STANDARDISATION

International Support
in Applications and
Systems Software

Globalisation and localisation are two
capabilities required of modern applications

Mark Davis & Jack Grimes

THE SCOPE OF THE INTERNATIONALISATION PROBLEM

The goal for Taligent and for many other organisations is to en-
sure that all programs are usable all over the world. These are called
global programs and have a single binary form that is used every-
where. A global program can be “localised” for use in some region,
usually a country.

Today, most programs are localised without being global in the
first place, leading to many versions of the program—potentially
one for each region. Mot only is it expensive to create all these ver-
sioms, but it also means that a document created with a particular
localised version of a program will display incorrectly when opened
with another version of the program. Typically you need a knowl-
edgeable, native speaker to complete a successful localisation, Glos-
saries are created and used to make the translation consistent. For
example, in many languages the word for mouse and rat are the same,
so one must be careful not to simply translate English words into
another language to refer to a particular piece of equipment, The
same terms should be used across localised applications, e.g., two
programs should use the same terms for “click on a menu item.”

The goal of a single, global program has two aspects:

wCan you enter all the data that program uses in your native lan-
guage? For example, can I type in Japanese anywhere where text
is needed?

w5 the presentation of that program, e.g., text and graphics on
the screen, in your native language? Can I look at the presen-
tation of that program and understand all the menus, diagrams,
graphics, icons, or any of the elements that help me sec how to
use the program?

S0, WHAT HAPPENED TO ASCII?

In the past, many programs were based on ASCI, period. One fixed
character set, One size fits all, To overcome limitations, programs
were designed based on ASCIT with variations that allowed the pro-
grammer to support several European languages. These used vari-
ations, e.g., where the code for a character like “[" was used for an
umlaut, “&." Many of these seven-bit ASCII systems are in com-
mon use today.

10 [Mustration: ©John Dykes/SI5

Later, standard character sets were developed, like the 150
8859 series, that used standard ASCII for the first seven bits and
then had 128 more characters added, forming a family of eight-
bit extended ASCII character sets. This worked well for each of
several European languages, but there are still two major problems:
w [irst, while one of these IS0 8859 standards might work for

an individual European language, it doesn't work for combina-

tions. [vou have a company that is exchanging data among Ger-
many, Iceland, and Poland, there isn't a single character set that
covers all the required characters.

Extended ASCII provided a national solution in some cases,
However, its time has passed. Commerce is increasingly becoming
international, both berween organisations and within multina-
tional companies.

To overcome this problem, the next enhancement was to em-
bed switching codes (called fnérodiccers) in the text strings that
would allow one to switch in and out of different ecight-bit
ASCII character sets within the document, This approach works
after a fashion, but is extremely clumsy for a developer to deal
with, First, it requires agreements on both ends as to the mean-
ings of various switching codes. Second, text parsing is com-
plicated because you always need to know what character set is
active. This is difficult when the user positions the text cursor
at some arbitrary point in the text. Third, search-and-replace
produces false matches because the matching is done on the char-
acter codes, not the font information. The algorithm might re-
place Greek letters that were not part of the text string, Thas is
one more thing for the programmer to anticipate specifically. Most
of the unexpected behaviour can be detected and programmed
around, but the code becomes increasingly complex.

A second major problem exists, even with the addition of in-
trocducers. The eight-bit extended ASCII sets are not large
enough to handle the character sets for Japanese or other east-
ern languages. For these markets, double-byte character (DBC)
sets were developed to handle languages that require thousands
or tens of thousands of characters,

Typically, these large character sets are combinations of sin-
gle- and double-byte encodings, including introducers such as

Ohbjects in Europe

STANDARDISATION

shift-JI5, which are embedded in the string. An additional com-
plication for the developer in dealing with the DBC encoding
is that the code is different from the code that deals with the
single-byte sets. From the programmer’s perspective, the dou-
ble-byte scts behave in a different way. A wide variety of solu-
tions were created, most of which were, and still are, incompatible.

LOCALES

A locale s a set of information about how to deal with a country or
region. A region can be a part of a country that has different languages
within its borders, €.z, Switzerland or Belgium, A locale lets you set
the localisation language, and if the system has the proper support,
you can establish a format for numbers, dates, and currency. Then
numbers will be displayed in, for example, the French format. The
loeales affect all langnage-related input and cutput, as they are part
of the application environment and affect how everything waorks.

Frogrammers have tried to solve the locale problem by using lim-
ited character sets like ASCII or extended ASCII and by adding
introducers. This works fairly well within a single region for one
language, bur it doesn't work when you are ha:ldling multiple lan-
guages inside the same document. Furthermore, only one part of a
lacale is the character set. Time zones and number representations
also can change. With a globalised product, the localisation is
greatly simplified and a program like a word processor can be lo-
calised with a few days or weeks of work by one native speaker.

Finally, the programmer has to deal with the character set issue
at the very bottom of the text system where it 15 the most difficule,
since it is used for both the input of data and in the presentation
of strings. In addition, virmally every application must deal with
text, so this problem must be handled over and over, by each de-
veloper for each program, Sounds like a good candidate for sys-
temwide support!

A THIRD PROBLEM HAS GONE AWAY

There was a third problem that has largely been solved by modern
systems. Onginally when developers tried to internationalize programs,
they put the language-specific text strings in their source program as
literal strings—so-called hard-coded. Then, to modify these pre-
sentation strings, they modified the source. This caused problems for
developers who wanted to keep their source code proprietary.

Today, most systems provide for the storing of these language-
spcclﬁc text strings in a separate place where a different developer,
usually in the destination country, can madify the language-spe-
cific text strings without needing access to the source code. These
are usually called mesiage files or resorrees.

SOME LANGUAGES ARE HARDER TO DISPLAY
THAN OTHERS

Traditionally the programmer thought of characters as units that se-
quenced across the page. Further, each character fitted into a box and
the sequence was laid out by putting the boxes next to each other. As
you encounter 4 character in a byte string, you put it on the screen,
and that's that. In fact, developers didn't distinguish between a char-
acter and its visual presentation on paper or on a screen. This doesn't
work for languages like Hebrew or Arabic, which are written cursively
(the letters in a word are all joined together as in]mnd‘mlting]. Here,
an individual character shape may need to change at its beginning or
end as typing proceeds because each character’s shape 15 affected by
the surrounding characters, No matter what the language, characters

12

and their visual representation should not be treated as interchange-
able concepts, especially if you are creating global programs.

CHARACTERS VERSUS GLYPHS

Characters and glyphs are two different things. A character repre-
sents a specific meaning (semantic), while a glyph provides a graph-
ical representation of a character. A character’s glyph can change
shape dramatically and is not necessarily tied one-to-one with the
character (sce Table 1). The character a is defined as the meaning
of the character, not its appearance. An a is an 4 is an A! Further,
a single glyph can represent two characters, ¢.g., & representing the
A, E sequence in some cases or the printer’s use of a single glyph
for the # sequence in the word difffcalt. There are other cases where
vou have two glyphs representing one character. For example, in South
Indian languages a single character sometimes separates into two
pieces that are placed around a preceding character.

In summary, each character has unique semantics but can have its
own glyph, can combine with one or more characters to create one

- | Each chare
A I IIzisletter 3 : multiple glyphs, at differen
A | tir
K A ol
v anE

Pes=571=Eralishy 2= P

e -(aresk letter rho
Mone ASCI “bel”

See et for S0rme 5o

example iz

ith
| Characters

= chAaracter can

glyphs at the same b
Table 1. Characters (semantics) and glyphs (presentations) are dif-
ferent concepts and don’t necessarily map one-to-one.
gl}'ph, or can separate into multiple glyphs. The character has se-
mantics, an A means an A. However, the appearance of an A can
vary widely, e.z., by style, s in an #fafics A; by font, as in 2 Helvetica
A; or by context, as in a cursive script. The same glyph may be used
for different characters, e.g., a hyphen and an en dash may have the
same glyph, or the Greek letter capital tho may have the same
glyph as a capital Pin English. This all gets fairly complicated, but

such are the requirements for international software,

ENTER UNICODE

An important part of the solution to this character set problem from
a global perspective is the Unicode Consortium (see sidebar) and
their efforts at compatibility with an international standard for
character encodings, ISO/IEC 1064617

Taligent has long been a strong advocate of Unicode and has sup-
ported the Unicode Consortium since its inception. Unicode pro-
vides a single, 16-bit, global character set. This is crucial for creat-
ing globally distributable software. There are no ntroducers or
strings of data tagged with character set information, and the char-
acter set doesn't vary with locale.

NO PERSON IS AN ISLAND

You might think that if you live in only one locale, or don't go out-

Ohjects in Europe

STANDARDISATION

Arabic Greek Kana Tamil
Armenian Gujarati Kannada Telugu
Bengali Gurmukhi Lao Thai

Cyrillic Han Latin Zhuyinfahao
Devanagari Hangul Malayalam

Georgian Hebrew Oriya

Table 2. Major scripts in use in the world today whose charae-
ters are provided by the Unicode standard

side your house, all this fuss might be ignored. However, if you look
at the number of symbeols that are used in newspapers or books, even
within Roman languages, it is greater than 256, the limit of an eight-
bit extended ASCII set. Often an alternate font is used. For example,
in this article’s summary the arrows are set in Zapf Dingbats. Dif-
ferent fonts simply mean that the same character codes map to en-
tirely different glyphs. These different glyphs should have differ-
ent character codes, as they do in Unicode. When this document
was sent through email to the editor, information was lost. Even
on a single system in a single language you need a character set larger
than 256 characters.

In addition to losing information, you also lose legibility. Back
in the old days we had five-bit codes for teletypes that only sup
ported uppercase letters and a few symbols. Sure, we got by, but
legibility suffered. No one wants to return to that code ser!

SUMMARY

ASCII and extended ASCII have served the computing industry
for many years, but no longer provide the necessary character set
facilities for modern organisations that must function well in an in-
ternational setting,

w (rlabalisation is the process of designing a program or system so
that a single binary version can be sold and used in any region
of the world.

e L ocalisation is taking the program or system and translating the
text strings and other visual elements so they can be used in a
locale, i.e., a region or country.

If the developer has created a global product, the user types in
the data in his or her language using the appropriate locale. Selecting
a locale also changes the presentation to the user’s language. Both
of these capabilities are expected of modern applications.

References

1. The Unicode Consortium. THE UNICODE STANDARD:
WorRLDWIDE CHARACTER ENCODING, VERSION 1.0 (2 vol-
umes), Addison-Wesley, Reading, MA, 1991,

2. The Unicode Consortium. THE UNICODE STANDARD, VER-
510M 1.1, Unicode Technical Report #4 (prepublication ed.),
The Unicode Consortium, Mountain View, CA, 1993,

Mark Davis and Jack Grimes are with Taligent, Inc., 102071 N. De Anza Bled,, Cuperting, CA
85014; email: Mark_Davis@aligant.corm and jorimas@taligent. com

14

Unicode, a fixed-width, 16-bit character-encoding system,
contalns codes for every character needed by the major writing
systems In use throughout the world today. Unicade provides full
character coverage for the major scripts, listed In Table 2, as well
as punctuation, symbaols, and control characters. The character
set for each script Is Independent, L.e., even If a character
appears In multiple scripts, it has a separate code within each
script. For example, the character A has a code for the Roman
alphabet and another code for the Greek alphabet. Note that this
applies to scripts, not languages. The character A Is Identical for
the English and French languages, for example. In all, the Unicode
standard provides codes for over 34,000 characters from the
world’s alphabets, Ideograph sets, and symbol sets. There are over
24,000 unused codes for expansion, and over 6000 codes are
reserved for private use by software and hardware developars.

In additlon to the script name, Unicode assoclates other
semantic Information with each character. Each character has
type properties that describe the usage of the character. Some
examples of type properties are

uppercase, lowercase, and uncased letters
diacritical marks

characters used to represent diglts
punctuation marks

symbols
control characters

The Unicode standard follows a set of fundamental principles:

+ Provides a simple and consistent Interface. It uses fixed-
width 16-bit character codes and does not depend on states or
modes.

* |ncorporates character sets from many existing standards,
e.4., It includes the Latin-1 character sat as Its first 256
characters. It Includes the repertoire of characters from many
other international, national, and corporate standards as well.

* Consolidates Chinese, Korean, and Japanese Ideographs by
asslgning a single code for each Ideograph that Is common to more
than one of these languages.

* Allows marked-character creation through character
composition. It encodes each character and dlacritic or vowel
mark separately and allows tha characters to be combined to
create a marked character (such as). It also provides single
codes for marked characters to comply with preexisting standards.

The Unicode Consortium, a nonprofit organisation, was founded
in 1991. Members of the consortium Include major computer
corporations, software producers, database vendors, research
Institutions, International agencies, and various user groups. Full
members of the Consortlum are Apple Computer, Inc.; Digital
Equipment Carporation; Hewlett-Packard Company; IBM
Gorporation; Lotus Development Corporation; Microsoft
Corporation; NeXT Computer, Inc.; Novell, Inc.: The Resaarch
Libraries Group, Inc.; Symantec Corporation; Tallgent, Inc.; Unlsys
Corporation; and WordPerfect Corporation.

For detalls on Unlcode design and usage, see Tue Unicone
Stanparo 1.0"and Unicode Technical Report #4.2 Unicode Technical
Report #4 describes the amendments to Unicods 1.0 that
constitute Unicode 1.1, the version of Unicode aligned with ISO/IEC
10646 and implemented by the CommonPoint application system.

Objects in Europe

