :

 5146 ; 1000000.0 ; ; 1000000 # Lo CJK UNIFIED IDEOGRAPH-5146
 79ED ; 1000000000.0 ; ; 1000000000 # Lo CJK UNIFIED IDEOGRAPH-79ED

 Unihan_NumericValues.txt:

 U+5146 kPrimaryNumeric 1000000 1000000000000

 6

https://github.com/unicode-org/unicodetools/pull/552#discussion_r1362874785
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://util.unicode.org/UnicodeJsps/character.jsp?a=5146
https://util.unicode.org/UnicodeJsps/character.jsp?a=79ED
https://www.unicode.org/Public/draft/UCD/ucd/extracted/DerivedNumericValues.txt

 Unset

 Unset

 U+79ED kPrimaryNumeric 1000000000 1000000000000

 ucd.nounihan.flat.xml:

 <char cp="5146" age="1.1" na="CJK UNIFIED IDEOGRAPH-#" JSN="" gc="Lo" ccc="0" dt="none"
 dm="#" nt="Nu" nv="1000000 1000000000000" .../>

 <char cp="79ED" age="1.1" na="CJK UNIFIED IDEOGRAPH-#" JSN="" gc="Lo" ccc="0" dt="none"
 dm="#" nt="Nu" nv="1000000000 1000000000000" .../>

 The derived numeric value should be based on kPrimaryNumeric:

 # Derived Property: Numeric_Value
 # Field 1:
 # The values are based on field 8 of UnicodeData.txt, plus the fields
 # kAccountingNumeric, kOtherNumeric, kPrimaryNumeric in the Unicode Han Database (Unihan).
 # The derivations for these values are as follows.
 # Numeric_Value = the value of kAccountingNumeric, kOtherNumeric, or kPrimaryNumeric, if
 they exist; otherwise
 # Numeric_Value = the value of field 8, if it exists; otherwise
 # Numeric_Value = NaN

 However, the format of the file only allows for a single value.

 My personal opinion is that Numeric_Value should always be a single value,
 even in cases such as U+5146 and U+79ED where there are alternative
 interpretations of the numeric value, otherwise implementations which rely
 on UCD data to apply numeric value (e.g. for numeric sorting) will not know
 which of the space-separated list of numeric values to apply.

 My preferred solution would be:

 1. Allow multiple alternative numeric values in the Unihan database only
 (i.e. no change to kPrimaryNumeric for U+5146 and U+79ED);

 2. Allow only a single numeric value for Numeric_Value in
 DerivedNumericValues.txt, selecting the most widely-used modern
 interpretation for U+5146 and U+79ED , and modifying accordingly the stated
 derivation for the value given in Field 1;

 3. Derive the "nv" value in ucd.xml from Numeric_Value in DerivedNumericValues.txt.

 7

https://util.unicode.org/UnicodeJsps/character.jsp?a=5146
https://util.unicode.org/UnicodeJsps/character.jsp?a=79ED
https://util.unicode.org/UnicodeJsps/character.jsp?a=5146
https://util.unicode.org/UnicodeJsps/character.jsp?a=79ED
https://util.unicode.org/UnicodeJsps/character.jsp?a=5146
https://util.unicode.org/UnicodeJsps/character.jsp?a=79ED

 2.4 Bug with "cursor" listings in Character Name Index

 Recommended UTC actions

 1. Action Item for Ken Whistler, PAG: correct "cursor" listings in ucd/Index.txt as detailed in feedback
 ID20230720191514. For Unicode 16.0. See L2/23-234 item 2.4.

 2. FYI: Already fixed in Index.txt for Unicode 16.0. (add Index entry: down, fast cursor unicodetools#545)

 Feedback (verbatim)

 Date/Time: Thu Jul 20 19:15:14 CDT 2023
 ReportID: ID20230720191514
 Name: Leroy D. Geisse V.
 Report Type: Website Problem
 Opt Subject: Missing character name variant

 I think that this is a minor issue. Regards.

 By searching for "cursor" in the Character Name Index (https://www.unicode.org/charts/charindex.html), I found is
 not the variant "down, fast cursor".

 cursor down, fast
 cursor left, fast
 cursor right, fast
 cursor up, fast

 fast cursor down
 fast cursor left
 fast cursor right
 fast cursor up

 left, fast cursor

 right, fast cursor

 up, fast cursor

 2.5 Inconsistent use of semicolon reported in data files
 From David Carlisle (via Asmus email to PAG)

 Recommended UTC actions

 1. Action Item for Ken Whistler, PAG: In UAX #44 section 4.2.1 Data Fields, remove the sentence “For legacy
 reasons, no spaces are allowed before or after the semicolon in LineBreak.txt and in EastAsianWidth.txt.”
 For Unicode 16.0. See L2/23-234 item 2.5.

 Feedback

 david Carlisle davidc@nag.co.uk is updating the date file for the math TR and reports:
 8

https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://github.com/unicode-org/unicodetools/pull/545
https://www.unicode.org/charts/charindex.html
https://unicode.org/reports/tr44
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234

 I found the general guidance on ; separated file formats in TR44
 https://www.unicode.org/reports/tr44/#Format_Conventions
 (Incidentally changes to LineBreak.txt and in EastAsianWidth.txt in the recent 15.1.0 break that)

 2.6 Alphabetic combining letters
 From Robin Leroy & Ken Whistler, PAG

 Recommended UTC actions

 1. Consensus: Assign the property Alphabetic to the combining Latin letters U+0363 .. U+036F and
 U+1DD3 .. U+1DE6 . For Unicode Version 16.0. See L2/23-234 item 2.6.

 2. Action Item for Robin Leroy, PAG: In PropList.txt, assign the property Other_Alphabetic to the combining
 latin letters U+0363 .. U+036F and U+1DD3 .. U+1DE6 , and update derived properties accordingly. For
 Unicode Version 16.0. See L2/23-234 item 2.6.

 Summary

 The medieval superscript letter diacritics from the Combining Diacritical Marks and Combining Diacritical Marks
 Supplement blocks do not have the alphabetic property , in contrast to most other combining letters (including those
 used in the Ormulum in the corresponding Extended block).

 They should.

 3. New Scripts & Characters

 3.1 Review of Script Ad Hoc topics
 PAG members reviewed the following proposals, provided feedback to SAH, and the feedback has been
 addressed.
 No further recommended actions from our side.

 ● L2/23-181 Encoding proposal for an extended Egyptian Hieroglyphs repertoire
 ● SAH issue: Invariants between Indic positional and syllabic categories and general category

 ○ See the SAH report for recommended property value changes for U+1171E, U+0D41, U+0D42
 ○ PAG is implementing an invariants check

 ● L2/23-197 Three Latin Lambdas for version 16.0 Request

 3.2 Create a new UAX for Tangut source data

 Recommended UTC actions

 1. Consensus: The UTC authorizes a new UAX for documentation of TangutSources.txt, for Unicode 17.0. See
 L2/23-234 item 3.2.

 2. Action Item for Michel Suignard, SAH: Create a proposed draft UAX for documentation of TangutSources.txt,
 for Unicode 17.0. See L2/23-234 item 3.2.

 9

https://www.unicode.org/reports/tr44/#Format_Conventions
https://util.unicode.org/UnicodeJsps/character.jsp?a=0363
https://util.unicode.org/UnicodeJsps/character.jsp?a=036F
https://util.unicode.org/UnicodeJsps/character.jsp?a=1DD3
https://util.unicode.org/UnicodeJsps/character.jsp?a=1DE6
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://util.unicode.org/UnicodeJsps/character.jsp?a=0363
https://util.unicode.org/UnicodeJsps/character.jsp?a=036F
https://util.unicode.org/UnicodeJsps/character.jsp?a=1DD3
https://util.unicode.org/UnicodeJsps/character.jsp?a=1DE6
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Bsubhead%3DMedieval+superscript+letter+diacritics%7D&g=&i=alphabetic
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7Bname%3D%2FCOMBINING+.*+LETTER%2F%7D&g=Alphabetic&i=
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-181
https://github.com/unicode-org/unicodetools/pull/536
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-197
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234
https://www.unicode.org/cgi-bin/GetDocumentLink?L2/23-234

 Feedback

 Asmus Freytag noted that there is a need for a new UAX for Tangut source data.

 Whenever we add data files for source data, we either need a dedicated UAX for the source information for that
 script, like UAX #38 for Unihan, or if we have a number of similar scripts, we could coalesce. A Tangut UAX might
 be lightweight compared to Unihan.

 4. Normalization

 4.1 document optimization of mapping+normalization
 From Markus Scherer, ICU

 Recommended UTC actions

 1. Action item for Robin Leroy, Markus Scherer, PAG: In the Implementation Notes section of UAX #15,
 add a discussion of the implementation of operations combining normalization and folding, such as
 toNFKC_Casefold and toNFKC_Simple_Casefold, using the same logic as a normalization form. For
 Unicode 16.0. See L2/23-234 item 4.1.

 Feedback

 Markus noted: In ICU we implement NFKC_CF normalization by combining the normalization (NFC) data with
 the NFKC_CF to create a custom normalization data file. We use this file via the regular Unicode normalization
 implementation for a single-step NFKC_CF operation, rather than the two-step, map-then-normalize operation
 described in the spec.

 I tried to implement NFKC_SCF (using Simple_Case_Folding) analogously, but I needed to manually tweak the
 data in order to achieve the same results as the specified algorithm.

 I could not simply add the NFKC_SCF mappings to the normalization data, because the normalization data
 builder applies mappings recursively, which in this combination yields bad mappings for several characters that
 violate constraints of the normalization algorithm.

 After PAG discussion:

 ● We should document the optimization technique of creating custom normalization data files for things
 like combining a mapping table with normalization.

 ● It would be nice if we could document for the standard combinations what mapping tweaks are needed
 to make this work.

 10

https://unicode.org/reports/tr38

 5. Text Segmentation

 5.1 Line break: Revisit change of some digits lb=NU -> ID
 From PAG discussion

 Recommended UTC actions

 1. Consensus Change the Line_Break property of the Balinese, Javanese, Cham, and Dives Akuru digits,
 namely U+1B50..U+1B59, U+A9D0..U+A9D9, U+AA50..U+AA59, and U+11950..U+11959, from
 Ideographic to Aksara_Start. For Unicode Version 16.0. See L2/23-234 item 5.1.

 2. Action Item for Robin Leroy, PAG: Change the Line_Break property of the Balinese, Javanese, Cham,
 and Dives Akuru digits from Ideographic to Aksara_Start. For Unicode Version 16.0. See L2/23-234
 item 5.1.

 3. Action Item for Robin Leroy, PAG: In UAX # 14, Update the description of line breaking class
 Aksara_Start to mention that all digits of scripts that use the brahmic style of line breaking are assigned
 this class. For Unicode Version 16.0. See L2/23-234 item 5.1.

 Summary

 From PAG discussion of the new line breaking of certain scripts at orthographic syllable boundaries. See
 L2/22-080R2, L2/23-072, UTC-175-C27.

 PAG members wondered why L2/22-080 gave some digits lb=ID and others lb=AS (from lb=NU).
 There was some discussion of the behaviour of lb=ID with numeric prefixes, e.g., $, and postfixes, e.g., %,
 which is not objectionable, but not relevant, since these characters are not used in those scripts.
 Ultimately the reason is that Norbert had started with lb=ID for all digits, and switched to lb=AS where
 necessary.

 Having lb=AS for all would make the property assignments simpler, with no effect on nondegenerate cases; it
 would allow us to check future assignments with an invariant test.

 5.2 UAX #29 Section 6.3: “easily converted”
 Robert Grimm (via email to Christopher Chapman & Josh Hadley)

 Recommended UTC actions

 1. Action Item for Josh Hadley, PAG: update Section 6.3 of UAX #29 with improved wording about
 converting grapheme cluster rules into regular expressions, for Unicode 16.0. See L2/23-234 item 5.2.

 Feedback (verbatim)

 I've spent the last month or so building a tool to better visualize fixed-width rendering of Unicode,
 https://github.com/apparebit/demicode. As part of the effort, I implemented the grapheme cluster break

 11

 algorithm from TR 29 and discovered a bug in the handling of CR NL. Yesterday, I drafted a longer explanation
 of that bug, but today I discovered your draft revisions for 15.1. So I'm sparing you the explanation :)

 Alas, I do have a suggestion for improving the exposition of TR29. Section 6.3 starts with the assertion that
 "The rules for grapheme clusters can be easily converted into a regular expression." When I first started
 implementing the grapheme cluster break algorithm, I found that assertion rather frustrating because the
 conversion wasn't obvious or easy to me. I had also hoped for more guidance about how to best implement the
 algorithm and, frankly, was underwhelmed by 6.3 (The approach I ended up taking was to translate the string
 to be broken into grapheme clusters into a string of grapheme cluster break properties represented by a single
 letter each and then use a plain regular expression, in my case Python's re. While the initial overhead isn't
 great, it sure beats having to implement a regex engine.)

 Now that I have an implementation that passes all tests in GraphemeBreakTest.txt (thank you for that file, it
 was super helpful!), I am starting to see how the translation into a regular expression works. But having
 discovered the bug in table 1c myself, I believe that the assertion in 6.3 is plain wrong. It can't be that easy,
 since there was a bug that made it into Unicode 15.0. Given all the review a draft goes through that seems like
 a strong argument against the assertion.

 In short, I'd recommend striking the "easily converted" text and instead maybe add a sentence on the intuition
 behind the translation (nonbreaks are lined up as regular expression sequences) as well as about proven
 implementation strategies. I included mine in parentheses above but am not sure what the best or even a good
 one would be here.

 5.3 Line_Break assignments of U+1F8B0 and U+1F8B1
 From Ned Holbrook, PAG, while reviewing the UCD changes for the Smalltalk proposal.

 Recommended UTC actions

 1. Consensus: Change the Line_Break property of U+1F8B0 ARROW POINTING UPWARDS THEN
 NORTH WEST and U+1F8B1 ARROW POINTING RIGHTWARDS THEN CURVING SOUTH WEST,
 as well as that of all unassigned code points in the Supplemental Arrows C block, from
 Line_Break=Ideographic (ID) to Line_Break=Alphabetic (AL). For Unicode Version 16.0. See L2/23-234
 item 5.3.

 2. Action Item for Robin Leroy, PAG: In LineBreak.txt, change the Line_Break property of U+1F8B0
 ARROW POINTING UPWARDS THEN NORTH WEST and U+1F8B1 ARROW POINTING
 RIGHTWARDS THEN CURVING SOUTH WEST, as well as that of all unassigned code points in the
 Supplemental Arrows C block, from Line_Break=Ideographic (ID) to Line_Break=Alphabetic (AL). For
 Unicode Version 16.0. See L2/23-234 item 5.3.

 3. Action Item for Robin Leroy, PAG: In the description of Line_Break property value Ideographic in UAX
 #14, review the documentation of the ranges that default to lb=ID and correct it as needed. For Unicode
 Version 16.0. See L2/23-234 item 5.3.

 Summary

 U+1F8B0 ARROW POINTING UPWARDS THEN NORTH WEST
 and

 12

 U+1F8B1 ARROW POINTING RIGHTWARDS THEN CURVING SOUTH WEST,
 added in Unicode Version 13.0, are pretty much the only arrows that are LB=ID (and in particular the only ones
 in the supplemental arrows blocks).

 Having consulted with Ken Whistler, this appears to be an oversight in 13.0, the defaults for those blocks being
 weird. We should rectify it.
 We are also going to pick LB=AL for the new 16.0 supplemental arrow from the Smalltalk proposal, instead of
 LB=ID from my and Ken’s initial draft; since the proposal did not specify Line_Break values, this is still at our
 discretion and need not be brought to the attention of the UTC.

 Ken also noted:
 UAX # 14's discussion of ID is incomplete in its statement of which ranges default to lb=ID.

 6. Collation

 6.1 UTS #10 obsolete example v=w
 General feedback

 Recommended UTC actions

 1. Action Item for Markus Scherer, PAG: In UTS #10 section 1.5 Other Applications of Collation, make the
 statement about sorting vs. searching more generic, replacing the v=w example. For Unicode 16.0. See
 L2/23-234 item 6.1.

 Feedback (verbatim)

 Date/Time: Tue Sep 26 05:26:46 CDT 2023
 ReportID: ID20230926052646
 Name: Henri Sivonen
 Report Type: Error Report
 Opt Subject: UTS # 10

 Hi,

 https://www.unicode.org/reports/tr10/tr10-49.html#Other_Applications_of_Collation
 has this sentence: “For example, if v and w are treated as identical
 base letters in Swedish sorting, then they should also be treated the
 same for searching.”

 This example has become obsolete. See
 https://unicode-org.atlassian.net/browse/CLDR-17050 and links backwards
 from there to issues and CLDR changesets concerning both Swedish and
 Finnish search collations.

 (Perhaps it could be mentioned instead that ä and å are primary-distinct
 from a in Swedish.)

 13

 Henri Sivonen

 Background information / discussion

 PAG suggest making the example more generic:
 If two letters are treated as identical base letters for sorting, then those letters should also be treated as
 identical for searching.

 6.2 DUCET contractions with 3+ equivalent sequences
 Markus Scherer & Ken Whistler, PAG

 Recommended UTC actions

 1. Action Item for Ken Whistler, PAG: In the DUCET input file and its tool (unidata.txt & sifter), support at
 least three sequences that are canonically equivalent to a contraction, and add all of the necessary
 sequences for Kirat Rai. For Unicode 16.0. See L2/23-234 item 6.2.

 Summary

 The DUCET input data file includes (mostly) the canonical closure of its mappings. When we create a
 contraction, we need to explicitly list the canonically equivalent sequences. So far, the input data file and the
 internal tool support up to two such sequences. For Kirat Rai U+16D6A vowel sign AU we need at least one
 more.

 7. Security

 7.1 Should the default UTS #39 confusability be bidi-aware?
 From private communication to Robin Leroy, PAG

 Recommended UTC actions

 1. Consensus: In UTS #39, change the definitions of skeleton and confusable to be equivalent to the
 current bidiSkeleton(-, LTR) and LTR-confusable, respectively. For Unicode 16.0. See L2/23-234 item
 7.1.

 2. Action Item for Robin Leroy, PAG: In UTS #39, change the definitions of skeleton and confusable to be
 equivalent to bidiSkeleton(-, LTR) and LTR-confusable, respectively. Use the term internalSkeleton for
 the intermediate operation used in the definition of bidSkeleton and skeleton. For Unicode 16.0. See
 L2/23-234 item 7.1.

 Summary

 In 15.1, UTS #39 has a concept of bidiSkeleton and LTR- and RTL-confusabilities, but it retains the old
 skeleton and (unqualified) confusability.

 14

 However, the old confusability is always wrong when bidirectional considerations are involved: It will have false
 negatives (A1 ש vs. A 1 ש) and false positives (A 1 ש vs. A ש l).
 In sufficiently-strongly-directional single-direction text, the new confusabilities are equivalent to the old one.

 When implementing bidiSkeleton in ICU, the question therefore was brought up of whether the APIs associated
 with ordinary confusability should be made a deprecated aliases of those associated with LTR-confusability.
 Since these operations are defined in UTS #39, this seemed like a matter for UTC/PAG.

 7.2 UAX #31 and UTS #55 should point to D145 and mention the need for
 NFD before toNFKC_Casefold
 Robin Leroy, PAG

 Recommended UTC actions

 1. Action Item for Robin Leroy, PAG: In UAX #31, clarify that comparing identifiers after toNFKC_Casefold
 does not meet UAX #31-R4 with NFKC, and that toNFKC_Casefold∘NFD should be used instead. For
 Unicode Version 16.0. See L2/23-234 item 7.2.

 2. Action Item for Robin Leroy, PAG: In UTS #55, correct the sixth paragraph of Section 3.1.1 to state that
 UAX #31-R4 and UAX #31-R5 is met by comparison after toNFKC_Casefold∘NFD. See L2/23-234 item
 7.2.

 Summary

 ⟨U+03A9, U+0345, U+0313⟩ ᾨ and U+1FA8 ᾨ are canonically equivalent, but

 toNFKC_Casefold(⟨U+03A9, U+0345, U+0313⟩ ᾨ) = ωἰ

 whereas

 toNFKC_Casefold(U+1FA8 ᾨ) = ὠι.

 In order to meet UAX #31-R4 with normalization form KC and UAX #31-R5 with full case folding, it is not
 enough to apply the operation toNFKC_Casefold before comparing the identifiers, contra the sixth paragraph
 of https://www.unicode.org/reports/tr55/#Normalization-Case. This should be mentioned in UAX #31 as it is an
 easy mistake, and UTS #55 should be corrected.

 8. Emoji

 8.1 Proposal to Define Variation Sequences for Emoji Mapped to Legacy
 Computing Symbols
 L2/23-142

 15

 Recommended UTC actions

 1. No Action: PAG recommends no action as it was determined to be moot.

 Summary

 From the document’s background section:

 The character repertoire proposed in L2/21-235r (Bettencourt et al., Proposal to add further
 characters from legacy computers and teletext to the UCS), AKA “Legacy Computing
 Supplement”, unifies a number of different character sets. Symbols from these sets map to
 both newly proposed characters (planned to be released in Unicode 16.0) as well as existing
 code points, some of which are classified as emoji.

 The document proposes adding variation sequences for explicit text vs. emoji style of the existing characters.
 These characters have the Emoji_Presentation property.

 (A similar addition of variation sequences for Emoji_Presentation characters was approved in UTC-173-C29,
 see p. 5 of L2/22-229R.)

 9. Math

 9.1 Incorrect Math Classifications in UTR #25
 General Feedback

 Recommended UTC actions

 1. Action Item for Asmus Freytag, Murray Sargent, and other authors of UTR #25: Revise UTR #25 data
 files and text taking into account feedback ID20230815121059 from David Carlisle. See L2/23-234 item
 9.1.

 Feedback (verbatim)

 Date/Time: Tue Aug 15 12:10:59 CDT 2023
 ReportID: ID20230815121059
 Name: David Carlisle
 Report Type: Error Report
 Opt Subject: TR25 UNICODE SUPPORT FOR MATHEMATICS

 https://unicode.org/reports/tr25/

 Some of the Math Classifications in the MathClass-15 data file associated with
 TR25 seem incorrect.
 https://www.unicode.org/Public/math/revision-15/MathClassEx-15.txt

 23B0;R;⎰;lmoust;ISOAMSC;;UPPER LEFT OR LOWER RIGHT CURLY BRACKET SECTION
 16

 23B1;R;⎱;rmoust;ISOAMSC;;UPPER RIGHT OR LOWER LEFT CURLY BRACKET SECTION
 27C5;R;⟅;;;;LEFT S-SHAPED BAG DELIMITER
 27C6;R;⟆;;;;RIGHT S-SHAPED BAG DELIMITER

 These are classified as R (infix relation, TeX \mathrel) when it would seem more
 appropriate to use O and C (\mathopen \mathclose) which are the assignments currently
 made by LaTeX.

 I'm doing a systematic comparison with LaTeX Unicode-math, there are other differences
 as detailed in this github issue

 wspr/unicode-math#619 (comment)

 However in some of these cases we may choose to change the TeX settings or simply
 document the differences although for example as listed in that issue, TeX traditionally
 makes daggers U+2020 an dU+2021 binary operators (B) not relations (R) which would give
 them more space.

 Background information / discussion

 Add Robin Leroy and David Carlisle as additional authors of UTR #25.
 Ask Asmus Freytag, Murray Sargent to add Robin Leroy and David Carlisle as additional authors of UTR #25.

 10. Authorize proposed updates

 Recommended UTC action

 1. Consensus: Authorize proposed updates of UAX #14, UAX #15, UAX #29, UAX #31, UAX #42, UAX
 #44, UTS #10, and UTS #39, for Unicode 16.0.

 2. Consensus: Authorize proposed updates of UTS #55 and UTR #25.

 17

