L2/24-122

Linkification of URLs
Mark Davis, 2024-04-17

Working Document

This proposal is to add a section to UAX #31 Unicode Identifiers and Syntax with a specification for
handling Unicode characters in linkification (aka link detection) of URLs and corresponding IRIs

within plain text.
For example, with most email programs, when you paste in the plain text:

The page https://jawikipedia.org/wiki/7 /L~)Lk« 77 AL 2 24 A contains information
about Albert Einstein.

and send to someone else, they get:

The page https://ja.wikipedia.org/wiki/7 /L)L |7 A 27 A contains information
about Albert Einstein.

Contents

Problem

Parts of a URI/IRI

Proposal
Properties
LinkTermination Property
LinkPairedOpeners Property
Algorithm
Draft Property Assignments

LinkTermination=Hard
Linkification=Soft
Linkification=Opening, Linkification=Closing

Linkification=None

LinkPairedOpeners

Issues

Scripts sans spaces
uotation Marks

Notes

https://docs.google.com/document/d/1YGRd1NYXS0AJUd8jAy3pANoSo1OZdh0zyRUX7UOdSEE/
https://unicode.org/reports/tr31/
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3

Problem

Linkification (aka link detection) is the process of determining when a text substring represents a URL

(more formally, an IR, which allows for unescaped non-ASCII characters'). That substring can then
have a link applied to it. Unfortunately, as yet there are no broadly observed specifications for
linkification, perhaps because a good general solution requires expertise in Unicode characters and
properties”. The specs for URL and IRI don’t specify how to handle linkification, since they are only
concerned with the structure in isolation, not when it is embedded within flowing text.

The linkification process for URLs is already fragmented, but it is amplified with the addition of
non-ASCII characters added in [RIs, which often have very different behavior. That is, developers’ lack
of familiarity with the behavior of non-ASCII characters has caused the different implementations of
linkification to splinter. Yet IRIs are very important for readability. People do not want to see the above
IRI expressed in all ASCII:

® https://ja.wikipedia.org/wiki/%FE3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%
88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%8 ﬁogoAi%oE 3%82%BF%E3%8
2%A4%E3%83%B3

Thus the actual results of linkification vary wildly across implementations. For example, take the lists
of links on List of articles every Wikipedia should have in different languages. When those are tested
with major products, there are significant differences: any two implementations are likely to linkify
those differently — terminating the linkification at different places. That makes it very difficult to
exchange IRIs between products within plaintext, which is done surprisingly often — definitely
causing problems for implementations that need predictable behavior.

Having consistent rules for linkification also has additional benefits, such as:

' Formally, a IRI is an extension of a URI, which encompasses both URLs and URNs. Here, we are
focussed on those IRIs that correspond to URLs. Some people question the value of IRIs. But they are
much more user-friendly than URLs, because they can contain readable characters in users’ languages.
It is far easier for the Japanese to read the IRI:

o https://jawikipedia.org/wiki/ T V<)V T AL AR AL

than to read the corresponding URL:

o https://ja.wikipedia.org/wiki/%FE3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%
88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%AS%E3%82%
BFOOE 008200A4OOE 008 OOB

(which nobody can read).
For display of BIDI IRIs, see HL4 in UAX #9, Unicode Bidirectional Algorithm

> There are some guideline documents, such as UASG 010 Quick Guide to Linkification EN.

https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
http://meta.wikimedia.org/wiki/List_of_articles_every_Wikipedia_should_have
https://uasg.tech/download/uasg-010-quick-guide-to-linkification-en/
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://www.unicode.org/reports/tr9/#HL4

e Ifasystem allows users to have their own user ids that end up in URLs, like
https://www.linkedin.com/in/my.user.name , it can avoid user ids that have problematic

linkification behavior, like trailing periods after path segments (actual problems).
e Iflinkification behavior becomes more predictable across platforms and applications,
applications can use that knowledge to do minimal escaping’. For example:
o Suppose that linkification is defined to break at unpaired parentheses. Then the
following would not linkify past the):
m (https://jawikipedia.org/wiki/ T /L)L N T AL 2B A
o Currently, because linkification cannot be predicted for IRIs, common practice is to

exchange URLs, which gives unreadable results such as the, such as:
m hteps://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%ABWE3%83%99%E3%83
%AB%E3%83%88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E
3%83%A 5% E3%82%BF%E3%82%A4%E3%83%B3
o Iflinkification becomes more predictable, then for unusual cases it would only be

necessary to escape just those characters that would need it, such as the %29:
m hups://jawikipedia.org/wiki/ 7 V-~V E29T AL Y 2 Z AL

The start of a URL/IRI is easy to determine when it starts with a known protocol (eg, https://).

Parts of a URL/IRI

Protocol | Domain Path Query Fragment

https:// | docs.foobar.com | /knowledge/area/ | ?name=article&topic=seo | #top

Implementations have also developed heuristics for determining the start of the IRI when the protocol
is elided, taking advantage of the fact that there are relatively few top-level domains. And those

techniques can be easily applied to internationalized domain names, which still have strong limitations
on the valid characters. So the end of the domain name is also relatively easy to determine.

The real issues are when finding the end of the text past the domain name. The important parts are
thus the path, query, and fragment, and can contain most Unicode characters. So the proposal focuses
on those three parts.

The key is to be able to determine, given a Part in the IRI BNF (such as a Query), when a sequence of
characters that should terminate the IRI in linkification, even though they are valid in the specification.

3 Additional characters can be escaped to reduce confusability, especially when they are confusable
with URL syntax characters, such as a 2 character in a path. For security implications of IRIs, see UTS

#39: Unicode Security Mechanisms. For related issues, see UTS #55 Unicode Source Code Handling.

https://www.linkedin.com/in/my.user.name
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%29%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains
https://datatracker.ietf.org/doc/html/rfc3987
https://util.unicode.org/UnicodeJsps/confusables.jsp?a=%3F
https://unicode.org/reports/tr39/
https://unicode.org/reports/tr39/
https://www.unicode.org/reports/tr55/

It is impossible for a linkification algorithm to match user expectations in all circumstances, given the
variation in usage of various characters both within and across languages. So the goal is to cover use
cases as broadly as possible, recognizing that it will sometimes not match user expectations in certain
cases.

Proposal

Here is an initial proposal for discussion and refinement. At a high level, it consists of three features:

1. A way to identify when to terminate the scope for linkification based on a property that defines
candidates and contexts for terminating the parsing of a URL.
o This addresses the question, for example, when a trailing period should be counted as
part of a link or not.
2. A way to identify balanced quotes and parens that enclose a URL
o This addresses the distinction, for example, of enclosing the entire URL in parens, vs.
URLs that contain a part that is enclosed in parens, etc.
3. Analgorithm for doing the above, together with an enumerated property and a mapping.

One of the goals is also predictability; it should be relatively easy for users to understand the
linkification behavior at a high level.

Properties

LinkTermination Property

We add an enumerated property of characters with 5 enum values: {none, hard, soft, closing,

opening}

Value Description / Examples

none There is no stop before the character; it is included in the link.

Example — letters

1. htps://jawikipedia.org/wiki/ T V)V T A a A

hard The IRI/URL terminates before this character.

Example — a space

1. Go to https://ja.wikipedia.org/wiki/7 /L ~)L k7 A2 244 to find the
material.

https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3

soft The IRI terminates before this character, if it is followed by /soft* (hard | endOf Text)/

Example — a question mark

2. https://jawikipedia.org/wiki/ T L)L R T AL a2 XA ? abe

3. htps://jawikipedia.org/wiki/TIVS)V b T AL 2 A A2

closing If the character is paired with a previous character i the same part (path, query, fragment),

it is treated as none. Otherwise it is treated as hard.

Example — an end parenthesis

1. https://jawikipedia.org/wiki/(7 V)V INT A3 o XA
2. (https://jawikipedia.org/wiki/ T IV-SIVNYT A a B A
3. (https://ja.wikipedia.org/wiki/ T IV S)VET AL 2 A A

opening Used to match closing characters.

Example — same as under closing

LinkPairedOpeners Property

We also add a property that for each character with Link Termination=closing, returns a character with
LinkTermination=opening. (Also see the Issues.)

Example

1. LinkPairedOpeners(}) == {

Algorithm

This algorithm processes each final part [path, query, fragment] of the IRI in turn. It stops when it
encounters a code point that meets one of the terminating conditions and reports the last location in
the current part that is still safely considered part of the link. Special processing prevents paired
enclosing punctuation — in the same part — from triggering a terminating condition. More formally:

Process each of the parts [path, query, fragment] as follows, where cp[i] refers to the ith code point in
the part, where i is from 0 to n-1.

https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3?abc
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/(%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88)%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3

1. SetlastSafe to zero — this marks the last code point that is definitely included in the

linkification.

2. Set closingStack to empty

©

Set the current code point position i to 0

4. Loop from7=0ton

.

me a0 o

Set LT to LinkTermination(cp[z])

If LT = none, set lastSafe to be 7+1, continue loop

If LT = soft, continue loop

If LT = hard, stop linkification and return lastSafe

If LT = opening, push cp[7] onto closingStack

If LT = closing, set gpen to the pop of closingStack, or 0 if the closingStack is empty
i. If LinkPairedOpeners(cp[i]) == open, set lastSafe to be 7+1, continue loop.
ii. Otherwise, stop linkification and return lastSafe

S. IflastSafe == n+1, then the entire part is safe; continue to the next part

6. Otherwise, stop linkification and return lastSafe

This can be optimized in various ways, of course.

TBD: rework the algorithm to cover the boundary conditions between Parts (? for query and # for

fragment).

Draft Property Assignments

The following are initial assignments of properties; they should be reviewed to see where they need

enhancement.

LinkTermination=Hard

Whitespace, controls, unassigned,...

° whitespace NChar CH-\p{C

Linkification=Soft

Termination characters and quotation marks:

o \p{Term}

[

o [-“<>

nee ee

S« ']

Linkification=Opening, Linkification=Closing

Derived from LinkPairedOpeners property

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%5Cp%7Bwhitespace%7D%5Cp%7BNChar%7D%5Cp%7BC%7D-%5Cp%7BCf%7D%5D&g=script&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BTerm%7D&g=gc&i=
https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5B%E2%80%98-%E2%80%9B+%E2%80%B9+%E2%80%BA+%22%E2%80%9C-%E2%80%9F+%C2%AB+%C2%BB%27%5D&g=&i=

Linkification=None

Any other code point

LinkPairedOpeners

1. LinkPairedOpeners(cp) == if BidiPairedBracketType(cp) != Open then \x{0} else
BidPairedBracket(cp)
a. Bidi Paired Bracket

Issues

Scripts sans spaces
For scripts that don’t need spaces between words, it is a bit tricky to linkify within sentences.
For example, take:

1. https://jawikipedia.org/wiki/7 /L)L b7 A2 27 A is an important page.

The URL s set off from the rest of the text. But then look at in the equivalent Japanese (TBD get
example from native speaker):

2. https://jawikipedia.org/wiki/ T VX)L T AL a2 A AN TEEE/Ip_X— T

That would not maintain a separation between the text if simply substituted for x in a phrase like “x/ 3.
BB/~ —3UT9” — 5o the linkification would go too far. One would need some kind of separator
character to separate the text. That can be done with Hard characters (eg, space):

3. https://jawikipedia.org/wiki/ T IV IV e T ALY 2 ZA L T E B RN —UTY

Or with closing characters, such as:

4. [https://iawikipedia.ore/wiki/ 7 /L)L T AL > 22 A NTEERR—TT

An alternative would be having a termination between non-spacing scripts and spacing scripts. That
wouldn’t help with the above examples, but would help with cases like:

5. https://en.wikipedia.org/wiki/Albert Einsteinl X /2 R—TF

However, that complicates the behavior for little overall benefit. So the proposal does not include this.

Quotation Marks

We could add quotation marks as opening/closing, but that makes the algorithm more complicated,
because the pairings are not 1:1 in natural languages. The simplest and most predictable solution is to
have them be Soft.

https://util.unicode.org/UnicodeJsps/list-unicodeset.jsp?a=%5Cp%7BBidi_Paired_Bracket_Type%21%3DNone%7D&g=Bidi_Paired_Bracket_Type&i=Bidi_Paired_Bracket
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3%E3%81%AF%E9%87%8D%E8%A6%81%E3%81%AA%E3%83%9A%E3%83%BC%E3%82%B8%E3%81%A7%E3%81%99
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
https://en.wikipedia.org/wiki/Albert_Einstein

Note also that some quotation marks appear in non-paired usage, such as RIGHT SINGLE
QUOTATION MARK or APOSTROPHE, but also QUOTATION MARK as an alternative to
HEBREW PUNCTUATION GERSHAYIM.

Examples:
Open(s) Close

" "
17

”
“oon "

"

()
) (
« »
» «

Notes

