
4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 1/40

Technical Reports

Proposed Update Unicode® Standard Annex #31

UNICODE IDENTIFIERS AND SYNTAX
Version Unicode 16.0.0 (draft 2)

Editors Mark Davis (mark@unicode.org) and Robin Leroy
(eggrobin@unicode.org)

Date 2024-02-13

This Version https://www.unicode.org/reports/tr31/tr31-40.html

Previous
Version

https://www.unicode.org/reports/tr31/tr31-39.html

Latest Version https://www.unicode.org/reports/tr31/

Latest
Proposed
Update

https://www.unicode.org/reports/tr31/proposed.html

Revision 40

Summary

This annex describes specifications for recommended defaults for the use of Unicode in
the definitions of general-purpose identifiers, immutable identifiers, hashtag identifiers, and
in pattern-based syntax. It also supplies guidelines for use of normalization with identifiers.

Status

This is a draft document which may be updated, replaced, or superseded by other
documents at any time. Publication does not imply endorsement by the Unicode
Consortium. This is not a stable document; it is inappropriate to cite this document as other
than a work in progress.

A Unicode Standard Annex (UAX) forms an integral part of the Unicode Standard,
but is published online as a separate document. The Unicode Standard may require
conformance to normative content in a Unicode Standard Annex, if so specified in the
Conformance chapter of that version of the Unicode Standard. The version number of
a UAX document corresponds to the version of the Unicode Standard of which it
forms a part.

Please submit corrigenda and other comments with the online reporting form [Feedback].
Related information that is useful in understanding this annex is found in Unicode Standard
Annex #41, “Common References for Unicode Standard Annexes.” For the latest version
of the Unicode Standard, see [Unicode]. For a list of current Unicode Technical Reports,
see [Reports]. For more information about versions of the Unicode Standard, see
[Versions]. For any errata which may apply to this annex, see [Errata].

https://www.unicode.org/
https://www.unicode.org/
https://www.unicode.org/reports/
mailto:mark@unicode.org
mailto:eggrobin@unicode.org
https://www.unicode.org/reports/tr31/tr31-40.html
https://www.unicode.org/reports/tr31/tr31-39.html
https://www.unicode.org/reports/tr31/
https://www.unicode.org/reports/tr31/proposed.html
https://www.unicode.org/reporting.html
https://www.unicode.org/reports/tr41/tr41-32.html
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/
https://www.unicode.org/versions/
https://www.unicode.org/errata/
rick
Text Box
L2/24-114

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 2/40

Contents

1 Introduction
Figure 1. Code Point Categories for Identifier Parsing
1.1 Stability

Table 1. Permitted Changes in Future Versions
1.2 Customization
1.3 Display Format
1.4 Conformance
1.5 Notation

2 Default Identifiers
Table 2. Properties for Lexical Classes for Identifiers
2.1 Combining Marks
2.2 Modifier Letters
2.3 Layout and Format Control Characters
2.4 Specific Character Adjustments

Table 3. Optional Characters for Start
Table 3a. Optional Characters for Medial
Table 3b. Optional Characters for Continue
Table 4. Excluded Scripts
Table 5. Recommended Scripts
Table 6. Aspirational Use Scripts (Withdrawn)
Table 7. Limited Use Scripts

2.5 Backward Compatibility
3 Immutable Identifiers
4 Whitespace and Syntax

4.1 Whitespace
4.1.1 Bidirectional Ordering
4.1.2 Required_Spaces
4.1.3 Contexts for Ignorable Format Controls

4.2 Syntax
4.2.1 User-Defined Operators

4.3 Pattern Syntax
5 Normalization and Case

5.1 NFKC Modifications
5.1.1 Modifications for Characters that Behave Like Combining
Marks
5.1.2 Modifications for Irregularly Decomposing Characters
5.1.3 Identifier Closure Under Normalization

Figure 5. Normalization Closure
Figure 6. Case Closure
Figure 7. Reverse Normalization Closure
Table 8. Compatibility Equivalents to Letters or Decimal
Numbers
Table 9. Canonical Equivalence Exceptions Prior to
Unicode 5.1

5.2 Case and Stability
5.2.1 Edge Cases for Folding

6 Hashtag Identifiers
7 Standard Profiles

7.1 Mathematical Compatibility Notation Profile
7.2 Emoji Profile
7.3 Default Ignorable Exclusion Profile

Acknowledgments

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 3/40

References
Migration
Modifications

1 Introduction

A common task facing an implementer of the Unicode Standard is the provision of a
parsing and/or lexing engine for identifiers, such as programming language variables or
domain names. There are also realms where identifiers need to be defined with an
extended set of characters to align better with what end users expect, such as in hashtags.

To assist in the standard treatment of identifiers in Unicode character-based parsers and
lexical analyzers, a set of specifications is provided here as a basis for parsing identifiers
that contain Unicode characters. These specifications include:

Default Identifiers: a recommended default for the definition of identifiers.
Immutable Identifiers: for environments that need a definition of identifiers that does
not change across versions of Unicode.
Hashtag Identifiers: for identifiers that need a broader set of characters, principally for
hashtags.

These guidelines follow the typical pattern of identifier syntax rules in common
programming languages, by defining an ID_Start class and an ID_Continue class and
using a simple BNF rule for identifiers based on those classes; however, the composition of
those classes is more complex and contains additional types of characters, due to the
universal scope of the Unicode Standard.

This annex also provides guidelines for the use of normalization and case insensitivity with
identifiers, expanding on a section that was originally in Unicode Standard Annex #15,
“Unicode Normalization Forms” [UAX15].

Lexical analysis of computer languages is also concerned with lexical elements other than
identifiers, and with white space and line breaks that separate them. This annex provides
guidelines for the sets of characters that have such lexical significance outside of
identifiers.

The specification in this annex provides a definition of identifiers that is guaranteed to be
backward compatible with each successive release of Unicode, but also allows any
appropriate new Unicode characters to become available in identifiers. In addition, Unicode
character properties for stable pattern syntax are provided. The resulting pattern syntax is
backward compatible and forward compatible over future versions of the Unicode
Standard. These properties can either be used alone or in conjunction with the identifier
characters.

Figure 1 shows the disjoint categories of code points defined in this annex. (The sizes of
the boxes are not to scale.)

Figure 1. Code Point Categories for Identifier Parsing

ID_Start
Characters

Pattern_Syntax
Characters

Unassigned Code Points

ID_Nonstart
Characters

Pattern_White_Space
Characters

https://www.unicode.org/reports/tr41/tr41-32.html#UAX15

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 4/40

Other Assigned
Code Points

The set consisting of the union of ID_Start and ID_Nonstart characters is known as
Identifier Characters and has the property ID_Continue. The ID_Nonstart set is defined as
the set difference ID_Continue minus ID_Start: it is not a formal Unicode property. While
lexical rules are traditionally expressed in terms of the latter, the discussion here is
simplified by referring to disjoint categories.

1.1 Stability

There are certain features that developers can depend on for stability:

Identifier characters, Pattern_Syntax characters, and Pattern_White_Space are
disjoint: they will never overlap.
By definition, the Identifier characters are always a superset of the ID_Start
characters.
The Pattern_Syntax characters and Pattern_White_Space characters are immutable
and will not change over successive versions of Unicode.
The ID_Start and ID_Nonstart characters may grow over time, either by the addition
of new characters provided in a future version of Unicode or (in rare cases) by the
addition of characters that were in Other.

In successive versions of Unicode, the only allowed changes of characters from one of the
above classes to another are those listed with a plus sign (+) in Table 1.

Table 1. Permitted Changes in Future Versions

 ID_Start ID_Nonstart Other Assigned

Unassigned + + +
Other Assigned + +

ID_Nonstart +

The Unicode Consortium has formally adopted a stability policy on identifiers. For more
information, see [Stability].

1.2 Customization

Each programming language standard has its own identifier syntax; different programming
languages have different conventions for the use of certain characters such as $, @, #,
and _ in identifiers. To extend such a syntax to cover the full behavior of a Unicode
implementation, implementers may combine those specific rules with the syntax and
properties provided here.

Each programming language can define its identifier syntax as relative to the Unicode
identifier syntax, such as saying that identifiers are defined by the Unicode properties, with
the addition of “$”. By addition or subtraction of a small set of language specific characters,
a programming language standard can easily track a growing repertoire of Unicode
characters in a compatible way. See also Section 2.5, Backward Compatibility.

https://www.unicode.org/reports/tr41/tr41-32.html#Stability

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 5/40

Similarly, each programming language can define its own whitespace characters or syntax
characters relative to the Unicode Pattern_White_Space or Pattern_Syntax characters,
with some specified set of additions or subtractions.

Systems that want to extend identifiers to encompass words used in natural languages, or
narrow identifiers for security may do so as described in Section 2.3, Layout and Format
Control Characters, Section 2.4, Specific Character Adjustments, and Section 5,
Normalization and Case.

To preserve the disjoint nature of the categories illustrated in Figure 1, any character added
to one of the categories must be subtracted from the others.

Note: In many cases there are important security implications that may require
additional constraints on identifiers. For more information, see [UTR36].

1.3 Display Format

Implementations may use a format for displaying identifiers that differs from the internal
form used to compare identifiers. For example, an implementation might display what the
user has entered, but use a normalized format for comparison. Examples of this include:

Case. The display format retains case differences, but the comparison format erases
them by using Case_Folding. Thus “A” and its lowercase variant “a” would be treated
as the same identifier internally, even though they may have been input differently
and may display differently.

Variants. The display format retains variant distinctions, such as halfwidth versus
fullwidth forms, or between variation sequences and their base characters, but the
comparison format erases them by using NFKC_Case_Folding. Thus “A” and its full-
width variant “Ａ” would be treated as the same identifier internally, even though they
may have been input differently and may display differently.

For an example of the use of display versus comparison formats see UTS #46: Unicode
IDNA Compatibility Processing [UTS46]. For more information about normalization and
case in identifiers see Section 5, Normalization and Case.

1.4 Conformance

The following describes the possible ways that an implementation can claim conformance
to this specification.

UAX31-C1. An implementation claiming conformance to this specification shall identify the
version of this specification.

Note: An implementation can make use of the property-based definitions from a
specific version of this specification with property assignments from an unversioned
reference to the Unicode Character Database. In this case, the implementation
should specify a minimum version of Unicode for the properties.

UAX31-C2. An implementation claiming conformance to this specification shall describe
which of the following requirements it observes:

R1. Default Identifiers
R1b. Stable Identifiers

https://www.unicode.org/reports/tr41/tr41-32.html#UTR36
https://www.unicode.org/reports/tr41/tr41-32.html#UTS46

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 6/40

R2. Immutable Identifiers
R3. Pattern_White_Space and Pattern_Syntax Characters
R3a. Pattern_White_Space Characters
R3b. Pattern_Syntax Characters
R3c. Operator Identifiers
R4. Equivalent Normalized Identifiers
R5. Equivalent Case-Insensitive Identifiers
R6. Filtered Normalized Identifiers
R7. Filtered Case-Insensitive Identifiers
R8. Hashtag Identifiers

Note: Requirement R1a has been removed. The characters that were added when
meeting this requirement are now part of the default; the contextual checks required
by this requirement remain as part of the General Security Profile in Unicode
Technical Standard #39, “Unicode Security Mechanisms” [UTS39].

Note: Meeting requirement R3 is equivalent to meeting requirements R3a and R3b.

1.5 Notation

This annex uses UnicodeSet notation to illustrate the derivation of some properties or sets
of characters. This notation is defined in the “Unicode Sets” section of UTS #35, Unicode
Locale Data Markup Language [UTS35].

2 Default Identifiers

The formal syntax provided here captures the general intent that an identifier consists of a
string of characters beginning with a letter or an ideograph, and followed by any number of
letters, ideographs, digits, or underscores. It provides a definition of identifiers that is
guaranteed to be backward compatible with each successive release of Unicode, but also
adds any appropriate new Unicode characters.

The formulations allow for extensions, also known as profiles. That is, the particular set of
code points or sequences of code points for each category used by the syntax can be
customized according to the requirements of the environment. Profiles are described as
additions to or removals from the categories used by the syntax. They can thus be
combined, provided that there are no conflicts (whereby one profile adds a character and
another removes it), or that the resolution of such conflicts is specified.

If such extensions include characters from Pattern_White_Space or Pattern_Syntax, then
such identifiers do not conform to an unmodified UAX31-R3 Pattern_White_Space and
Pattern_Syntax Characters. However, such extensions may often be necessary. For
example, Java and C++ identifiers include ‘$’, which is a Pattern_Syntax character.

UAX31-D1. Default Identifier Syntax:

<Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*

Identifiers are defined by assigning the sets of lexical classes defined as properties in the
Unicode Character Database [UAX44]. These properties are shown in Table 2. The first
column shows the property name, whose values are defined in the UCD. The second
column provides a general description of the coverage for the associated class, the

https://www.unicode.org/reports/tr41/tr41-32.html#UTS39
https://www.unicode.org/reports/tr35/#Unicode_Sets
https://www.unicode.org/reports/tr41/tr41-32.html#UTS35
https://www.unicode.org/reports/tr41/tr41-32.html#UAX44

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 7/40

derivational relationship between the ID properties and the XID properties, and an
associated UnicodeSet notation for the class.

Table 2. Properties for Lexical Classes for Identifiers

Properties General Description of Coverage
ID_Start ID_Start characters are derived from the Unicode General_Category of

uppercase letters, lowercase letters, titlecase letters, modifier letters, other
letters, letter numbers, plus Other_ID_Start, minus Pattern_Syntax and
Pattern_White_Space code points.

In UnicodeSet notation:
[\p{L}\p{Nl}\p{Other_ID_Start}-\p{Pattern_Syntax}-
\p{Pattern_White_Space}]

XID_Start XID_Start characters are derived from ID_Start as per Section 5.1, NFKC
Modifications.

ID_Continue ID_Continue characters include ID_Start characters, plus characters having
the Unicode General_Category of nonspacing marks, spacing combining
marks, decimal number, connector punctuation, plus Other_ID_Continue,
minus Pattern_Syntax and Pattern_White_Space code points.

In UnicodeSet notation:
[\p{ID_Start}\p{Mn}\p{Mc}\p{Nd}\p{Pc}\p{Other_ID_Continue}-
\p{Pattern_Syntax}-\p{Pattern_White_Space}]

XID_Continue XID_Continue characters are derived from ID_Continue as per Section 5.1,
NFKC Modifications.

XID_Continue characters are also known simply as Identifier Characters,
because they are a superset of the XID_Start characters.

Note that “other letters” includes ideographs. For more about the stability extensions, see
Section 2.5 Backward Compatibility.

The innovations in the identifier syntax to cover the Unicode Standard include the
following:

Incorporation of proper handling of combining marks.
Allowance for layout and format control characters, which should be ignored when
parsing identifiers.

The XID_Start and XID_Continue properties are improved lexical classes that incorporate
the changes described in Section 5.1, NFKC Modifications. They are recommended for
most purposes, especially for security, over the original ID_Start and ID_Continue
properties.

UAX31-R1. Default Identifiers: To meet this requirement, to determine whether a string is
an identifier an implementation shall choose either UAX31-R1-1 or UAX31-R1-2.

UAX31-R1-1. Use definition UAX31-D1, setting Start and Continue to the properties
XID_Start and XID_Continue, respectively, and leaving Medial empty.

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 8/40

UAX31-R1-2. Declare that it uses a profile of UAX31-R1-1 and define that profile with a
precise specification of the characters and character sequences that are added to or
removed from Start, Continue, and Medial and/or provide a list of additional constraints on
identifiers.

Note: Such a specification may incorporate a reference to one or more of the
standard profiles described in Section 7, Standard Profiles.

One such profile may be to use the contents of ID_Start and ID_Continue in place of
XID_Start and XID_Continue, for backward compatibility.

Another such profile would be to include some set of the optional characters, for example:

Start := XID_Start, plus some characters from Table 3
Continue := Start + XID_Continue, plus some characters from Table 3b
Medial := some characters from Table 3a

Note: Characters in the Medial class must not overlap with those in either the Start or
Continue classes. Thus, any characters added to the Medial class from Table 3a
must be be checked to ensure they do not also occur in either the newly defined Start
class or Continue class.

Beyond such minor modifications, profiles could also be used to significantly extend the
character set available in identifiers. In so doing, care must be taken not to unintentionally
include undesired characters, or to violate important invariants.

An implementation should be careful when adding a property-based set to a profile.

For example, consider a profile that adds subscript and superscript digits and operators in
order to support technical notations, such as:

Context Example Identifier

Assyriology dun₃⁺

Chemistry Ca²⁺_concentration

Mathematics xₖ₊₁ or f⁽⁴⁾

Phonetics daan⁶

That profile may be described as adding the following set to XID_Continue:

[⁽₍⁾₎⁺₊⁼₌⁻₋⁰₀¹₁²₂³₃⁴₄⁵₅⁶₆⁷₇⁸₈⁹₉].

Note: The above list is for illustration only. A standard profile is provided to support
the use of Mathematical Compatibility Notation Profile in identifiers. See Section 7.1,
Mathematical Compatibility Notation Profile.

If, instead of listing these characters explicitly, the profile had chosen to use properties or
combinations of properties, that might result in including undesired characters.

For example, \p{General_Category=Other_Number} is the general category set containing the
subscript and superscript digits. But it also includes the compatibility characters [⑴ 🄂 ⒈],

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 9/40

which are not needed for technical notations, and are very likely inappropriate for identifiers
—on multiple counts.

On the other hand, a language that allows currency symbols in identifiers could have
\p{General_Category=Currency_Symbol} as a profile, since that property matches the intent.

Similarly, a profile based on adding entire blocks is likely to include unintended characters,
or to miss ones that are desired. For the use of blocks see Annex A, Character Blocks, in
[UTS18].

Defining a profile by use of a property also needs to take account of the fact that unless the
property is designed to be stable (such as XID_Continue), code points could be removed in
a future version of Unicode. If the profile also needs stable identifiers (backwards
compatible), then it must take additional measures. See UAX31-R1b Stable Identifiers.

Implementations that require identifier closure under normalization should ensure that any
custom profile preserves identifier closure under the chosen normalization form. See
Section 5.1.3, Identifier Closure Under Normalization. The example cited above regarding
subscripts and superscripts preserves identifier closure under Normalization Forms C and
D, but not under Forms KC and KD. Under NFKC and NFKD, the subscript and superscript
parentheses and operators normalize to their ASCII counterparts. If an implementation that
uses this profile relies on identifier closure under normalization, it should conform to
UAX31-R4 using NFC, not NFKC.

Note: While default identifiers are less open-ended than immutable identifiers, they
are still subject to spoofing issues arising from invisible characters, visually identical
characters, or bidirectional reordering causing distinct sequences to appear in the
same order. Where spoofing concerns are relevant, the mechanisms described in
Unicode Technical Standard #39, “Unicode Security Mechanisms” [UTS39], should
be used. For the specific case of programming languages and programming
environments, recommendations are provided in Unicode Technical Standard #55,
“Unicode Source Code Handling” [UTS55].

UAX31-R1a. Restricted Format Characters: This clause has been removed.

The characters that were added when meeting this requirement are now part of the default;
the contextual checks required by this requirement remain as part of the General Security
Profile in Unicode Technical Standard #39, “Unicode Security Mechanisms” [UTS39].

UAX31-R1b. Stable Identifiers: To meet this requirement, an implementation shall
guarantee that identifiers are stable across versions of the Unicode Standard: that is, once
a string qualifies as an identifier, it does so in all future versions of the Unicode Standard.

Note: The UAX31-R1b requirement is relevant when an identifier definition is based
on property assignments from an unversioned reference to the Unicode Standard, as
property assignments may change in a future version of the standard. It is typically
achieved by using a small list of characters that qualified as identifier characters in
some previous version of Unicode. See Section 2.5, Backward Compatibility. Where
profiles are allowed, management of those profiles may also be required to
guarantee backwards compatibility. Typically such management also uses a list of
characters that qualified previously. Because of the stability policy [Stability], if an
implementation meets either requirement UAX31-R1 or UAX31-R2 without declaring
a profile, that implementation also meets requirement UAX31-R1b.

https://www.unicode.org/reports/tr41/tr41-32.html#UTS18
https://www.unicode.org/reports/tr41/tr41-32.html#UTS39
https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UTS39
https://www.unicode.org/reports/tr41/tr41-32.html#Stability

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 10/40

Example: Consider an identifier definition which uses UAX31-R1 default identifiers
with a profile that adds digits (characters with General_Category=Nd) to the set Start,
and uses an unversioned reference to the Unicode Character Database, with a
minimum version of 5.2.0.

With property assignments from Unicode Version 5.2.0, both ᧚ (U+19DA) and A᧚
(U+0041, U+19DA) are valid identifiers under this definition: U+19DA has
General_Category=Nd.

In Unicode Version 6.0.0, U+19DA has General_Category=No. The identifier A᧚
(U+0041, U+19DA) remains valid, because XID_Continue includes any characters
that used to be XID_Continue. However, ᧚ is not a valid identifier, because U+19DA is
no longer in the set [:Nd:].

In order to meet requirement UAX31-R1b, the definition would need to be changed to
add to the set Start all characters that have the property General_Category=Nd in
any version of Unicode starting from Unicode 5.2.0 and up to the version used by the
implementation.

2.1 Combining Marks

Combining marks are accounted for in identifier syntax: a composed character sequence
consisting of a base character followed by any number of combining marks is valid in an
identifier. Combining marks are required in the representation of many languages, and the
conformance rules in Chapter 3, Conformance, of [Unicode] require the interpretation of
canonical-equivalent character sequences. The simplest way to do this is to require
identifiers in the NFC format (or transform them into that format); see Section 5,
Normalization and Case.

Enclosing combining marks (such as U+20DD..U+20E0) are excluded from the definition of
the lexical class ID_Continue, because the composite characters that result from their
composition with letters are themselves not normally considered valid constituents of these
identifiers.

2.2 Modifier Letters

Modifier letters (General_Category=Lm) are also included in the definition of the syntax
classes for identifiers. Modifier letters are often part of natural language orthographies and
are useful for making word-like identifiers in formal languages. On the other hand, modifier
symbols (General_Category=Sk), which are seldom a part of language orthographies, are
excluded from identifiers. For more discussion of modifier letters and how they function,
see [Unicode].

Implementations that tailor identifier syntax for special purposes may wish to take special
note of modifier letters, as in some cases modifier letters have appearances, such as
raised commas, which may be confused with common syntax characters such as quotation
marks.

2.3 Layout and Format Control Characters

Certain Unicode characters are known as Default_Ignorable_Code_Points. These include
variation selectors and characters used to control joining behavior, bidirectional ordering
control, and alternative formats for display (having the General_Category value of Cf). The
use of default-ignorable characters in identifiers is problematic, first because the effects
they represent are stylistic or otherwise out of scope for identifiers, and second because

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 11/40

the characters themselves often have no visible display. It is also possible to misapply
these characters such that users can create strings that look the same but actually contain
different characters, which can create security problems. In environments where spoofing
concerns are paramount, such as top-level domain names, identifiers should also be
limited to characters that are case-folded and normalized with the NFKC_Casefold
operation. For more information, see Section 5, Normalization and Case and UTR #36:
Unicode Security Considerations [UTR36].

While not all Default_Ignorable_Code_Points are in XID_Continue, the variation selectors
and joining controls are included in XID_Continue. These variation selectors are used in
standardized variation sequences, sequences from the Ideographic Variation Database,
and emoji variation sequences. The joining controls are used in the orthographies of some
languages, as well as in emoji ZWJ sequences. However, these characters are subject to
the same considerations as other Default_Ignorable_Code_Points listed above. Because
variation selectors and joining controls request a difference in display but do not guarantee
it, they do not work well in general-purpose identifiers. A profile should be used to remove
them from general-purpose identifiers (along with other Default_Ignorable_Code_Points),
unless their use is required in a particular domain, such as in a profile that includes emoji.
For such a profile it may be useful to explicitly retain or even add certain
Default_Ignorable_Code_Points in the identifier syntax.

For programming language identifiers, spoofing issues are more comprehensively
addressed by higher-level diagnostics rather than at the syntactic level. See Unicode
Technical Standard #55, “Unicode Source Code Handling” [UTS55].

Comparison. In any environment where the display form for identifiers differs from the
form used to compare them, Default_Ignorable_Code_Points should be ignored for
comparison. For example, this applies to case-insensitive identifiers. For more information,
see Section 1.3, Display Format.

Notes:

An implementation of UAX31-R4 and UAX31-R5 (Equivalent Case and
Compatibility-Insensitive Identifiers) that uses compares identifiers under the
identifier caseless match defined by D147 [Unicode], that is, canonical
decomposition (NFD) followed by the toNFKC_Casefold operation for
comparison , ignores Default_Ignorable_Code_Points.
The Default_Ignorable_Code_Point property values are not guaranteed to be
stable. However, the derivation of the NFKC_Casefold property will be
changed if necessary to ensure that it remains stable for default identifiers. That
means that if the toNFKC_Casefold operation applied to a string with only
characters in XID_Continue in a version of Unicode will have the same results
in any future version of Unicode.

In addition, a standard profile is provided to exclude all Default_Ignorable_Code_Points;
see Section 7, Standard Profiles. Note however that, even if
Default_Ignorable_Code_Points are excluded, spoofing issues remain unless the
mechanisms in Unicode Technical Standard #39, “Unicode Security Mechanisms” [UTS39]
are utilized.

The General Security Profile defined in Section 3.1, General Security Profile for Identifiers,
in UTS #39, Unicode Security Mechanisms [UTS39], excludes all
Default_Ignorable_Code_Points by default, including variation selectors.

https://www.unicode.org/reports/tr41/tr41-32.html#UTR36
https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#UTS39
https://www.unicode.org/reports/tr41/tr41-32.html#UTS39

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 12/40

2.4 Specific Character Adjustments

Specific identifier syntaxes can be treated as tailorings (or profiles) of the generic syntax
based on character properties. For example, SQL identifiers allow an underscore as an
identifier continue, but not as an identifier start; C identifiers allow an underscore as either
an identifier continue or an identifier start. Specific languages may also want to exclude the
characters that have a Decomposition_Type other than Canonical or None, or to exclude
some subset of those, such as those with a Decomposition_Type equal to Font.

There are circumstances in which identifiers are expected to more fully encompass words
or phrases used in natural languages. For example, it is recommended that U+00B7 (·)
MIDDLE DOT be allowed in medial positions in natural-language identifiers such as
hashtags or search terms, because it is required for grammatical Catalan. For related
issues about MIDDLE DOT, see Section 5, Normalization and Case.

For more natural-language identifiers, a profile should allow the characters in Table 3,
Table 3a, and Table 3b in identifiers, unless there are compelling reasons not to. Most
additions to identifiers are restricted to medial positions, such as U+00B7 (·) MIDDLE
DOT, which is not needed as a trailing character in Catalan. These are listed in Table 3a. A
few characters can also occur in final positions, and are listed in Table 3b. The contents of
these tables may overlap.

In some environments even spaces and @ are allowed in identifiers, such as in SQL:
SELECT * FROM Employee Pension.

Table 3. Optional Characters for Start

Code Point Character Name

0024 $ DOLLAR SIGN

005F _ LOW LINE

Table 3a. Optional Characters for Medial

Code Point Character Name

0027 ' APOSTROPHE

002D - HYPHEN-MINUS

002E . FULL STOP

003A : COLON

00B7 · MIDDLE DOT

058A ֊ ARMENIAN HYPHEN

05F4 ״ HEBREW PUNCTUATION GERSHAYIM

0F0B ་ TIBETAN MARK INTERSYLLABIC TSHEG

2010 ‐ HYPHEN

2019 ’ RIGHT SINGLE QUOTATION MARK

2027 ‧ HYPHENATION POINT

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 13/40

30A0 ゠ KATAKANA-HIRAGANA DOUBLE HYPHEN

Table 3b. Optional Characters for Continue

Code Point Character Name

05F3 ׳ HEBREW PUNCTUATION GERESH

In UnicodeSet notation, the characters in these tables are:

Table 3: [\$_]
Table 3a: ['\-.\:֊״་‐’‧゠・]
Table 3b: [׳]

In identifiers that allow for unnormalized characters, the compatibility equivalents of the
characters listed in Table 3, Table 3a, and Table 3b may also be appropriate.

For more information on characters that may occur in words, and those that may be used
in name validation, see Section 4, Word Boundaries, in [UAX29].

Some scripts are not in customary modern use, and thus implementations may want to
exclude them from identifiers. These include historic and obsolete scripts, scripts used
mostly liturgically, and regional scripts used only in very small communities or with very
limited current usage. Some scripts also have unresolved architectural issues that make
them currently unsuitable for identifiers. The scripts in Table 4, Excluded Scripts are
recommended for exclusion from identifiers.

Table 4. Excluded Scripts

Property Notation Description
\p{script=Aghb} Caucasian Albanian
\p{script=Ahom} Ahom
\p{script=Armi} Imperial Aramaic
\p{script=Avst} Avestan
\p{script=Bass} Bassa Vah
\p{script=Bhks} Bhaiksuki
\p{script=Brah} Brahmi
\p{script=Bugi} Buginese
\p{script=Buhd} Buhid
\p{script=Cari} Carian
\p{script=Chrs} Chorasmian
\p{script=Copt} Coptic
\p{script=Cpmn} Cypro-Minoan
\p{script=Cprt} Cypriot

https://www.unicode.org/reports/tr41/tr41-32.html#UAX29

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 14/40

\p{script=Diak} Dives Akuru
\p{script=Dogr} Dogra
\p{script=Dsrt} Deseret
\p{script=Dupl} Duployan
\p{script=Egyp} Egyptian Hieroglyphs
\p{script=Elba} Elbasan
\p{script=Elym} Elymaic
\p{script=Glag} Glagolitic
\p{script=Gong} Gunjala Gondi
\p{script=Gonm} Masaram Gondi
\p{script=Goth} Gothic
\p{script=Gran} Grantha
\p{script=Hano} Hanunoo
\p{script=Hatr} Hatran
\p{script=Hluw} Anatolian Hieroglyphs
\p{script=Hmng} Pahawh Hmong
\p{script=Hung} Old Hungarian
\p{script=Ital} Old Italic
\p{script=Kawi} Kawi
\p{script=Khar} Kharoshthi
\p{script=Khoj} Khojki
\p{script=Kits} Khitan Small Script
\p{script=Kthi} Kaithi
\p{script=Lina} Linear A
\p{script=Linb} Linear B
\p{script=Lyci} Lycian
\p{script=Lydi} Lydian
\p{script=Maka} Makasar
\p{script=Mahj} Mahajani
\p{script=Mani} Manichaean
\p{script=Marc} Marchen
\p{script=Medf} Medefaidrin
\p{script=Mend} Mende Kikakui

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 15/40

\p{script=Merc} Meroitic Cursive
\p{script=Mero} Meroitic Hieroglyphs
\p{script=Modi} Modi
\p{script=Mong} Mongolian
\p{script=Mroo} Mro
\p{script=Mult} Multani
\p{script=Nagm} Nag Mundari
\p{script=Narb} Old North Arabian
\p{script=Nand} Nandinagari
\p{script=Nbat} Nabataean
\p{script=Nshu} Nushu
\p{script=Ogam} Ogham
\p{script=Orkh} Old Turkic
\p{script=Osma} Osmanya
\p{script=Ougr} Old Uyghur
\p{script=Palm} Palmyrene
\p{script=Pauc} Pau Cin Hau
\p{script=Perm} Old Permic
\p{script=Phag} Phags-pa
\p{script=Phli} Inscriptional Pahlavi
\p{script=Phlp} Psalter Pahlavi
\p{script=Phnx} Phoenician
\p{script=Prti} Inscriptional Parthian
\p{script=Rjng} Rejang
\p{script=Runr} Runic
\p{script=Samr} Samaritan
\p{script=Sarb} Old South Arabian
\p{script=Sgnw} SignWriting
\p{script=Shaw} Shavian
\p{script=Shrd} Sharada
\p{script=Sidd} Siddham
\p{script=Sind} Khudawadi
\p{script=Sora} Sora Sompeng

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 16/40

\p{script=Sogd} Sogdian
\p{script=Sogo} Old Sogdian
\p{script=Soyo} Soyombo
\p{script=Tagb} Tagbanwa
\p{script=Takr} Takri
\p{script=Tang} Tangut
\p{script=Tglg} Tagalog
\p{script=Tirh} Tirhuta
\p{script=Tnsa} Tangsa
\p{script=Toto} Toto
\p{script=Ugar} Ugaritic
\p{script=Vith} Vithkuqi
\p{script=Wara} Warang Citi
\p{script=Xpeo} Old Persian
\p{script=Xsux} Cuneiform
\p{script=Yezi} Yezidi
\p{script=Zanb} Zanabazar Square

Some characters used with recommended scripts may still be problematic for identifiers,
for example because they are part of extensions that are not in modern customary use,
and thus implementations may want to exclude them from identifiers. These include
characters for historic and obsolete orthographies, characters used mostly liturgically, and
in orthographies for languages used only in very small communities or with very limited
current or declining usage. Some characters also have architectural issues that may make
them unsuitable for identifiers. See UTS #39, Unicode Security Mechanisms [UTS39] for
more information.

The scripts listed in Table 5, Recommended Scripts are generally recommended for use in
identifiers. These are in widespread modern customary use, or are regional scripts in
modern customary use by large communities.

Table 5. Recommended Scripts

Property Notation Description
\p{script=Zyyy} Common
\p{script=Zinh} Inherited
\p{script=Arab} Arabic
\p{script=Armn} Armenian
\p{script=Beng} Bengali
\p{script=Bopo} Bopomofo

https://www.unicode.org/reports/tr41/tr41-32.html#UTS39

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 17/40

\p{script=Cyrl} Cyrillic
\p{script=Deva} Devanagari
\p{script=Ethi} Ethiopic
\p{script=Geor} Georgian
\p{script=Grek} Greek
\p{script=Gujr} Gujarati
\p{script=Guru} Gurmukhi
\p{script=Hang} Hangul
\p{script=Hani} Han
\p{script=Hebr} Hebrew
\p{script=Hira} Hiragana
\p{script=Kana} Katakana
\p{script=Knda} Kannada
\p{script=Khmr} Khmer
\p{script=Laoo} Lao
\p{script=Latn} Latin
\p{script=Mlym} Malayalam
\p{script=Mymr} Myanmar
\p{script=Orya} Oriya
\p{script=Sinh} Sinhala
\p{script=Taml} Tamil
\p{script=Telu} Telugu
\p{script=Thaa} Thaana
\p{script=Thai} Thai
\p{script=Tibt} Tibetan

As of Unicode 10.0, there is no longer a distinction between aspirational use and limited
use scripts, as this has not proven to be productive for the derivation of identifier-related
classes used in security profiles. (See UTS #39, Unicode Security Mechanisms [UTS39].)
Thus the aspirational use scripts in Table 6, Aspirational Use Scripts have been
recategorized as Limited Use and moved to Table 7, Limited Use Scripts.

Table 6. Aspirational Use Scripts (Withdrawn)

Property Notation Description

intentionally blank

https://www.unicode.org/reports/tr41/tr41-32.html#UTS39

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 18/40

Modern scripts that are in more limited use are listed in Table 7, Limited Use Scripts. To
avoid security issues, some implementations may wish to disallow the limited-use scripts in
identifiers. For more information on usage, see the Unicode Locale project [CLDR].

Table 7. Limited Use Scripts

Property Notation Description
\p{script=Adlm} Adlam
\p{script=Bali} Balinese
\p{script=Bamu} Bamum
\p{script=Batk} Batak
\p{script=Cakm} Chakma
\p{script=Cans} Canadian Aboriginal Syllabics
\p{script=Cham} Cham
\p{script=Cher} Cherokee
\p{script=Hmnp} Nyiakeng Puachue Hmong
\p{script=Java} Javanese
\p{script=Kali} Kayah Li
\p{script=Lana} Tai Tham
\p{script=Lepc} Lepcha
\p{script=Limb} Limbu
\p{script=Lisu} Lisu
\p{script=Mand} Mandaic
\p{script=Mtei} Meetei Mayek
\p{script=Newa} Newa
\p{script=Nkoo} Nko
\p{script=Olck} Ol Chiki
\p{script=Osge} Osage
\p{script=Plrd} Miao
\p{script=Rohg} Hanifi Rohingya
\p{script=Saur} Saurashtra
\p{script=Sund} Sundanese
\p{script=Sylo} Syloti Nagri
\p{script=Syrc} Syriac
\p{script=Tale} Tai Le
\p{script=Talu} New Tai Lue

https://www.unicode.org/reports/tr41/tr41-32.html#CLDR

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 19/40

\p{script=Tavt} Tai Viet
\p{script=Tfng} Tifinagh
\p{script=Vaii} Vai
\p{script=Wcho} Wancho
\p{script=Yiii} Yi

This is the recommendation as of the current version of Unicode; as new scripts are added
to future versions of Unicode, characters and scripts may be added to Tables 4, 5, and 7.
Characters may also be moved from one table to another as more information becomes
available.

There are a few special cases:

The Common and Inherited script values [\p{script=Zyyy}\p{script=Zinh}] are used
widely with other scripts, rather than being scripts per se. See also the
Script_Extensions property in the Unicode Character Database [UAX44].
The Unknown script \p{script=Zzzz} is used for Unassigned characters.
Braille \p{script=Brai} consists only of symbols
Katakana_Or_Hiragana \p{script=Hrkt} is empty. This value was used in earlier
versions, but is no longer used.
With respect to the scripts Balinese, Cham, Ol Chiki, Vai, Kayah Li, and Saurashtra,
there may be large communities of people speaking an associated language, but the
script itself is not in widespread use. However, there are significant revival efforts.
Bopomofo is used primarily in education.

For programming language identifiers, normalization and case have a number of important
implications. For a discussion of these issues, see Section 5, Normalization and Case.

2.5 Backward Compatibility

Unicode General_Category values are kept as stable as possible, but they can change
across versions of the Unicode Standard. The bulk of the characters having a given value
are determined by other properties, and the coverage expands in the future according to
the assignment of those properties. In addition, the Other_ID_Start property provides a
small list of characters that qualified as ID_Start characters in some previous version of
Unicode solely on the basis of their General_Category properties, but that no longer qualify
in the current version.

The Other_ID_Start property includes characters such as the following:

U+2118 (℘) SCRIPT CAPITAL P
U+212E (℮) ESTIMATED SYMBOL
U+309B (゛) KATAKANA-HIRAGANA VOICED SOUND MARK
U+309C (゜) KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK

Similarly, the Other_ID_Continue property adds a small list of characters that qualified as
ID_Continue characters in some previous version of Unicode solely on the basis of their
General_Category properties, but that no longer qualify in the current version.

The Other_ID_Continue property includes characters such as the following:

https://www.unicode.org/reports/tr41/tr41-32.html#UAX44

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 20/40

U+1369 ETHIOPIC DIGIT ONE...U+1371 ETHIOPIC DIGIT NINE
U+00B7 (·) MIDDLE DOT
U+0387 (·) GREEK ANO TELEIA
U+19DA (᧚) NEW TAI LUE THAM DIGIT ONE

The exact list of characters covered by the Other_ID_Start and Other_ID_Continue
properties depends on the version of Unicode. For more information, see Unicode
Standard Annex #44, “Unicode Character Database” [UAX44].

The Other_ID_Start and Other_ID_Continue properties are thus designed to ensure that
the Unicode identifier specification is backward compatible. Any sequence of characters
that qualified as an identifier in some version of Unicode will continue to qualify as an
identifier in future versions.

If a specification tailors the Unicode recommendations for identifiers, then this technique
can also be used to maintain backwards compatibility across versions.

3 Immutable Identifiers

The disadvantage of working with the lexical classes defined previously is the storage
space needed for the detailed definitions, plus the fact that with each new version of the
Unicode Standard new characters are added, which an existing parser would not be able
to recognize. In other words, the recommendations based on that table are not upwardly
compatible.

This problem can be addressed by turning the question around. Instead of defining the set
of code points that are allowed, define a small, fixed set of code points that are reserved
for syntactic use and allow everything else (including unassigned code points) as part of an
identifier. All parsers written to this specification would behave the same way for all
versions of the Unicode Standard, because the classification of code points is fixed forever.

The drawback of this method is that it allows “nonsense” to be part of identifiers because
the concerns of lexical classification and of human intelligibility are separated. Human
intelligibility can, however, be addressed by other means, such as usage guidelines that
encourage a restriction to meaningful terms for identifiers. For an example of such
guidelines, see the XML specification by the W3C, Version 1.0 5th Edition or later [XML].

By increasing the set of disallowed characters, a reasonably intuitive recommendation for
identifiers can be achieved. This approach uses the full specification of identifier classes,
as of a particular version of the Unicode Standard, and permanently disallows any
characters not recommended in that version for inclusion in identifiers. All code points
unassigned as of that version would be allowed in identifiers, so that any future additions to
the standard would already be accounted for. This approach ensures both upwardly
compatible identifier stability and a reasonable division of characters into those that do and
do not make human sense as part of identifiers.

With or without such fine-tuning, such a compromise approach still incurs the expense of
implementing large lists of code points. While they no longer change over time, it is a
matter of choice whether the benefit of enforcing somewhat word-like identifiers justifies
their cost.

Alternatively, one can use the properties described below and allow all sequences of
characters to be identifiers that are neither Pattern_Syntax nor Pattern_White_Space. This
has the advantage of simplicity and small tables, but allows many more “unnatural”
identifiers.

https://www.unicode.org/reports/tr41/tr41-32.html#UAX44
https://www.unicode.org/reports/tr41/tr41-32.html#XML

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 21/40

UAX31-R2. Immutable Identifiers: To meet this requirement, an implementation shall
choose either UAX31-R2-1 or UAX31-R2-2.

UAX31-R2-1. Define identifiers to be any non-empty string of characters that contains no
character having any of the following property values:

Pattern_White_Space=True
Pattern_Syntax=True
General_Category=Private_Use, Surrogate, or Control
Noncharacter_Code_Point=True

UAX31-R2-2. Declare that it uses a profile of UAX31-R2-1 and define that profile with a
precise specification of the characters and character sequences that are added to or
removed from the sets of code points defined by these properties and/or provide a list of
additional constraints on identifiers.

Note: The expectation from an implementation meeting requirement UAX31-R2
Immutable Identifiers is that it will never change its definition of identifiers; in
particular, that it will not switch to UAX31-R1 Default Identifiers. However, the
downsides of normalization issues and the inapplicability of measures guarding
against spoofing attacks may warrant such a change in definition. In such
circumstances, a profile should be used to extend XID_Start and XID_Continue to
cover likely existing usages. See Section 3.3, Language Evolution, in Unicode
Technical Standard #55, “Unicode Source Code Handling” [UTS55].

In its profile, a specification can define identifiers to be more in accordance with the
Unicode identifier definitions at the time the profile is adopted, while still allowing for strict
immutability. For example, an implementation adopting a profile after a particular version of
Unicode is released (such as Unicode 5.0) could define the profile as follows:

1. All characters satisfying UAX31-R1 Default Identifiers according to Unicode 5.0
2. Plus all code points unassigned in Unicode 5.0 that do not have the property values

specified in UAX31-R2 Immutable Identifiers.

This technique allows identifiers to have a more natural format—excluding symbols and
punctuation already defined—yet also provides absolute code point immutability.

Immutable identifiers are intended for those cases (like XML) that cannot update across
versions of Unicode, and do not require information about normalization form, or properties
such as General_Category and Script. Immutable identifers that allow unassigned
characters cannot provide for normalization forms or these properties, which means that
they:

cannot be compared for NFC, NFKC, or case-insensitive equality
are unsuitable for restrictions such as those in UTS #39

For best practice, a profile disallowing unassigned characters should be provided where
possible.

Specifications should also include guidelines and recommendations for those creating new
identifiers. Although UAX31-R2 Immutable Identifiers permits a wide range of characters,
as a best practice identifiers should be in the format NFKC, without using any unassigned
characters. For more information on NFKC, see Unicode Standard Annex #15, “Unicode
Normalization Forms” [UAX15].

https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UAX15

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 22/40

4 Whitespace and Syntax

Most programming languages have a concept of whitespace as part of their lexical
structure, as well as some set of characters that are disallowed in identifiers but have
syntactic use, such as arithmetic operators. Beyond general programming languages,
there are also many circumstances where software interprets patterns that are a mixture of
literal characters, whitespace, and syntax characters. Examples include regular
expressions, Java collation rules, Excel or ICU number formats, and many others. In the
past, regular expressions and other formal languages have been forced to use clumsy
combinations of ASCII characters for their syntax. As Unicode becomes ubiquitous, some
of these will start to use non-ASCII characters for their syntax: first as more readable
optional alternatives, then eventually as the standard syntax.

For forward and backward compatibility, it is advantageous to have a fixed set of
whitespace and syntax code points. This follows the recommendations that the Unicode
Consortium has made regarding completely stable identifiers, and the practice that is seen
in XML 1.0, 5th Edition or later [XML]. (In particular, the Unicode Consortium is committed
to not allocating characters suitable for identifiers in the range U+2190..U+2BFF, which is
being used by XML 1.0, 5th Edition.)

As of Unicode 4.1, two Unicode character properties are defined to provide for stable
syntax: Pattern_White_Space and Pattern_Syntax. Particular languages may, of course,
override these recommendations, for example, by adding or removing other characters for
compatibility with ASCII usage.

For stability, the values of these properties are absolutely invariant, not changing with
successive versions of Unicode. Of course, this does not limit the ability of the Unicode
Standard to encode more symbol or whitespace characters, but the default sets of syntax
and whitespace code points recommended for use in computer languages will not change.

UAX31-R3. Pattern_White_Space and Pattern_Syntax Characters: To meet this
requirement, an implementation shall meet both UAX31-R3a and UAX31-R3b.

Note: When meeting requirement UAX31-R3 with no profile, all characters except
those that have the Pattern_White_Space or Pattern_Syntax properties are available
for use in the definition of identifiers or literals.

4.1 Whitespace

Many computer languages treat two categories of whitespace differently: horizontal space
(such as the ASCII horizontal tabulation and space), and line terminators.

When a syntax supports non-ASCII characters, it is useful to consider a third category:
ignorable format controls. Ignorable format controls may be inserted between lexical
elements in order to resolve bidirectional ordering issues, as described in Section 4.1.1,
Bidirectional Ordering. The insertion of these characters does not change the meaning of
the program; in particular, they are not spacing characters. See Section 4.1.2, Required
Spaces.

Note: Allowing for the insertion of ignorable format controls does not prevent
spoofing based on bidirectional reordering. In order to guard against such spoofing,
implementations should make use of the higher-level protocols and conversion to
plain text described in Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”

https://www.unicode.org/reports/tr41/tr41-32.html#XML

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 23/40

[UAX9]. See Unicode Technical Standard #55, “Unicode Source Code Handling”
[UTS55].

Note: Since these characters are allowed only where a boundary would, in their
absence, exist between lexical elements, an implementation could ignore them when
lexing, and then consider as illegal any lexical element that contains them. An
exception must be made for comments and strings, which should be able to freely
contain these characters.

Implementations should also allow these characters in other contexts where reordering
issues could arise. See Unicode Technical Standard #55, “Unicode Source Code Handling”
[UTS55].

UAX31-R3a. Pattern_White_Space Characters: To meet this requirement, an
implementation shall choose either UAX31-R3a-1 or UAX31-R3a-2.

UAX31-R3a-1. Use Pattern_White_Space characters as the set of characters interpreted
as whitespace in parsing, as follows:

1. A sequence of one or more of any of the following characters shall be interpreted as
a sequence of one or more end of line:

a. U+000A (line feed)
b. U+000B (vertical tabulation)
c. U+000C (form feed)
d. U+000D (carriage return)
e. U+0085 (next line)
f. U+2028 LINE SEPARATOR

g. U+2029 PARAGRAPH SEPARATOR
2. The Pattern_White_Space characters with the property

Default_Ignorable_Code_Point shall be treated as ignorable format controls; they
shall be allowed in the contexts UAX31-I1, UAX31-I2, and UAX31-I3 defined in
Section 4.1.3, Contexts for Ignorable Format Controls, where their insertion shall
have no effect on the meaning of the program.

3. All other characters in Pattern_White_Space shall be interpreted as horizontal space.

UAX31-R3a-2. Declare that it uses a profile of UAX31-R3a-1 and define that profile with a
precise specification of the characters that are added to or removed from the set of code
points defined by the Pattern_White_Space property, and of any changes to the criteria
under which a character or sequence of characters is interpreted as an end of line, as
ignorable format controls, or as horizontal space.

Note: The characters to be treated as ignorable format controls under item 2 of
UAX31-R3a-1 are U+200E LEFT-TO-RIGHT MARK and U+200F RIGHT-TO-LEFT
MARK. The characters to be treated as horizontal space under item 3 of UAX31-R3a-
1 are U+0020 SPACE and U+0009 (horizontal tabulation, TAB).

Note: The characters LEFT-TO-RIGHT MARK and RIGHT-TO-LEFT MARK are two
of the Implicit Directional Marks defined by Section 2.6, Implicit Directional Marks, in
Unicode Standard Annex #9, “Unicode Bidirectional Algorithm” [UAX9]. The third one,
ARABIC LETTER MARK, is used far less frequently than the others, even in Arabic
text; its behavior differs subtly from RIGHT-TO-LEFT MARK in ways that are not

https://www.unicode.org/reports/tr41/tr41-32.html#UAX9
https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UAX9

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 24/40

usually relevant to the ordering of source code. If it is added to the set of whitespace
characters by a profile, it is interpreted as an ignorable format control.

Note: Failing to interpret all characters listed in item 1 of UAX31-R3a-1 as line
terminators would lead to spoofing issues; see Unicode Technical Standard #55,
“Unicode Source Code Handling” [UTS55].

4.1.1 Bidirectional Ordering

Requirement UAX31-R3a is relevant even for languages that do not use immutable
identifiers, or that have lexical structure outside of the categories of syntax and whitespace
characters. In particular, the set of Pattern_White_Space characters is chosen to make it
possible to correct bidirectional ordering issues that can arise in a wide range of
programming languages, visually obfuscating the logic of expressions. In the absence of
higher-level protocols (see Section 4.3, Higher-Level Protocols, in [UAX9]), tokens may be
visually reordered by the Unicode Bidi Algorithm in bidirectional source text, producing a
visual result that conveys a different logical intent. To remedy that, two implicit directional
marks are among Pattern_White_Space characters; if these can be freely inserted
between tokens, implicit directional marks consistent with the paragraph direction can be
used to ensure that the visual order of tokens matches their logical order.

Example: Consider the following two lines:

(1) x + tav == 1

(2) x + 1 == תו

Internally, they are the same except that the ASCII identifier tav in line (1) is replaced
by the Hebrew identifier תו in line (2). However, with a plain text display (with left-to-
right paragraph direction) the user will be misled, thinking that line (2) is a
comparison between (x + 1) and תו, whereas it is actually a comparison between (x +
and 1. The misleading rendering of (2) occurs because the directionality of the (תו
identifier תו influences subsequent weakly-directional tokens; inserting a left-to-right
mark after the identifier תו stops it from influencing the remainder of the line, and thus
yields a better rendering in plain text with left-to-right paragraph direction, as
demonstrated in the following table, wherein characters whose ordering is affected by
that identifier have been highlighted.

Underlying Representation Display (LTR paragraph direction)
x + ת ו = = 1 x + 1 == תו

x + ת ו ⟨LRM⟩ = = 1 x + 1 == תו

Section 5.2, Conversion to Plain Text, in Unicode Technical Standard #55, “Unicode
Source Code Handling” [UTS55], specifies an algorithm for the automatic insertion of
LRM characters.

Note: Left-to-right marks are used for this purpose when the main direction is left–to-
right. Correspondingly, right-to-left marks are used when the main direction is right-to-
left.

4.1.2 Required Spaces

https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UAX9
https://www.unicode.org/reports/tr41/tr41-32.html#UTS55

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 25/40

Since the implicit directional marks are nonspacing, where a syntax requires a sequence of
spaces (such as between identifiers), it should require that at least one of those be neither
LEFT-TO-RIGHT MARK nor RIGHT-TO-LEFT MARK. The visual appearance would
otherwise be too confusing to readers: “else⟨LRM⟩if” would be seen by the user as
“elseif” but parsed by the compiler as “else if”, whereas “else⟨LRM⟩ if” would be seen
and parsed as “else if” and be harmless.

4.1.3 Contexts for Ignorable Format Controls

Implementations should at least allow for the insertion of ignorable format controls in the
following contexts, illustrated by examples wherein the ignorable format control is
represented by ⟨LRM⟩.

UAX31-I1. Adjacent to lexical horizontal space (within a sequence of lexical horizontal
spaces, or at the start or end of such a sequence).

Example: Between the following keywords separated by a space:

else ⟨LRM⟩if

Note: The phrase “lexical horizontal space” refers to characters that are not merely in
the set of horizontal space characters, but are also in a context where they are
lexically spaces. For instance, it does not include horizontal space characters in
string literals. Implementations should permit these characters in string literals, but in
such a literal, their insertion has an effect on the meaning of the program, as they are
then present in the string represented by that literal.

UAX31-I2. As optional space, that is, wherever horizontal space could be inserted without
changing the meaning of the program.

Example: Before the plus sign in the following arithmetic expression:

x⟨LRM⟩+1

UAX31-I3. At the start and end of a lexical line.

Example: Before the word import in the following line of Python:

⟨LRM⟩import unicodedata

Note: As is the case for UAX31-I1, the start and end of a “lexical line” in UAX31-I3
does not include the start and end of a line in a multiline string literal, respectively.
This context is distinct from UAX31-I2 in languages where leading or trailing spaces
are meaningful.

4.2 Syntax

The lexical structure of formal languages involves characters that are not allowed in
identifiers and are not whitespace, but that have some special lexical significance other
than being literal characters (such as in string literals) or ignored (such as in comments).
These are referred to in this document as characters with syntactic use.

Examples of characters with syntactic use include:

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 26/40

decimal marks in numeric literals
arithmetic operators, such as +, -, *, /
parentheses and other brackets
characters in comment delimiters, such as #, /*, --, or ⍝
quotation marks delimiting strings
characters such as \ introducing escape sequences

It is useful to bound the set of characters with syntactic use. This makes it possible to build
tools that handle source code, but do not validate it, such as syntax highlighters, in a
forward-compatible way; see Unicode Technical Standard #55, “Unicode Source Code
Handling” [UTS55]. It further provides a stable set of characters that can be used for user-
defined operators. In addition, this allows for backward compatibility of literals (including
patterns), as described in Section 4.3, Pattern Syntax.

UAX31-R3b. Pattern_Syntax Characters: To meet this requirement, an implementation
shall choose either UAX31-R3b-1 or UAX31-R3b-2.

UAX31-R3b-1. Use Pattern_Syntax characters as the set of characters with syntactic use.
The following sets shall be disjoint:

1. characters allowed in identifiers
2. characters treated as whitespace
3. characters with syntactic use

UAX31-R3b-2. Declare that it uses a profile of UAX31-R3b-1 and define that profile with a
precise specification of the characters that are added to or removed from the set of code
points defined by the Pattern_Syntax property.

Note: When meeting requirement UAX31-R3b, characters allowed in identifiers may
be given special significance in the syntax even when they are not part of identifiers.

For instance, in a language which uses the C syntax for hexadecimal literals and
meets requirement UAX31-R1, the literal 0xDEADBEEF consists entirely of identifier
characters, yet the 0x has special significance in the syntax, and the characters after
that prefix are subject to special restrictions (only 0 through 9 and A through F are
allowed).

However, characters outside of those allowed in identifiers, those treated as
whitespace, and the set [:Pattern_Syntax:] cannot be given special significance in the
syntax. For instance, if a language meets requirements UAX31-R1 and UAX31-R3
with no profile and allows for user-defined operators, that language cannot allow the
user to define an operator 🐈.

Characters outside of those allowed in identifiers, those treated as whitespace, and
those with syntactic use can still be allowed in a program, for instance, as part of
string literals or comments.

4.2.1 User-Defined Operators

Some programming languages allow for user-defined operators. When meeting
requirement UAX31-R3b, the set of characters that can be allowed in operators is limited;
however, that leaves open the exact definition of operators. In order to avoid ambiguities in

https://www.unicode.org/reports/tr41/tr41-32.html#UTS55

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 27/40

lexical analysis, operators should not be allowed to contain characters that may be found
at the beginning of an identifier or literal; for instance, +1 or −x should not be operators.

The following definition avoids such interactions with default identifiers and with numbers.

UAX31-R3c. Operator Identifiers: To meet this requirement, an implementation shall
meet requirement UAX31-R3b Pattern_Syntax Characters, and, to determine whether a
string is an operator, it shall choose either UAX31-R3c-1 or UAX31-R3c-2.

UAX31-R3c-1. Use definition UAX31-D1, setting Start to be the set of characters with
syntactic use, setting Continue to be the union of the set of characters with syntactic use
and the set of characters with General_Category Mn, and leaving Medial empty.

UAX31-R3c-2. Declare that it uses a profile of UAX31-R3c-1 and define that profile with a
precise specification of the characters and character sequences that are added to or
removed from Start, Continue, and Medial and/or provide a list of additional constraints on
operators.

Note: The set of Pattern_Syntax characters, which is the default for characters with
syntactic use, contains some emoji. Implementations may wish to remove them,
either to allow for their use in identifiers, or to reduce potential confusion arising from
⚽ being an operator but 🏉 not being one. This may be done using the standard
profile for UAX31-R3b Pattern_Syntax Characters defined in Section 7.2, Emoji
Profile.

Nonspacing marks are included in Continue because they are part of the
representation for many operators, such as some of the negated operators.

Unassigned code points are not characters; they are therefore excluded by this
definition.

When meeting this requirement, a profile is likely to be needed depending on the specifics
of the syntax. For instance, a programming language wherein string literals start with "
should remove that character from the characters allowed in operators.

4.3 Pattern Syntax

With a fixed set of whitespace and syntax code points, a pattern language can have a
policy requiring all possible syntax characters (even ones currently unused) to be quoted if
they are literals. Using this policy preserves the freedom to extend the syntax in the future
by using those characters. Past patterns on future systems will always work; future
patterns on past systems will signal an error instead of silently producing the wrong results.
Consider the following scenario, for example.

In version 1.0 of program X, '≈' is a reserved syntax character; that is, it does not
perform an operation, and it needs to be quoted. In this example, '\' quotes the next
character; that is, it causes it to be treated as a literal instead of a syntax character. In
version 2.0 of program X, '≈' is given a real meaning—for example, “uppercase the
subsequent characters”.

The pattern abc...\≈...xyz works on both versions 1.0 and 2.0, and refers to the
literal character because it is quoted in both cases.
The pattern abc...≈...xyz works on version 2.0 and uppercases the following
characters. On version 1.0, the engine (rightfully) has no idea what to do with ≈.

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 28/40

Rather than silently fail (by ignoring ≈ or turning it into a literal), it has the
opportunity to signal an error.

When generating rules or patterns, all whitespace and syntax code points that are to be
literals require quoting, using whatever quoting mechanism is available. For readability, it is
recommended practice to quote or escape all literal whitespace and default-ignorable code
points as well.

Consider the following example, where the items in angle brackets indicate literal
characters:

a<SPACE>b → x<ZERO WIDTH SPACE>y + z;

Because <SPACE> is a Pattern_White_Space character, it requires quoting.
Because <ZERO WIDTH SPACE> is a default-ignorable character, it should also be
quoted for readability. So in this example, if \uXXXX is used for a code point literal,
but is resolved before quoting, and if single quotes are used for quoting, this example
might be expressed as:

'a\u0020b' → 'x\u200By' + z;

5 Normalization and Case

This section discusses issues that must be taken into account when considering
normalization and case folding of identifiers in programming languages or scripting
languages. Using normalization avoids many problems where apparently identical
identifiers are not treated equivalently. Such problems can appear both during compilation
and during linking—in particular across different programming languages. To avoid such
problems, programming languages can normalize identifiers before storing or comparing
them. Generally if the programming language has case-sensitive identifiers, then
Normalization Form C is appropriate; whereas, if the programming language has case-
insensitive identifiers, then Normalization Form KC is more appropriate.

Implementations that take normalization and case into account have two choices: to treat
variants as equivalent, or to disallow variants.

UAX31-R4. Equivalent Normalized Identifiers: To meet this requirement, an
implementation shall specify the Normalization Form and shall provide a precise
specification of the characters that are excluded from normalization, if any. If the
Normalization Form is NFKC, the implementation shall apply the modifications in Section
5.1, NFKC Modifications, given by the properties XID_Start and XID_Continue. Except for
identifiers containing excluded characters, any two identifiers that have the same
Normalization Form shall be treated as equivalent by the implementation.

UAX31-R5. Equivalent Case-Insensitive Identifiers: To meet this requirement, an
implementation shall specify either simple or full case folding, and adhere to the Unicode
specification for that folding. Any two identifiers that have the same case-folded form shall
be treated as equivalent by the implementation.

UAX31-R6. Filtered Normalized Identifiers: To meet this requirement, an implementation
shall specify the Normalization Form and shall provide a precise specification of the
characters that are excluded from normalization, if any. If the Normalization Form is NFKC,
the implementation shall apply the modifications in Section 5.1, NFKC Modifications, given

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 29/40

by the properties XID_Start and XID_Continue. Except for identifiers containing excluded
characters, allowed identifiers must be in the specified Normalization Form.

Note: For requirement UAX31-R6, filtering involves disallowing any characters in the
set \p{NFKC_QuickCheck=No}, or equivalently, disallowing \P{isNFKC}.

UAX31-R7. Filtered Case-Insensitive Identifiers: To meet this requirement, an
implementation shall specify either simple or full case folding, and adhere to the Unicode
specification for that folding. Except for identifiers containing excluded characters, allowed
identifiers must be in the specified case folded form.

Note: For requirement UAX31-R7 with full case folding, filtering involves disallowing
any characters in the set \p{Changes_When_Casefolded}.

As of Unicode 5.2, an additional string transform is available for use in matching identifiers:
toNFKC_Casefold(S). See UAX31-R5 in Section 3.13, Default Case Algorithms in [Unicode].
That operation case folds and normalizes a string, and also removes default-ignorable
code points. It can be used to support an implementation of UAX31-R4 and UAX31-R5
Equivalent Case and Compatibility-Insensitive Identifiers. In order to implement
requirement UAX31-R4, canonical decomposition must be applied prior to the
toNFKC_Casefold operation. The resulting equivalence relation between identifiers is an
identifier caseless match, see definition D147 of [Unicode]. There is a corresponding
boolean property, Changes_When_NFKC_Casefolded, which can be used to support an
implementation of Filtered Case and Compatibility-Insensitive Identifiers. The
NFKC_Casefold character mapping property and the Changes_When_NFKC_Casefolded
property are described in Unicode Standard Annex #44, "Unicode Character Database"
[UAX44].

Note: In mathematically oriented programming languages that make distinctive use
of the Mathematical Alphanumeric Symbols, such as U+1D400 MATHEMATICAL
BOLD CAPITAL A, an application of NFKC must filter characters to exclude
characters with the property value Decomposition_Type=Font.

5.1 NFKC Modifications

Where programming languages are using NFKC to fold differences between characters,
they need the following modifications of the identifier syntax from the Unicode Standard to
deal with the idiosyncrasies of a small number of characters. These modifications are
reflected in the XID_Start and XID_Continue properties.

5.1.1 Modifications for Characters that Behave Like Combining Marks

Certain characters are not formally combining characters, although they behave in most
respects as if they were. In most cases, the mismatch does not cause a problem, but when
these characters have compatibility decompositions, they can cause identifiers not to be
closed under Normalization Form KC. In particular, the following four characters are
included in XID_Continue and not XID_Start:

U+0E33 THAI CHARACTER SARA AM
U+0EB3 LAO VOWEL SIGN AM
U+FF9E HALFWIDTH KATAKANA VOICED SOUND MARK
U+FF9F HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#UAX44

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 30/40

5.1.2 Modifications for Irregularly Decomposing Characters

U+037A GREEK YPOGEGRAMMENI and certain Arabic presentation forms have irregular
compatibility decompositions and are excluded from both XID_Start and XID_Continue. It
is recommended that all Arabic presentation forms be excluded from identifiers in any
event, although only a few of them must be excluded for normalization to guarantee
identifier closure.

5.1.3 Identifier Closure Under Normalization

With these amendments to the identifier syntax, all identifiers are closed under all four
Normalization Forms. This means that for any string S, the implications shown in Figure 5
hold.

Figure 5. Normalization Closure

isIdentifier(S) →
isIdentifier(toNFD(S))
isIdentifier(toNFC(S))
isIdentifier(toNFKD(S))
isIdentifier(toNFKC(S))

Identifiers are also closed under case operations. For any string S (with exceptions
involving a single character), the implications shown in Figure 6 hold.

Figure 6. Case Closure

isIdentifier(S) →
isIdentifier(toLowercase(S))
isIdentifier(toUppercase(S))
isIdentifier(toFoldedcase(S))

The one exception for casing is U+0345 COMBINING GREEK YPOGEGRAMMENI. In the
very unusual case that U+0345 is at the start of S, U+0345 is not in XID_Start, but its
uppercase and case-folded versions are. In practice, this is not a problem because of the
way normalization is used with identifiers.

The reverse implication is true for canonical equivalence but not true in the case of
compatibility equivalence:

Figure 7. Reverse Normalization Closure

isIdentifier(toNFD(S))
isIdentifier(toNFC(S)) → isIdentifier(S)

isIdentifier(toNFKD(S))
isIdentifier(toNFKC(S)) ↛ isIdentifier(S)

There are many characters for which the reverse implication is not true for compatibility
equivalence, because there are many characters counting as symbols or non-decimal
numbers—and thus outside of identifiers—whose compatibility equivalents are letters or
decimal numbers and thus in identifiers. Some examples are shown in Table 8.

Table 8. Compatibility Equivalents to Letters or Decimal Numbers

Code Points GC Samples Names

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 31/40

2070 No ⁰ SUPERSCRIPT ZERO

20A8 Sc ₨ RUPEE SIGN

2116 So № NUMERO SIGN

2120..2122 So ℠..™ SERVICE MARK..TRADE MARK SIGN

2460..2473 No ①..⑳ CIRCLED DIGIT ONE..CIRCLED NUMBER TWENTY

3300..33A6 So ㌀..㎦ SQUARE APAATO..SQUARE KM CUBED

If an implementation needs to ensure both directions for compatibility equivalence of
identifiers, then the identifier definition needs to be tailored to add these characters.

For canonical equivalence the implication is true in both directions. isIdentifier(toNFC(S)) if
and only if isIdentifier(S).

There were two exceptions before Unicode 5.1, as shown in Table 9. If an implementation
needs to ensure full canonical equivalence of identifiers, then the identifier definition must
be tailored so that these characters have the same value, so that either both isIdentifier(S)
and isIdentifier(toNFC(S)) are true, or so that both values are false.

Table 9. Canonical Equivalence Exceptions Prior to Unicode 5.1

isIdentifier(toNFC(S))=True isIdentifier(S)=False Different in

02B9 (ʹ) MODIFIER LETTER PRIME 0374 (ʹ) GREEK NUMERAL SIGN XID and ID

00B7 (·) MIDDLE DOT 0387 (·) GREEK ANO TELEIA XID alone

Those programming languages with case-insensitive identifiers should use the case
foldings described in Section 3.13, Default Case Algorithms, of [Unicode] to produce a
case-insensitive normalized form.

When source text is parsed for identifiers, the folding of distinctions (using case mapping or
NFKC) must be delayed until after parsing has located the identifiers. Thus such folding of
distinctions should not be applied to string literals or to comments in program source text.

The Unicode Standard supports case folding with normalization, with the function
toNFKC_Casefold(X). See definition UAX31-R5 in Section 3.13, Default Case Algorithms
in [Unicode] for the specification of this function and further explanation of its use.

5.2 Case and Stability

The alphabetic case of the initial character of an identifier is used as a mechanism to
distinguish syntactic classes in some languages like Prolog, Erlang, Haskell, Clean, and
Go. For example, in Prolog and Erlang, variables must begin with capital letters (or
underscores) and atoms must not. There are some complications in the use of this
mechanism.

For such a casing distinction in a programming language to work with unicameral writing
systems (such as Kanji or Devanagari), another mechanism (such as underscores) needs
to substitute for the casing distinction.

https://www.unicode.org/reports/tr41/tr41-32.html#Unicode
https://www.unicode.org/reports/tr41/tr41-32.html#Unicode

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 32/40

Casing stability is also an issue for bicameral writing systems. The assignment of
General_Category property values, such as gc=Lu, is not guaranteed to be stable, nor is
the assignment of characters to the broader properties such as Uppercase. So these
property values cannot be used by themselves, without incorporating a mechanism that
preserves backward compatibility, such as is done for Unicode identifiers in Section 2.5
Backward Compatibility. That is, the implementation would maintain its own list of special
inclusions and exclusions that require updating for each new version of Unicode.

Alternatively, a programming language specification can use the operation specified in
Case Folding Stability as the basis for its casing distinction. That operation is guaranteed
to be stable. That is, one can use a casing distinction such as the following:

1. S is a variable if S begins with an underscore.
2. Otherwise, produce S' = toCasefold(toNFKC(S))

a. S is a variable if firstCodePoint(S) ≠ firstCodePoint(S'),
b. otherwise S is an atom.

This test can clearly be optimized for the normal cases, such as initial ASCII. It is also
recommended that identifiers be in NFKC format, which makes the detection even simpler.

5.2.1 Edge Cases for Folding

In Unicode 8.0, the Cherokee script letters have been changed from gc=Lo to gc=Lu, and
corresponding lowercase letters (gc=Ll) have been added. This is an unusual pattern;
typically when case pairs are added, existing letters are changed from gc=Lo to gc=Ll, and
new corresponding uppercase letters (gc=Lu) are added. In the case of Cherokee, it was
felt that this solution provided the most compatibility for existing implementations in terms
of font treatment.

The downside of this approach is that the Cherokee characters, when case-folded, will
convert as necessary to the pre-8.0 characters, namely to the uppercase versions. This
folding is unlike that of any other case-mapped characters in Unicode. Thus the case-
folded version of a Cherokee string will contain uppercase letters instead of lowercase
letters. Compatibility with fonts for the current user community was felt to be more
important than the confusion introduced by this edge case of case folding, because
Cherokee programmatic identifiers would be rare.

The upshot is that when it comes to identifiers, implementations should never use the
General_Category or Lowercase or Uppercase properties to test for casing conditions, nor
use toUppercase(), toLowercase(), or toTitlecase() to fold or test identifiers. Instead, they
should instead use Case_Folding or NFKC_CaseFold.

6 Hashtag Identifiers

Hashtag identifiers have become very popular in social media. They consist of a number
sign in front of some string of characters, such as #emoji. The actual composition of
allowable Unicode hashtag identifiers varies between vendors. It has also become
common for hashtags to include emoji characters, without a clear notion of exactly which
characters are included.

This section presents a syntax that can be used for parsing Unicode hashtag identifiers for
increased interoperability.

UAX31-D2. Default Hashtag Identifier Syntax:

https://www.unicode.org/policies/stability_policy.html#Case_Folding

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 33/40

<Hashtag-Identifier> := <Start> <Continue>* (<Medial> <Continue>+)*

When parsing hashtags in flowing text, it is recommended that an extended Hashtag only
be recognized when there is no Continue character before a Start character. For example,
in “abc#def” there would be no hashtag, while there would be in “abc #def” or “abc.#def”.

UAX31-R8. Extended Hashtag Identifiers: To meet this requirement, to determine
whether a string is a hashtag identifier an implementation shall choose either UAX31-R8-1
or UAX31-R8-2.

UAX31-R8-1. Use definition UAX31-D2, setting:

1. Start := [#﹟＃]
U+0023 NUMBER SIGN
U+FE5F SMALL NUMBER SIGN
U+FF03 FULLWIDTH NUMBER SIGN
(These are # and its compatibility equivalents.)

2. Medial is currently empty, but can be used for customization.
3. Continue := XID_Continue, plus Extended_Pictographic, Emoji_Component, and “_”,

“-”, “+”, minus Start characters.
Note the subtraction of # characters.
This is expressed in UnicodeSet notation as:
[\p{XID_Continue}\p{Extended_Pictographic}\p{Emoji_Component}[-+_]-[#﹟＃]]

UAX31-R8-2. Declare that it uses a profile of UAX31-R8-1 as in UAX31-R1.

The emoji properties are from the corresponding version of [UTS51]. The version of the
emoji properties is tied to the version of the Unicode Standard, starting with Version 11.0.

The techniques mentioned in Section 2.5 Backward Compatibility may be used where
stability between successive versions is required.

Comparison and matching should be done after converting to NFKC_CF format. Thus
#MötleyCrüe should match #MÖTLEYCRÜE and other variants.

Implementations may choose to add characters in Table 3a, Optional Characters for Medial
to Medial and Table 3b, Optional Characters for Continue to Continue for better identifiers
for natural languages.

7 Standard Profiles

Two standard profiles for default identifiers are provided to cater to common patterns of
use observed in programming languages with less restrictive identifier syntaxes, including
those that use UAX31-R2 default identifiers: the inclusion of characters suitable for
mathematical usage in identifiers, and the inclusion of emoji in identifiers.

These profiles are associated with profiles for requirements UAX31-R3b.

Further, a standard profile is provided to exclude default-ignorable code points from
identifiers. Having no visible effect in most contexts, these characters can lead to spoofing
issues; see Section 2.3, Layout and Format Control Characters.

https://www.unicode.org/reports/tr41/tr41-32.html#UTS51

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 34/40

For guidance on the applicability of these profiles to programming languages, see Unicode
Technical Standard #55, “Unicode Source Code Handling” [UTS55].

7.1 Mathematical Compatibility Notation Profile

The Mathematical Compatibility Notation Profile for default identifiers consists of the
addition of the set [:ID_Compat_Math_Start:] to the set Start, and the set
[:ID_Compat_Math_Continue:] to the set Continue, in definition UAX31-D1.

Note: The set [:ID_Compat_Math_Start:] comprises ∂, ∇, and their mathematical
style variants, as well as ∞. The set [:ID_Compat_Math_Continue:] comprises
[:ID_Compat_Math_Start:], as well as subscript and superscript digits and signs with
mathematical use.

It is associated with a profile for UAX31-R3b, which consists of removing the characters in
[[:Pattern_Syntax:] - [:ID_Compat_Math_Continue:]] from the set of characters with
syntactic use (these are the characters ∂, ∇, and ∞).

Note: While supporting these characters is recommended for some computer
languages because they can be beneficial in some applications, these characters,
like many others characters that are allowed in default identifiers, are discouraged in
general use, as they are confusing to most readers. See Unicode Technical Standard
#55, “Unicode Source Code Handling” [UTS55].

7.2 Emoji Profile

The Emoji Profile for default identifiers provides for the inclusion of emoji characters and
sequences in identifiers. A large subset of emoji are already supported in some
programming languages, but this profile provides a mechanism for treating them
consistently as part of the lexical structure of a language.

The Emoji Profile for default identifiers consists of:

1. The addition of the RGI emoji set defined by ED-27 in Unicode Technical Standard
#51, “Unicode Emoji” [UTS51] for a given version of Unicode to the sets Start and
Continue in definition UAX31-D1.

2. The removal of the code point U+FE0E VARIATION SELECTOR-15 (the Text
Presentation Selector) from the set Continue.

Note: The Emoji Profile requires the use of character sequences, rather than
individual code points, in the sets Start and Continue defined by UAX31-D1. When
using this profile, U+002A asterisk (*), U+203C double exclamation mark (‼), or
U+263A white smiling face (☺) are not legal identifiers, but the sequences (U+002A,
U+FE0F, U+20E3) �, (U+203C, U+FE0F) ‼ , and (U+263A, U+FE0F) ☺ are allowed
in identifiers. This would require some changes to lexers: when they hit a character
that starts an emoji sequence they will (logically) switch to a different mechanism for
parsing.

The Emoji Profile includes characters that are in Pattern_Syntax; it is therefore associated
with a profile for UAX31-R3b, which consists of replacing each emoji character of a certain
subset of [:Pattern_Syntax:] by its text presentation sequence (ED-8a):

https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html#UTS51

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 35/40

1. Remove the characters in the set [[:Pattern_Syntax:]&[:Emoji_Presentation:]] from
the set of characters with syntactic use.

2. For all C in [[:Pattern_Syntax:]&[:Emoji_Presentation:]], add the sequence consisting
of C followed by U+FE0E VARIATION SELECTOR-15 (the Text Presentation
Selector) to the set of characters with syntactic use.

In addition, in order to avoid lexical ambiguities between identifiers and operators, the
Emoji Profile includes a profile for UAX31-R3c, which consists of the removal of the
character U+FE0F VARIATION SELECTOR-16 (the Emoji Presentation Selector) from the
set Continue.

Example: Consider a language that meets requirements UAX31-R3b and UAX31-
R3c with no profile. U+2615 HOT BEVERAGE (☕) is a character with syntactic use,
and therefore it is an operator. When meeting these requirements with the Emoji
Profile, U+2615 HOT BEVERAGE (☕) is not a character with syntactic use (which
allows it to be an identifier character) and ☕ is not a valid operator. However, the
sequence U+2615 U+FE0F (☕) is added to the set of characters with syntactic use,
and therefore ☕ is a valid operator.

This change means that if some of the Pattern_Syntax characters with the
Emoji_Presentation property were in syntactic use (e.g., in operators) prior to adopting the
Emoji Profile, they become identifiers once the profile is adopted, but can be turned back
into operators by adding U+FE0E VARIATION SELECTOR-15, allowing for a migration
path.

Of course, if a programming language only uses a subset of the Pattern_Syntax characters
that does not include these characters, no action needs to be taken.

Some other characters in Pattern_Syntax (such as ↔) are used in emoji (such as ↔), but
they are not emoji on their own, so that they do not need to be removed from the set of
characters with syntactic use as long as lexical analysis properly takes sequences into
account.

The emoji sequences require 98 default-ignorable characters:

U+200D ZERO WIDTH JOINER (also known as ZWJ)
U+FE0F VARIATION SELECTOR-16 (also known as Emoji Presentation Selector)
U+E0020..U+E007F 96 TAG characters

Thus, if this profile is combined with any profile that removes default-ignorable characters,
such as the Default-Ignorable Exclusion Profile, those characters need to be retained in the
context of emoji sequences.

Consider the following examples, in a language that meets requirement UAX31-R1 with
both the Emoji Profile and the Default Ignorable Exclusion Profile:

Sequence Appearance Legal
Identifier?

Reason

A+ZWJ+B A B No ZWJ is not part of an emoji
sequence

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 36/40

Sequence Appearance Legal
Identifier?

Reason

U+1F408 + ZWJ +
U+2B1B

🐈 ⬛ Yes ZWJ is part of an emoji
sequence (for black cat)

BIG + U+1F408 + ZWJ
+ U+2B1B

BIG🐈 ⬛ Yes

7.3 Default-Ignorable Exclusion Profile

The default-ignorable exclusion profile for default identifiers consists of the exclusion of the
code points with property Default_Ignorable_Code_Point from the sets Start and Continue
in definition UAX31-D1.

Note: While it reduces the attack surface, excluding default-ignorable code points
does not prevent spoofing issues. More comprehensive mechanisms are described in
Unicode Technical Standard #39, “Unicode Security Mechanisms” [UTS39]; in
particular, the exclusion of default-ignorable code points is part of the General for
Profile for Identifiers.

Note: Where higher level diagnostics are available, such as in programming
environments, more targeted measures can be taken in order to still allow for the
legitimate use of these characters. See Unicode Technical Standard #55, “Unicode
Source Code Handling” [UTS55].

Acknowledgments

Mark Davis is the author of the initial version and has added to and maintained the text of
this annex. Robin Leroy has assisted in updating it starting with Version 15.0.

The attendees of the Source Code Working Group meetings assisted with the substantial
changes made in Versions 15.0 and 15.1: Peter Constable, Elnar Dakeshov, Mark Davis,
Barry Dorrans, Steve Dower, Michael Fanning, Asmus Freytag, Dante Gagne, Rich Gillam,
Manish Goregaokar, Tom Honermann, Jan Lahoda, Nathan Lawrence, Robin Leroy, Chris
Ries, Markus Scherer, Richard Smith.

Thanks to Eric Muller, Asmus Freytag, Lisa Moore, Julie Allen, Jonathan Warden, Kenneth
Whistler, David Corbett, Klaus Hartke, Martin Dürst, Deborah Anderson, Steve Downey,
Ned Holbrook, Corentin Jabot, 梁海 Liang Hai, Jens Maurer, and Hubert Tong for feedback
on this annex.

References

For references for this annex, see Unicode Standard Annex #41, “Common References for
Unicode Standard Annexes.”

Migration

Version 15.1

Requirement UAX31-R1a Restricted Format Characters has been withdrawn.

If implementations that claimed conformance to UAX31-R1a wish to retain the contextual
checks for ZWJ and ZWNJ, they should refer to the General Security Profile in Unicode

https://www.unicode.org/reports/tr41/tr41-32.html#UTS39
https://www.unicode.org/reports/tr41/tr41-32.html#UTS55
https://www.unicode.org/reports/tr41/tr41-32.html
https://www.unicode.org/reports/tr41/tr41-32.html

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 37/40

Technical Standard #39, “Unicode Security Mechanisms” [UTS39].

In previous versions, requirement UAX31-R3 Pattern_White_Space and Pattern_Syntax
Characters did not require any particular interpretation of whitespace characters. It now
specifies which characters are to be treated as line terminators, horizontal space, and
ignorable format controls. The meaning of syntactic use has also been clarified.

Implementations that claim conformance to UAX31-R3 should check that they interpret the
characters in Pattern_White_Space as described in UAX31-R3a Pattern_White_Space
Characters, and that their use of Pattern_Syntax characters is consistent with UAX31-R3b
Pattern_Syntax Characters.

Version 15.0

In previous versions, the note explaining how to implement requirement UAX31-R7 Filtered
Case-Insensitive Identifiers with full case folding referred to the wrong property, and the
requirement itself incorrectly refered to Normalization Form rather than case folded form.

Implementations that claim conformance to UAX31-R7 should check that they use the
correct property.

Version 13.0

Version 13.0 changed the structure of Table 4. Excluded Scripts significantly, dropping
conditions that were not based on script. Implementations that were based on Table 4
should refer to UTS #39, Unicode Security Mechanisms [UTS39] for additional restrictions.

Version 11.0

Version 11.0 refines the use of ZWJ in identifiers (adding some restrictions and relaxing
others slightly), and broadens the definition of hashtag identifiers somewhat. For details,
see the Modifications.

Version 9.0

In previous versions, the text favored the use of XID_Start and XID_Continue, as in the
following paragraph. However, the formal definition used ID_Start and ID_Continue.

The XID_Start and XID_Continue properties are improved lexical classes that
incorporate the changes described in Section 5.1, NFKC Modifications. They are
recommended for most purposes, especially for security, over the original ID_Start
and ID_Continue properties.

In version 9.0, that is swapped and the X versions are stated explicitly in the formal
definition. This affects just the following characters.

037A ; GREEK YPOGEGRAMMENI
0E33 ; THAI CHARACTER SARA AM
0EB3 ; LAO VOWEL SIGN AM
309B ; KATAKANA-HIRAGANA VOICED SOUND MARK
309C ; KATAKANA-HIRAGANA SEMI-VOICED SOUND MARK
FC5E..FC63 ; ARABIC LIGATURE SHADDA WITH SUPERSCRIPT ALEF ISOLATED FORM
FDFA ; ARABIC LIGATURE SALLALLAHOU ALAYHE WASALLAM
FDFB ; ARABIC LIGATURE JALLAJALALOUHOU
FE70 ; ARABIC FATHATAN ISOLATED FORM
FE72 ; ARABIC DAMMATAN ISOLATED FORM
FE74 ; ARABIC KASRATAN ISOLATED FORM

https://www.unicode.org/reports/tr41/tr41-32.html#UTS39
https://www.unicode.org/reports/tr41/tr41-32.html#UTS39

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 38/40

FE76 ; ARABIC FATHA ISOLATED FORM
FE78 ; ARABIC DAMMA ISOLATED FORM
FE7A ; ARABIC KASRA ISOLATED FORM
FE7C ; ARABIC SHADDA ISOLATED FORM
FE7E ; ARABIC SUKUN ISOLATED FORM
FF9E ; HALFWIDTH KATAKANA VOICED SOUND MARK
FF9F ; HALFWIDTH KATAKANA SEMI-VOICED SOUND MARK

Implementations that wish to maintain conformance to the older recommendation need
only declare a profile that uses ID_Start and ID_Continue instead of XID_Start and
XID_Continue.

Version 9.0 splits the older Table 3 from Version 8.0 into 3 parts.

Current Tables Unicode 8.0

Table 3, Optional Characters for
Start

Table 3, Candidate Characters for Inclusion in
ID_Continue

Table 3a, Optional Characters for
Medial

Table 3b, Optional Characters for
Continue

only outlined in text

Version 6.1

Between Unicode Versions 5.2, 6.0 and 6.1, Table 5 was split in three. In Version 6.1, the
resulting tables were renumbered for easier reference. The titles and links remain the
same, for stability.

The following shows the correspondences:

Current Tables Unicode
6.0

Unicode
5.2

Table 5, Recommended Scripts 5a 5

Table 6, Aspirational Use Scripts

Table 7, Limited Use Scripts 5b

Table 8, Compatibility Equivalents to Letters or Decimal
Numbers

6 6

Table 9, Canonical Equivalence Exceptions Prior to Unicode
5.1

7 7

Modifications

The following summarizes modifications from the previously published version of this
annex.

Revision 40

Proposed Update for Unicode 16.0.
Section 2.3, Layout and Format Control Characters, and Section 5, Normalization
and Case: clarified that NFD must be applied before toNFKC_Casefold in order to

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 39/40

correctly meet requirements UAX31-R4 and UAX-R5 with NFKC and full case
folding, and added a reference to definition D147 of the Unicode Standard.
Section 2.4, Specific Character Adjustments, Removed the suggestion to add
MIDDLE DOT to as part of a profile: it is already part of default identifiers with no
profile since Unicode Version 5.1.

Revision 39

Reissued for Unicode 15.1.
Renamed from Unicode Identifier and Pattern Syntax to Unicode Identifiers and
Syntax.
Section 1.4, Conformance

Added a note clarifying that unversioned references to the UCD are allowed,
but should have a minimum.

Section 2, Default Identifiers
Clarified that profiles are described as amendments that can be combined.
Clarified that spoofing issues should be dealt with using the mechanisms in
UTS #39.
Removed requirement UAX31-R1a, which remains as part of the security
mechanisms in UTS #39.
Emphasized the relevance of UAX31-R1b when using unversioned references
to the UCD, and clarified that the defaults meet this requirement.
Added an example of a profile that fails to meet UAX31-R1b, describing how it
could be changed to meet that requirement.
Added a note on the stability of NFKC_Casefold for XID_Continue characters.

Section 3, Immutable Identifiers
Clarified the expectation of immutability for implementations that use immutable
identifiers; added a reference to guidance in UTS #55 for the cases where it is
necessary to move away from an immutable definition.

Section 4, Whitespace and Syntax
Split UAX31-R3 into UAX31-R3a and UAX31-R3b, and correspondingly split
the discussions of whitespace and syntax.
Significantly expanded the discussion of whitespace, which now covers the
interpretation of whitespace characters as line terminators, horizontal space, or
ignorable format controls.
Clarified the meaning of characters with syntactic use.
Added a requirement UAX31-R3c for operator identifiers.
Reorganized the section to separate the considerations that are specific to
patterns from those that apply to computer languages in general.

Section 7, Standard Profiles
Added standard profiles corresponding to common usages of identifiers outside
of the XID_Continue space.

Minor editorial corrections.

Modifications for previous versions are listed in those respective versions.

© 2023 Unicode®, Inc. All Rights Reserved. The Unicode Consortium makes no expressed or implied warranty of any
kind, and assumes no liability for errors or omissions. No liability is assumed for incidental and consequential damages in

4/17/24, 8:55 AM UAX #31: Unicode Identifiers and Syntax

https://www.unicode.org/reports/tr31/tr31-40.html 40/40

connection with or arising out of the use of the information or programs contained or accompanying this technical report.
The Unicode Terms of Use apply.

Unicode and the Unicode logo are trademarks of Unicode, Inc., and are registered in some jurisdictions.

https://www.unicode.org/copyright.html

