
To the BMP and beyond!

Eric Muller

Adobe Systems

Welcome!

The goal of this class is to introduce you to the Unicode standard, which deals with the
representation and manipulation of characters in computers.

Unicode is a fairly complex standard. This is mostly due to the complexity of the writing systems of
the world. Don’t be too afraid, but be prepared for some work!

We have placed a particular emphasis on using the correct terminology. Using the appropriate words
from the start will make your journey with Unicode much more enjoyable.

These notes have two purposes: first, to clarify the necessarily simplified text of the slides; second, to
provide additional details that cannot be covered during the class itself.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 1



Content

1. Why Unicode

2. Character model

3. Principles of the Abstract Character Set

4. The characters in 5.0

5. Development of the standard

6. Processing

7. Unicode and other standards

8. Resources

Here is the plan of the class.

Section 1 explains the goals of Unicode in general terms.

Section 2 presents the character model that underlies Unicode.

Section 3 describes the principles that guide the choice of characters in the Unicode standard.

Section 4 gives an overview of the characters and scripts covered by version 4.0 of the standard,

Section 5 describes the process by which the standard evolves.

Section 6 introduces the major algorithms defined by Unicode.

Section 7 explains how other character standards can be implemented using Unicode.

Finally, section 8 points to additional resources.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 2



Part I

Why Unicode

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 3



ASCII

128 characters

= 41

supports meaningful exchange of text data

very limited: not even adequate for English:

Adobe®

he said “Hi!”

résumé†

cañon

Let’s start with the familiar case of the ASCII character standard. The designers of ASCII selected 128
characters, and for each one defined its representation in a computer, in the form a byte. For
example, the character is represented by the byte 0x41.

Having such a standard is a critical step to support the meaningful exchange of text between
applications. Consider something as simple as copy/paste: the source and destination must have
some agreement about the meaning of what is exchanged.

ASCII is very simple, but too much so. Even for English, more than 128 characters are needed:
besides the letters and digits, one needs a fair complement of typographic symbols (quotes, dashes,
bullets, etc), accented characters for loan words, etc. And of course, other scripts and languages need
even larger collections.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 4



Many other standards

national or regional standards

ISO-Latin-1/9: targets Western Europe

JIS: targets Japan

platform standards

Microsoft code pages

Apple: MacRoman, etc.

Adobe: PDFDocEncoding, etc.

but none for many writing systems!

The limitations of ASCII led to many other character standards. Some are national or regional
standards (such as the ISO-Latin family, or the JIS family). Some are defined by software vendors,
the most notable examples being the Microsoft code pages and the Apple encodings.

While each standard solves some problems, their multiplicity makes the life of the software developer
and of the users more complicated. In particular, meaningful exchange of text data now requires a
fairly complex infrastructure to deal with those multiple standards. One needs to interchange not
only the characters themselves, but an indication of the standard used to represent them (e.g. the
charset attribute of the Content-Type header in HTTP).

Furthermore, many writing systems are not covered by those standards, thus limiting computer
usage in some regions of the world.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 5



Unicode

enables world-wide interchange of data

contains all the major living scripts

simple enough to be implemented everywhere

supports legacy data and implementation

allows a single implementation of a product

supports multilingual users and organizations

conforms to international standards

can serve as the fundation for other standards

Unicode’s goals are to improve dramatically this state of affair.

The approach is to have a single character standard that covers all the uses, thus enabling the
world-wide interchange of data. To do so, Unicode must also cover all the major living scripts of the
world.

To succeed, Unicode must be simple enough (but no more so!) to be implemented everywhere and
must offer a viable transition from the legacy standards.

Software developers should be able to write a single implementation of their product to cover the
whole world. Multi-lingual data producers should be supported.

The last two goals are related to standardization; this is important since text is used in so many
contexts which are themselved standardized, such as programming languages, database, and XML.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 6



Part II

Character model

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 7



Four layers

abstract character set

smallest components of written language

coded character set

adds name and code point

character encoding forms

representation in computer

character encoding schemes

byte serialization

Designing a character representation touches on many problems. To better tackle those, Unicode
defines a model that separates them in distinct layers, much like the OSI networking model.

The first layer is that of the abstract character set and it tackles the question: what is a character?

The second layer is fairly mechanical: the goal is mostly to name and enumerate the abstract
characters, resulting in a coded character set.

The third layer deals with the representation of coded characters in computers.

The last layer provides an unambiguous serialization into bytes of those representations.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 8



Abstract character set

character:

the smallest component of written language that has semantic value

wide variation across scripts

alphabetic, syllabary, abugidas, abjad, logographic

even within scripts, e.g. “ch”:

two components in English

one component in Spanish?

abstract character:

a unit of information used for the organization, control, or

representation of textual data.

The word “character” is used in many contexts, with different meanings. Human cultures have
radically differing writing systems, leading to radically differing concepts of a character. Such wide
variation in end user experience can, and often does, result in misunderstanding. This variation is
sometimes mistakenly seen as the consequence of imperfect technology. Instead, it derives from the
great flexibility and creativity of the human mind and the long tradition of writing as an important
part of the human cultural heritage.

A starting definition of character is “the smallest component of written language that has semantic
value”. Clearly, there is no sense encoding the bowl and the stem of a “p” as separate characters:
these things do not have semantic value on their own, and in this case, it is pretty clear that “p” itself
has semantic value.

The scripts of the world show a lot of variation in their organization:
alphabets, such as Latin, Greek and Cyrillic, represent consonant and vowel sounds by
independent letters.
syllabaries, such as Hiragana and Katakana, represent the combination of a consonant and
a vowel sound, and those combinations are atomic.
abugidas, such as the Indic scripts, represent consonants with an inherent vowel sound,
which can be combined with an independent vowel to replace the inherent vowel.
in abjads, such as Arabic, only consonants and long vowels are usually written. In the case
of Arabic, short vowels are written only in teaching materials and in the Quran.
logographic scripts, such a Chinese, are another ball game all together.

Even within a script, the notion of character is not as clear as it may seem. For example, traditional
Spanish mostly treats “ch” as single character.

We sidestep a little bit this question by defining a character as a unit of information. We will see later
that Unicode follows general principles in selecting the abstract characters.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 9



Coded character set

give a name and a code point to each abstract character

name: LATIN CAPITAL LETTER A

code point: pure number, no computer connection

legal values: U+0000 - U+10FFFF

space for over a million characters

characters specific to a script mostly grouped

The next step is to give a unique name (such as LATIN CAPITAL LETTER A) and code point to each
abstract character that is encoded.

The name clearly intends to describe the character it names. For practical reasons, Unicode decided
that names would never be changed, even if a more descriptive one could be found later.

The code point is an integer in the ranges 0 - 10FFFF. Note the convention when writting a code
point: it is prefixed by “U+”, and is made of four to six hexadecimal digits (0-padded). This number
provides a very compact way of identifying a character.

Characters from the same script (e.g. Greek) or same functionality (e.g. Arrows) are mostly grouped,
i.e. have code points in the same range.

It is worth noting that in some cases, a single abstract character generates multiple coded characters,
mostly to support round-tripping with other standards.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 10



17 Planes

17 planes of 64k code points each

plane 0: Basic Multilingual Plane (BMP, 1.0)

frequent characters

plane 1: Supplementary Multilingual Plane (SMP, 3.1)

infrequent, non-ideographic characters

plane 2: Supplementary Ideographic Plane (SIP, 3.1)

infrequent, ideographic characters

plane 14: Supplementary Special-purpose Plane (SSP, 3.1)

planes 15 and 16: Private use planes (2.0)

The full set of code points is organized in 17 planes of 64k characters each.

Plane 0 (U+0000 - U+FFFF) is called the Basic Multilingual Plane (BMP) and it contains the most
frequent characters. It was populated starting in Unicode 1.0.

Plane 1 (U+10000 - U+1FFFF) is called the Supplementary Multilingual plane (SMP) and it contains
infrequently used scripts, such as Deseret. It was populated starting in Unicode 3.1.

Plane 2 (U+20000 - U+2FFFF) is called the Supplementary Ideographic Plane (SIP) and it contains
ideographic characters, most of which are infrequent. It was populated starting in Unicode 3.1.

Plane 14 (U+E0000 - U+EFFFF) is called the Supplementary Special-purpose Plane (SSP); don’t worry
about it. It was populated starting in Unicode 3.1.

Planes 15 and 16 (U+F0000 - U+10FFFF) are Private Use planes. Those planes were introduced in
Unicode 2.0.

The remaining planes have no encoded characters at this time.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 11



Private Use Area

for your own characters; will never be assigned

must agree on the meaning of those code points

Unicode does not provide a mechanism to do so

very delicate to use

avoid it if possible

distribution:

U+E000 - U+F8FF: 6,400 in the BMP

U+F0000 - U+FFFFF: 64k in plane 15

U+100000 - U+10FFFF: 64k in plane 16

The Private Use Area is a bunch of code points set aside so that users can extend Unicode. Those
code points will never be assigned a specific character by the Unicode standard.

To use the PUA, consenting parties must agree on the meaning of the PUA code points. By
construction, this agreement is outside of Unicode itself; furthermore, Unicode provides no
mechanism to establish such an agreement.

Using the PUA is a delicate proposition, because ensuring that all the parties understand and obey
the agreement can be difficult. This is certainly true as soon as the documents that use the PUA are
propagated more or less freely.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 12



Surrogate code points and scalar values

Unicode was originally defined as a “16 bit character set”

in 1996 (Unicode 2.0), realized that this was not enough

code points set aside: surrogates code points

U+D800 - U+DBFF: 1,024 high surrogates

U+DC00 - U+DFFF: 1,024 low surrogates

remaining code points: scalar values

U+0000 - U+D7FF

U+E000 - U+10FFFF

surrogates code points must never appear in data

Originally, Unicode was defined as a 16 bit character set. It was thought that 64k characters was
enough, but most notably because of the approach eventually used to encode Han ideographs, this
turned out not to be the case.

To extend the original scheme, two blocks of 1,024 (then) unused code points were set aside. Those
two blocks are known as the surrogate code points.

The remaining code points are known as the scalar values.

The benefit of setting aside the surrogate code points will become apparent when we look at the
encoding forms, and most specifically at UTF-16.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 13



Character encoding forms: UTFs

the representation of scalar values in computers

each scalar value represented by a sequence of code units

three forms, defined by:

size of the underlying code unit (8, 16, 32 bits)

method to convert a scalar value to code units

all three forms can represent all scalar values and only the scalar

values

no escapes, self-synchronizing

The next layer of the character model deals with the representation of scalar values in computers. In
general, each scalar value is represented by a sequence of code units. Unicode defines three methods
to do so, collectively named UTF (Unicode Transformation Format), which differ in the size of the
code units, and the conversion method.

All three UTFs have two important characteristics. The first is that each UTF can represent all the
scalar values; thus, there is no reason to choose one over another based on the set of characters to
represent.

The second characteristic is that UTFs are efficient to use. There are no escapes (i.e. no state), so one
can simply juxtapose two strings to concatenate them. Sequences of code units are
self-synchronizing: discovering the boundaries of characters is a trivial operation that does not
require to scan the whole string.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 14



UTF-8

8 bit code units, 1 to 4 units

USV Unit 1 Unit 2 Unit 3 Unit 4

0000-007F 0xxxxxxx

0080-07FF 110xxxxx 10xxxxxx

0800-D7FF
1110xxxx 10xxxxxx 10xxxxxx

E000-FFFF

10000-10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

e.g. F03F16 = 1111 0000 0011 11112

11101111 10000000 101111112 = EF 80 BF16

use this table strictly

coincides with ASCII

mostly found in protocols and files

The first UTF is UTF-8, which uses 8 bit code units (hence its name). Each character is represented
by 1 to 4 code units.

The table above shows how a given scalar value is represented in UTF-8. For example, to represent
the scalar value U+F03F, one needs to use the fourth row. The number 0xF03F is written 1111 0000
0011 1111 in binary. The top 4 bits are combined with “1110” to form the first code unit, i.e. 1110
1111 or 0xEF. The next 6 bits are combined with “10” to form the second code unit, i.e. 1000 0000 or
0x80. The bottom 6 bits are combined with “10” to form the third and final code unit, i.e. 1011 1111
or 0xBF. Thus the UTF-8 representation of U+F03F is 0xEF 0x80 0xBF.

It is important to use this table strictly, i.e. to use the proper row. For example, the scalar value
U+0001 must be represented using the first row, i.e. by 0000 0001 or 0x01. It is illegal to represent it
using the second row, i.e. by 11000000 10000001 or 0xA0 0x81.

Similarly, the surrogate code points (D800 through DFFF) cannot be represented in UTF-8 (or any
other UTF). For example, 11101101 10100000 10000000 does not represent D800. This is not a
limitation since the surrogate code points must not occur in data.

UTF-8 coincides with ASCII; if a string contains only ASCII characters, then its representations in
ASCII and in UTF-8 are identical. Thus, when extending to Unicode a protocol or document format
that is based on ASCII, it is convenient to use UTF-8: all existing documents are still legal and retain
the same interpretation.

Given a code unit in an UTF-8 sequence, finding the beginning of the character it represents is easy:
while the top two bits are “10”, move backwards; in at most three steps, you are at the beginning of
the character, without having to look at the previous characters. The top bits of the first code unit of
a character indicate the number of code units for that character: “0” for one code unit, “110” for two
code units, “1110” for three code units and “11110” for four code units.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 15



UTF-16

16 bit code units, 1 or 2 units

USV Unit 1 Unit 2

0000-D7FF
xxxxxxxxxxxxxxxx

E000-FFFF

10000-10FFFF

(10000 bias)

110110xxxxxxxxxx 110111xxxxxxxxxx

takes advantage of gap in scalar values

110110xxxxxxxxxx = D800 - DBFF

110111xxxxxxxxxx = DC00 - DFFF

because of frequency of BMP, efficient

appropriate for applications

UCS-2 is ISO term for UTF-16 restricted to BMP

UTF-16 uses 16 bit code units. Scalar values in the BMP are represented using one code unit, and
scalar values in supplemental planes are represented using two code units.

The table above shows how a given scalar value is represented in UTF-16. For all BMP scalar values,
simply use the (bottom) 16 bits of the scalar value to form a single code unit. Otherwise, substract
0x10000 from the scalar value, which is then expressed in at most 20 bits; prefix the top ten bits by
“110110” to form the first code unit, and the bottom ten bits by “110111” to form the second code
unit.

UTF-16 works because the surrogates have been set aside. Since surrogate code points do not appear
in data, their numeric values can and are used as code units to represent supplementary code points.

Because the vast majority of the frequent characters are in the BMP, UTF-16 is fairly efficient: most
frequently, a single code unit entirely represents a character, and the path to handle two code units is
rarely taken.

UTF-16 is the expected representation for the Windows, Java, ICU and MacOS APIs. This
consideration alone makes UTF-16 the most convenient internal representation for applications.

Given a code unit in an UTF-16 sequence, finding the beginning of the character it represents is easy:
if the top bits are “110111”, move back one unit. The top bits of the first code unit of a character
indicate the number of code units for that character: “110110” for two code units, otherwise one
code units.

The ISO 10646 standard defines the UCS-2 encoding form. For all practical purposes, it is UTF-16
restricted to the BMP, i.e. to those scalar values in the range U+0000 - U+FFFF.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 16



UTF-32

32 bit units, 1 units

USV Unit 1

0000-D7FF
00000000000xxxxxxxxxxxxxxxxxxxxx

E000-10FFFF

convenient, but expensive

rarely used

UCS-4 is the ISO term for UTF-32

The final UTF is fairly straightforward: each scalar value is represented by exactly one 32 bit code
unit, which is the scalar value itself.

While this is an extremely convenient representation, it is also fairly expensive. The top 11 bits are
always zero, and most frequently, the top 16 bits are all zeros. Therefore it is rarely used.

The ISO 10646 standard defines the UCS-4 encoding form. For all practical purposes, it is UTF-32.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 17



Character encoding schemes

mapping of code units to bytes

UTF-8: obvious

UTF-16LE

little endian

initial FF FE (if present) is a character

UTF-16BE

big endian

initial FE FF (if present) is a character

UTF-16

either endianness

may have a BOM: FF FE or FE FF, not part of text

if no BOM, then must be BE

UTF-32: similarly, UTF-32LE, UTF-32BE and UTF-32

The final layer of the character model deals with the serialization in bytes of the code units.

For UTF-8, where the code units are already bytes, this step is trivial, and there is a single encoding
scheme.

For UTF-16, there are three encoding schemes:
in UTF-16LE, the least significant byte of each code unit comes first. If the string starts
with the bytes FF FE, those two bytes should be interpreted as the FEFF code unit, i.e. as
the character U+FEFF ZERO WIDTH NO-BREAK SPACE.
in UTF-16BE, the most significant byte of each code unit comes first. If the string starts
with the bytes FE FF, those two bytes should be interpreted as the FEFF code unit, i.e. as
the character U+FEFF ZERO WIDTH NO-BREAK SPACE.
in UTF-16, either endianness is possible. The endianness may be indicated by starting the
byte stream with FF FE (little endian) or FE FF (big endian), and those bytes are not part of
the string. If no endianness is specified, then the byte order must be big endian.

UTF-32 also has three encoding schemes, defined in a similar way.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 18



Character Latin A

abstract character:

the letter of the Latin script

coded character:

name: LATIN CAPITAL LETTER A

code point: U+0041

encoding forms:

UTF-8: 41

UTF-16: 0041

UTF-32: 00000041

Let’s look at a few characters in this model:

The abstract character of the Latin script is represented by the coded character named LATIN
CAPITAL LETTER A, and its code point is U+0041.

The representation of that scalar value in UTF-8 is a single 8 bit code unit, with value 0x41. The
UTF-16 representation is a single 16 bit code unit, with the value 0x0041. The UTF-32
representation is a single 32 bit code unit, with the value 0x00000041.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 19



Character Hiragana MA

abstract character:

the letter of the Hiragana script

coded character:

name: HIRAGANA LETTER MA

code point: U+307E

encoding forms:

UTF-8: E3 81 BE

UTF-16: 307E

UTF-32: 0000307E

The abstract character of the Hiragana script is represented by the coded character named
HIRAGANA LETTER MA (there is no case in that script), and its code point is U+307E.

The representation of that scalar value in UTF-8 is three 8 bit code units, with values 0xE3, 0x81,
0xBE. The UTF-16 representation is a single 16 bit code unit, with the value 0x307E. The UTF-32
representation is a single 32 bit code unit, with the value 0x0000307E.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 20



Character Deseret AY

abstract character:

the letter of the Deseret script

coded character:

name: DESERET CAPITAL LETTER AY

code point: U+1040C

encoding forms:

UTF-8: F0 90 90 8C

UTF-16: D801 DC0C

UTF-32: 0001040C

Finally, the character of the Deseret script is represented by the coded character named DESERET

CAPITAL LETTER AY, and its code point is U+1040C. This code point is in the Supplemental
Multilingual Plane.

The representation of that scalar value in UTF-8 is four 8 bit code units, with values 0xF0, 0x90,
0x90, 0x8C. The UTF-16 representation is two 16 bit code units, with the value 0xD801, 0xDC0C.
The UTF-32 representation is a single 32 bit code unit, with the value 0x0001040C.

Deseret is a phonemic alphabet devised to write the English language. It was originally developed in
the 1850s at the University of Deseret, now the University of Utah. It was promoted by The Church
of Jesus Christ of Latter-day Saints, also known as the “Mormon” or LDS Church, under Church
President Brigham Young (1801-1877). The name Deseret is taken from a word in the Book of
Mormon defined to mean “honeybee” and reflects the LDS use of the beehive as a symbol of
cooperative industry.

The Church commissioned two typefaces and published four books using the Deseret Alphabet. The
Church-owned Deseret News also published passages of scripture using the alphabet on occasion. In
addition, some historical records, diaries, and other materials were handwritten using this script, and
it had limited use on coins and signs. There is also one tombstone in Cedar City, Utah, written in the
Deseret Alphabet. However, the script failed to gain wide acceptance and was not actively promoted
after 1869. Today, the Deseret Alphabet remains of interest primarily to historians and hobbyists.

The script consists of thirty-eight letters. The alphabet is bicameral; capital and small letters differ
only in size and not in shape. The order of the letters is phonetic: letters for similar classes of sound
are grouped together. In particular, most consonants come in unvoiced/voiced pairs.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 21



Terminology

Basic Type Character status Code point status

Graphic
Assigned to

abstract

character

Designated

(assigned) code

point

Format

Control

PUA

Surrogate

Not assigned to

abstract

character

Noncharacter

Reserved Undesignated

(unassigned)

code point

code points = scalar values + surrogates

We have seen a few names which have a precise meaning in the Unicode model: code point, scalar
value, Private Use Area, surrogate. Here is the complete terminology.

Let’s look first at left column of the table, which shows how the code points classified. As we have
just seen, the code points are made of the surrogates (D800 - DFFF) and the scalar values (0000 -
D7FF, E000 - 10FFFF). Scalar values are further decomposed into:

graphic characters, that is letters, marks, numbers, punctuations, symbols and spaces.
format characters invisible but they affect neighboring characters (e.g., line and paragraph
separators)
controls (U+0000 - U+001F, U+007F, and U+0080 - U+009F), inherited and extended
from the ASCII control characters
PUA or Private Use Area characters
noncharacter scalar values. Those will never be assigned abstract characters, they can be
used by applications as sentinels, and they can never be exchanged.
reserved scalar values are the remaining ones, i.e. those that have not been given any
function yet.

There are two additional ways to group the code points, as indicated by the other columns of the
table.

One way is to ask: “has this code point been assigned to an abstract character?”, and the answer is
“yes” for the graphic, format, control and PUA code points, “no” for the others.

The other way is to ask: “has this code point been designated for some use?”, and the answer is “no”
for the reserved code points, “yes” for the others.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 22



Part III

Principles of the Abstract Character Set

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 23



Principles

characters, not glyphs

plain text only

unification, within each script, across languages

well-defined semantics for characters

dynamic composition of marked forms

equivalence for precomposed forms

characters are stored in logical order

round-tripping with some other standards

From the early days, Unicode adopted a set of ten principles and all but one still apply today. The
first principle was to have a uniform representation of characters by 16 bit numbers, but as we have
seen, this proved too limitating. The second is about efficient processing of Unicode, and it mostly
concerns the coded character set (characters of the same script are mostly grouped, frequent
characters are in the BMP) and the encoding forms (which have no escape and are
self-synchronizing).

The remaining eight principles deal with the abstract character set, that is the selection of characters
to encode, and we will examine them now.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 24



Characters, not glyphs

the character U+0041 can equally well be displayed as , A, A ,

sometimes different glyphs are required: U+0647:

going from characters to glyphs: shaping

/ / / / /

Unicode decided to encode characters rather than glyphs. This means that U+0041 for example,
represents the Latin capital A character, rather than one of the many possible shapes which can be
used to display it, such as upright or italic, with or without serif, etc. Any of these many shapes is a
legitimate representation of the character A, and none is privileged by the Unicode standard.

In some scripts, such as Arabic, the same letter takes different shapes depending on its context. For
example, the letter HEH takes different shapes when isolated , connecting to the right ,
connecting to both sides or connecting to the left . However, all these shapes represent the same
letter, so there is a single abstract character for it.

As a consequence of this principle, the process of going from characters to glyphs, known as shaping
or rendering can be fairly complex. A well-known example is the shaping of Indic scripts. Here we see
how a sequence of six Devanagari characters is typically rendered.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 25



Plain text only

plain text must contain enough information to permit the text to be

rendered legibly, and nothing more

e.g. small capitals are not encoded for English

different requirements for English and IPA

U+0262 LATIN LETTER SMALL CAPITAL

voiced uvular stop in IPA

not used in English

This principle is closely related to the previous one.

Unicode decided to deal with plain text only, defined as enough information to permit the text to be
rendered legibly, and nothing more.

For example, small capitals are not necessary to write plain text English, and are therefore not
encoded. Similarly, the representation of superscripts and subscripts is not necessary in plain text,
and those forms are not encoded.

However, some small capitals are necessary to write in the IPA (International Phonetic Alphabet).
IPA uses a small capital G to write a voiced uvular stop. For this specific use, Unicode has an abstract
character, encoded at U+0262. This character is meant to write IPA only, not English.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 26



Unification, within each script, across languages

no distinction between English and French

U+0041 LATIN CAPITAL LETTER A

single regardless of its usage

no confusion between Latin , Greek and Cyrillic

U+0041 LATIN CAPITAL LETTER A

U+0391 GREEK CAPITAL LETTER ALPHA

U+0410 CYRILLIC CAPITAL LETTER A

fairly specific rules for Han unification

Chinese hanzi

Japanese kanji

Korean hanja

Vietnamese Ch hán

Unicode decided not to distinguish a used in English from an used in French. Both letters have
the same history, and are therefore unified, i.e. represented by the single character U+0041 LATIN
CAPITAL LETTER A.

A similar argument was invoked to encode a single version of many punctuation marks. For
example, there is a single “,” shared by most scripts.

On the other hand, consider the Latin A, the Greek Alpha and the Cyrillic A; they clearly have a
common ancestry, and can even share the same glyph in many typefaces. Yet, they have different
functions and so have not been unified.

The unification of the East-Asian ideographs (Chinese hanzi, Japanese kanji, Korean hanja,
Vietnamese Ch hán), collectively known as the Han ideographs, follows its own set of specific rules
(see the Unicode standard for the details).

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 27



Well-defined semantics for characters

the intended use of a character is unambiguous

the behavior of a character is unambigous

properties

algorithms

To support the interchange of text data, it is critical that the intended use of a character be as
unambiguous as possible.

Futhermore, the behaviour of a character during processing must be well known. Unicode achieves
this by specifying properties of characters and describing algorithms using those properties. We will
look at some of those later.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 28



Dynamic composition

marked forms are a productive mechanism in writing systems

accents in Latin

negation in Math

vowels in Hebrew and Arabic

nukta in Indic scripts

etc.

built from components:

: U+0065 U+0301

: U+2208 U+0338

: U+0921 U+093C

Marked forms are a productive mechanism of writing systems. They are common as accents in Latin,
negation signs in mathematics, vowels in Arabic and Hebrew, nuktas in Indic scripts, etc.

Because there are many combinations, and because new combinations are routinely created when
new orthographies are developed, it is not practical to encode the set of marked forms. Instead,
Unicode provides for the dynamic composition of such forms, and encodes the marks as combining
characters. Thus, a marked form such as is encoded by the base form U+0065 followed by the
combining character U+0301 .

Note the convention of displaying combining characters using a dotted circle, which shows how the
mark gets positioned with respect to the base form it modifies. Of course, this dotted circled is used
only when explaining the Unicode standard.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 29



Dynamic composition (2)

can have multiple marks

from base character outwards

Multiple marks can be attached to a single base form. They are stacked outwards from the base letter,
i.e. the first one is closest to the base form, and the last one is farthest. The relative order of marks
that do not interact (e.g. and ) does not matter.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 30



Equivalence for precomposed forms

some precomposed characters are encoded

U+00E9

canonical equivalence

U+00E9 U+0065 U+0301

similarly for Hangul syllables

U+D4DB U+1111 U+1171 U+11B6

A process shall not assume that the interpretation of two canonically

equivalent character sequences are distinct

For compatibility with existing standards, a number of precomposed characters are directly encoded
in Unicode. For example, is encoded as a single character as U+00E9 (more on that later).

This means that the same result can be expressed in two different ways: either as U+00E9, or as
U+0065 U+0301. But it is important to understand that both forms are equivalent, so Unicode
formally defines the notion of canonical equivalence to record that state of affair.

Canonical equivalence is also used heavily with Hangul syllables: Unicode encodes both the jamo,
which are individual components representing consonant and vowel sounds, as well as the
commonly used combinations of those into syllables.

When presented with two canonically equivalent sequences, a process should not assume that they
have a different meaning. As much as possible, it should treat these as entirely equivalent.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 31



Characters are stored in logical order

logical order ~ pronunciation order ~ typing order

storage display

ASDF

combining marks (when separate) follow their base character

When considering the scripts of the world, the order in which characters should be stored is not as
trivial as it seems when thinking about English. Unicode chose to use the logical order, which is more
or less the pronunciation order, and is often the typing order. (There is one notable exception with
Thai.)

We will see later how the gap between storage order and display order is bridged.

Combining marks are stored after the base character they modify.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 32



Round-tripping with some other standards

the price for acceptance

often at odds with other principles

extra characters:

U+00E9 , U+FB00 , U+F900

canonical decomposition

U+00E9 U+0065 U+0301

U+F900 U+8C48

compatibility decomposition

U+FB00 U+0066 U+0066

A great concern of the Unicode designers was to produce a practical solution. They decided that
exact round-tripping with the then common character standards was necessary, so that an
application could use Unicode for its internal representation of characters, yet consume and produce
character streams using the character standards imposed by other systems.

This principle is often at odds with the other principles of Unicode. For example, the inclusion of
precomposed characters is the result of the round-tripping principle, yet it is somewhat in conflict
with the dynamic composition principle. As we have seen, this was resolved by the canonical
equivalence mechanism.

There are other examples of such conflicts. In some East Asian standard, the character is encoded
twice, to capture different pronunciations. Unicode needs to have two coded characters for this
character, to support round-tripping. At the same time, Unicode neutralizes this difference by
establishing the two coded characters as canonically equivalent.

In some cases such as , the characters that are encoded for compatibility purpose capture a glyph
difference which Unicode does not wish to make. Yet, such a difference cannot be entirely ignored
because of round tripping, so Unicode provides a compatibility decomposition to support
meaningful processing.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 33



Part IV

The characters in 5.0

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 34



How many?

99,024 assigned graphic and format characters

71,226 Han ideographs

11,172 Hangul syllables

16,486 alpha/symbols

140 format characters

875,441 reserved, total

should last a while!

Here is the complete count of code points, organized by type:

Code Point
Range Count

0000-10FFFF 1,114,112

Graphic and Format 99,024

Alpha/Symbols 16,486

Han ideographs 71,226

Hangul syllables 11,172

Format 140

Control 00-1F, 7F, 80-9F 65

PUA E000-F8FF,
planes 15 & 16

137,468

Surrogate D800-DFFF 2,048

Noncharacter FDD0-FDEF,
xxFFFE, xxFFFF

66

Reserved 875,441

The interesting numbers are:
the number of graphic and format code points, i.e. those to pick from when representing
some text using Unicode. The bulk of those are the Han ideographs. There is also a fair
chunk for the Hangul syllables. Nevertheless, that are still 16k characters or so to choose
from for all the other scripts!
the total number of reserved code points. Given the rate at which characters are added, this
should last quite a while!

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 35



The scripts

Latin IPA Greek and Coptic

Cyrillic Armenian Hebrew

Arabic Syriac Thaana

Bengali Gurmukhi Gujarati

Oriya Tamil Telugu

Kannada Malayalam Sinhala

Thai Lao Tibetan

Myanmar Georgian Hangul

Ethiopic Cherokee Canadian

Aboriginal

Ogham Runic Tagalog

All these characters cover quite a number of writing systems!

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 36



The scripts (2)

Hanunoo Buhid Tagbanwa

Khmer Mongolian Hiragana

Katakana Bopomofo Kanbun

CJK Ideographs Yi Old Italic

Gothic Deseret Musical Symbols

Arrows Math Operators Math Symbols

Misc Technical Control Pictures OCR

Enclosed Alpha. Box Drawing Block Elements

Geometric Shapes Misc Symbols Dingbats

Braille Patterns

and some more...

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 37



The scripts (3)

Limbu Tai Le UPA

Linear B Aegean numbers Ugaritic

Shavian Osmanya Cypriot syllabary

Hexagrams Tetragrams New Tai Lue

Buginese Glagolitic Coptic

Tifinagh Syloti Nagri Old Persian

Kharoshthi Balinese N’Ko

Phags-pa Phoenician Sumero-Akkadian

Cuneiform

and some more! The last five are the new scripts in 5.0.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 38



Block descriptions

As can be expected, the bulk of the Unicode standard describes the characters which are encoded and
how to use them.

Here we see the beginning of the description of the Greek block. Generally, those descriptions
provide some historical background on the script, cover the principles of the encoding, highlight the
use of some characters, and point out some particularities of processing the script.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 39



Code charts

The code charts give details for each character. Here is the beginning of the code chart for Greek and
Coptic. You can see the code point as well as a representative glyph for that character.

Remembering the “characters, not glyphs” principle, it is important to realize that the glyphs shown
in the charts are in no way normative. Their only purpose is to illustrate the identity of the
characters.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 40



Code charts (2)

The characters are also described by their names. In this example, we see some of the other
annotations, introduced by specific marks:

for an alternate, but non-normative, name
for an annotation that clarifies the usage of the character
for related but distinct characters
for canonical decompositions
for compatibility decompositions

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 41



Part V

Development of the standard

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 42



Unicode Inc.

the Unicode standard grew from work at Xerox and Apple

the Unicode Consortium was incorporated in 1991

six levels of membership

~120 members: companies, governments, individuals and

organizations; ~20 voting members

A little bit of history:

The Unicode standard grew from work at Xerox and Apple in the late 80s.

The Unicode Consortium was incorporated in 1991, and has about 120 members today; about 20 are
voting members.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 43



Technical committees

UTC: defines The Unicode Standard and associated standards and

technical reports

CLDR-TC: manages the Common Locale Data Repository and

associated standards and technical reports

The technical work is performed by two committees, composed of representatives of the members.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 44



Standards

The Unicode Standard

A Standard Compression Scheme for Unicode

Unicode Collation Algorithm

Unicode Regular Expression Guidelines

Character Mapping Markup Language

Local Data Markup Language (LDML)

Ideographic Variation Database

The Unicode Consortium currently publishes seven standards, the most important of which is of
course The Unicode Standard.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 45



CLDR and LDML

CLDR: Common Locale Data Repository

collects and organizes locale data for the world

highly cooperative effort

formatting (and parsing) of numbers, dates, times, currency

values, ...

display names for language, script, region, currency, time-zones, ...

collation order (used in sorting, searching, and matching text)

identifying usage of measurement systems, weekend conventions,

currencies, ...

LDML: Locale Data Markup Language

the XML markup in which the CLDR is represented

The Common Locale Data Repository is a highly cooperative effort which attempts to solve the next
layer of internationalization.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 46



The Unicode Standard

three levels of versions:

major (4.0): a new book is published

minor (4.1): no new book, but new characters

dot (4.0.1): no new characters

stability guarantees

to ensure that data is perennial

standard comprises:

a book

annexes (will be part of the 5.0 book, separate before)

the UCD

a release description, for non-major releases

The Unicode Standard is versionned. There are three different levels of versions, to capture whether
the standard is published in book form, and whether new characters are added.

The Consortium offers stability guarantees, that is properties relating successive versions; the goal
primarily to ensure that data which is created with one version of the standard remains valid and
keeps the same meaning in future versions.

The manifestation of a given version of the standard comprises:
the book of the corresponding major version, as a base text
may be new versions of the standard annexes, which are an integral part of the standard.
The UAXes are for those areas of the standard which see a faster evolution than the
publication as a book permits
the Unicode Character Database (UCD)
a description of the character additions and/or changes for that particular version

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 47



ISO/IEC 10646

defined by JTC1/SC2/WG2

aligned with Unicode, via cooperation

same repertoire

same character names

same code points

does not define properties or processing

current: ISO/IEC 10646:2003 + Amendments 1 and 2 + 5 characters

corresponds to Unicode 5.0

The ISO standard 10646 is aligned with the Unicode standard. Both standards define the same
repertoire of characters, using the same character names, and the same code points.

The main difference is that Unicode also handles the processing of characters (ISO 10646 simply
enumerates them). On the other hand, the structure of ISO (one vote per participating country) is
more acceptable in some regions of the world.

Unicode 5.0 includes 5 characters which are not present in the corresponding version of 10646, but
have already been approved for the next version of 10646.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 48



Part VI

Processing

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 49



Properties and algorithms

each character has a number of properties

in the Unicode Character Database (UCD)

algorithms based on properties

easy to upgrade to a new repertoire

in the standard or in technical reports

We indicated earlier that Unicode is not simply a repertoire of characters, but also intends to help
proper processing of characters.

Each character has a number of properties, recorded in the Unicode Character Database.

Unicode also specifies a number of algorithms, in the standard itself and in technical reports, to
perform common operations. These algorithms are driven by the property values.

Properties and algorithms are separated, such that when new characters are added to Unicode, it is
most often enough to replace the data files that drive the algorithms, and the code itself does not
have to be modified.

In the rest of this section, we will look at some of the most important algorithms. The purpose is not
so much to equip you to implement them (you should use some kind of library), but rather to give
you a feeling for processing of characters.

You are encouraged to look at the complete list of technical reports.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 50



The Bidirectional Algorithm

text is stored in logical order:

bidi computes the display order:

characters have directionality:

chars directionality

L - Left to Right (strong)

R - Right To Left (strong)

EN - European Number (weak)

ET - European Number Terminator (weak)

CS - Common Number Separator (weak)

Remember that text is stored in logical order. The function of the bidirectional algorithm is to
compute the display or visual order.

The directionality property captures how a given character behaves in bidirectional text. For example,
the Latin letters have a strong Left to Right directionality, while the Hebrew letters have a strong
Right to Left directionality. Many other characters have a weak directionality, which means that it
needs to be adapted to the context in which those characters appear.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 51



The Bidirectional Algorithm (2)

bidi resolves the directionality of weak characters

stored

resolved

displayed

context matters; e.g. adding a

stored

resolved

displayed

format characters to handle special cases

stored

resolved

displayed

To compute the visual order, bidi resolves the directionality of weak characters. In the first example,
the final period is determined to function as an end of sentence marker and is resolved to be Right to
Left.

In the second example, where a 5 was added at the end, the period is determined to function as a
decimal separator and is resolved to be Left to Right.

Unicode also include a few format characters to control the bidi algorithm in special circumstances.
In the last example, the RLO/PDF pair of characters forces the directionality of “abc” to Right to Left
(RLO stands for Right to Left Override, and PDF for Pop Directional Formatting). In general, format
characters do not display, they only affect the display of the characters around them.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 52



The Bidirectional Algorithm (3)

shape of character can depend on directionality

U+0028 LEFT PARENTHESIS

function is opening parenthesis

displays as in ltr

displays as in rtl

captured in the mirrored and mirror glyph properties

can be overriden by higher level protocols

A couple of details:

Some characters are rendered by different shapes depending on the context in which they appear.
For example, the function of U+0028 LEFT PARENTHESIS is to open a parenthesis, and it should
display as in a left to right context, and as in a right to left context.

(Yes, the name OPENING PARENTHESIS would be better; but remember that Unicode decided it
was less convenient to change the character names than to document them. Here is one example).

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 53



Unicode Normalization Forms

multiple representations of the “same” text

vs.

a normalization form selects one of those representations

e.g. allows binary comparisons

two basic forms

NFC: prefers composed characters

NFD: prefers decomposed characters

guarantee of stability

e.g. for databases

As we have seen earlier, there are cases where the same text can be represented in more than one way.
A normalization form is the selection of one of the representation among all the equivalent
representations.

Using normalized text makes some operations simpler. For example, string equality can be logically
implemented as normalization followed by binary comparison.

There are two basic forms of normalization: in NFC, the precomposed form of the characters is
preferred; in NFD, the decomposed form is preferred.

Both forms have a guarantee of stability, i.e, given a string of characters, its NFC and NFD normal
forms will never change. This is important for use in databases, where performance is achieved by
binary comparisons; normalization occurs when data is inserted in the database, and normalization
also occurs (on the query) when data is queried.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 54



Canonical Decomposition Property

canonical decomposition is a property

maps one character to one or more characters

includes:

combining sequences:

Hangul syllables:

singletons: (ohm sign and omega)

Before we see how NFC and NFD forms are computed, we need to understand the canonical
decomposition of characters.

Each character can have the canonical decomposition property. The value of this property is one or
more characters, into which the original character decomposes. Not all characters have a
decomposition; in fact most of them (such as ) do not have one.

Precomposed characters have the expected decomposition into a base character followed combining
mark character(s).

Hangul syllables decompose in their jamo sequence.

There are also a few singleton decompositions, where one character decomposes into a single
character. A typical example is U+2126 OHM SIGN which decomposes into U+03A9 GREEK
CAPITAL LETTER OMEGA.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 55



NFD

apply repeatedly the canonical decompositions

reorder combining marks by increasing combining class

decompose

reorder

Normal Form D (for decomposed or NFD) prefers the decomposed form of characters.

The first step is to apply repeatedly the canonical decompositions until none can be applied.

The second step takes care of non-interacting combining marks. In the example on the left, the base
character, carries three combining marks. Two are above: the macron and the circumflex and
they interact, in the sense that the circumflex is above the macron, not the other way around. One
mark is below: the ogonek . The ogonek does not interact with the macron and circumflex; in the
character stream, it could appear just as well before the macron or after the circumflex. The
reordering select one particular order (ogonek first, macron and circumflex second).

The example on the right shows a canonically equivalent sequence, and how it leads to the same
NFD form.

Two character sequences which have the same NFD representation are said to be canonically
equivalent. Canonical decompositions are carefully built such that a character and its canonical
decomposition are canonically equivalent.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 56



NFC

transform to NFD

recompose combining sequences

decompose

reorder

combine

combine

NFD

Normal Form C (for composed, or NFC) prefers the composed form of characters.

The first step is to transform the string to NFD.

The second step is to recompose combining sequences as much as possible. In our example, are
recomposed into U+01EB , which is further recomposed with into U+01ED .

This description of the NFC computation is logical. In practice, there are useful optimizations which
avoid unnecessary intermediate steps.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 57



NFKD, NFKC

also use compatibility mappings when decomposing

compatibility mappings are a mixed bag

therefore, NFKD and NFKC are difficult to use

There are two additional normal forms, derived from NFD and NFC. They differ in that they also
apply the compatibility decompositions in the first step (the K stands for compatibility).

Because the compatibility decompositions are a mixed bag, NFKD and NFKC are difficult to use and
are best avoided.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 58



Case mappings

simple mappings:

one to one

context independent

avoid: insufficient for e.g. ligatures, German

complex mappings:

one to many: , or

contextual: in final position, not

local-sensitive: in Turkish, not

case folding for caseless matches

Another set of algorithms defined by Unicode concerns case mapping, that is the replacement of
uppercase by lowercase and vice-versa.

Unicode defines simple mappings, where one character is replaced by exactly one character, and
those replacements are independent of the context. While such mappings are necessary in some
cases, their limitations cannot correctly handle a number of cases.

Unicode also defines complex mappings which more accurately reflect reality. Those mappings may
replace a single character by multiple characters (as they do for or ). They may be contextual, to
cover cases such as a Greek sigma for which there are two forms, one to be used in final position.
They are also local-sensitive, to cover cases such as the Turkish dotted i which uppercases to the
uppercase I with a dot.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 59



Unicode Collation Algorithm

many different sorting orders

English: péché < pêche; French: pêche < péché

Spanish (trad): ch single letter, between c and d

German (trad): ö equivalent to oe

dictionary, phonebook, etc.

sorting algorithm that:

is efficient

accounts for canonical and compatibility equivalences

can be tailored to implement most orders

by default, provides a reasonable sorting

Sorting strings is another important operation in text processing.

Like other aspects of writing systems, sorting conventions vary greatly across cultures. Yet, it is
critical to sort according to users expectations: a phonebook or dictionary is not very useful if the
sorting is unexpected.

Here are some examples of variation: In English, when two words differ only on the accents, it is the
leftmost accent difference that counts; in French, it is the rightmost difference that counts. In
traditional Spanish sorting, the two characters ch are considered a single letter, which sorts between c
and d. In traditional German sorting, the character ö is considered as equivalent to the two letters oe,
and therefore öt sorts after od and before of, interleaved with oe.

Even within one culture, there may be different conventions in different contexts. For example, the
dictionary order and the phonebook order may be different.

Getting in the details of the Unicode Collation Algorithm is beyond the scope of this presentation, so
we will just mention a few characteristics here:

it is an efficient algorithm
it accounts for canonical and compatibility equivalence
it can be tailored to implement most sorting orders found in the real world
even without tailoring, it provides a reasonable sorting order

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 60



Part VII

Unicode and other standards

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 61



Transcoding

Unicode

chars

enc.

UTF-8

UTF-16

UTF-32

One of the important principles of Unicode is to work relatively well with legacy characters
standards. This section explains how this works in practice, and characterizes the level of Unicode
implementation needed to deal with some common East Asian standards.

Remember our character model. For this discussion, we are going to focus on the coded character set
layer and on the encoding forms layer. (More precisely, we are going to merge encoding forms and
encoding schemes; there is no loss of generality in doing so.)

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 62



Transcoding

Unicode

chars

enc.

UTF-8

UTF-16

UTF-32

BAR

foo

Our character model is not specific to Unicode. In fact, we can apply it to most other character
standards. Here, we will take the example of the BAR standard, and assume the existence of an
encoding form for it, foo.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 63



Transcoding

Unicode

chars

enc.

UTF-8

UTF-16

UTF-32

BAR

foo

The first piece of magic is to identify the BAR character set with a subset of Unicode. This is possible
because Unicode carefully designed its character set for that purpose (remember the inclusion of
“duplicate” characters, together with decomposition mechanisms).

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 64



Transcoding

Unicode

chars

enc.

UTF-8

UTF-16

UTF-32

foo

BAR

foo

The second piece of magic is to consider foo not just as an encoding for the BAR standard, but also
an encoding for Unicode.

This encoding may not be as nice as the UTFs. For one thing, it can be used only with the subset of
Unicode that is mapped one-for-one from the BAR collection. Also, it may not be
self-synchronizing. Nevertheless, it can be viewed as a Unicode encoding.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 65



Transcoding

Unicode

chars

enc.

UTF-8

UTF-16

UTF-32

foo

Having done that, we may as well forget BAR as a character standard on its own, and just view it as
no more than an encoding of Unicode. Just like with the UTFs, we need to convert imported text to
the internal representation we have selected for our application, and we need to convert exported
text from our internal representation.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 66



Transcoding

Unicode

chars

enc.

UTF-8

UTF-16

UTF-32

foo

ASCII

JIS

ISCII

...

Of course, this is not limited to BAR: practically every other character standard we care to deal with
can be handled in this way.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 67



Character Hiragana MA (revisited)

abstract character:

the letter of the Hiragana script

coded character:

name: HIRAGANA LETTER MA

code point: U+307E

encoding forms:

UTF-8: E3 81 BE

UTF-16: 307E

UTF-32: 0000307E

ASCII: n/a

JIS 0208: 245E

KSX 1001: 2A5E

Let’s revisit our character Hiragana MA. The abstract character, name, code point and UTF
encodings are all the same as before. But we can now add a few more encodings:

the ASCII encoding does not support this character
the JIS 0208 encoding is 245E
the KS X 1001 encoding is 2A5E

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 68



XML

XML does just that!

all characters are Unicode characters

any encoding form (including non-UTFs) is acceptable

It is interesting to note that this is exactly the path taken by XML. In an XML document, all
characters are Unicode characters; the XML declaration at the beginning of the document can
indicate which encoding form is used, and is not limited to the UTFs.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 69



Anatomy of an implementation

UTF-16

transcoding

layer

JIS

UTF-8

This transcoding capability of Unicode, and in particular its perfect round-tripping with important
standards, suggests the following organization for a software component:

The internal representation of text is Unicode, using one of the UTFs. Whenever communication
with the ouside world happens, the text is trancoded between the encoding form used outside and
the encoding form used inside. The outside world does not know any better, but this allows the
software to work unchanged anywhere in the world (assuming the appropriate transcoding is in
place). It further permits the software to simultaneously manipulate text presented to it in different
encoding forms, without having to tag every string with the encoding form is uses.

The internal representation could actually be any encoding form, including ASCII. However, the full
benefits of the approach are realized only if the internal encoding form supports all the characters
that the software could ever encounter, so a UTF is an obvious choice.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 70



Anatomy of an implementation (2)

UTF-16

JIS

UTF-8

UTF-16

Applications are typically built out of components. Each component will have its own internal
representation and its own transcoding layer. As soon as two components share the same internal
representation, it is possible to bypass the transcoding layers, thereby making the implementation
more efficient.

A particular case is the platform on which the software runs, such as Windows or MacOS. Selecting
the same internal representation as those components makes perfect sense. Since those use UTF-16,
that is often a logical choice.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 71



JIS X 0208:1997 and JIS X 0213:2000

standard:

Japan

two complementary standards

market will probably demand both

characters:

JIX X 0208: 7k

JIS X 0213: 4k

~300 in plane 2

mappings:

mapping to Unicode 3.2 does not use PUA

encoding:

2 bytes

Let’s look at a few important East Asian character standard in that light.

First, we have the pair of complementary standards JIS X 0208:1997 and JIS X 0213:2000. Those
standards are defined by the Japanese standardization body, and it seems that the Japanese market
will demand support for them.

The combined character set is about 11k characters. Considered as Unicode characters, all these
characters are in the Unicode 3.2 repertoire, with about 300 in plane 2, the Supplementary
Ideographic Plane.

In the “native” encoding (S-JIS), all these characters are represented in one 2 byte unit. Note that in
UTF-16, about 300 will need two 16 bit units, and the others will need just one 16 bit unit.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 72



GB 18030-2000

standard:

People’s Republic of China

mandatory for products sold there

characters:

28k

mappings:

mapping to Unicode 3.2, BMP only, uses PUA for 25 characters

mapping to Unicode 4.1: no PUA

encoding:

1, 2, or 4 bytes

The GB 18030-2000 standard has been defined by the People’s Republic of China (PRC) and its
support is mandatory for software sold in the PRC.

This standard is a little bit weird, because it can be interpreted in three different ways. The more
conventional way says that it contains about 28k characters. The standard defines a mapping to
Unicode 3.2, BMP only, which uses the PUA for 25 characters. It is also possible to construct a
mapping to Unicode 4.1 which does not use the PUA at all.

The “native” encoding represents those characters in one, two or four 8 bit code units.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 73



HKSCS

standard:

Hong Kong SAR

supplements BIG5

mandatory for selling to the government

characters:

4,818 characters

1,651 in plane 2

mappings:

mapping to Unicode 3.0 uses PUA for 1,686 characters

mapping to Unicode 3.1-4.0 uses PUA for 35 characters

mapping to Unicode 4.1 does not use the PUA

encoding:

2 bytes

The HKSCS (Hong Kong Supplementary Character Set) standard is defined by the Hong Kong
Special Administrative Region, and its support is mandatory to sell software to the Hong Kong
government.

This standard has about 5k characters (to add to the ~13k characters of Big5), a third of those in
plane 2.

HKSCS defines a mapping to Unicode 3.0, which uses the PUA for for plane 2 characters (those did
not exist in Unicode 3.0) and for a few others. It also defines a mapping to Unicode 3.1, which takes
advantage of the plane 2 characters, but still uses the PUA for 25 characters. Finally, it is possible to
define a mapping to Unicode 4.1 which does not use the PUA at all.

The “native” encoding represents those characters in one 16 bit code unit.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 74



The bad news

there is not always an “official” mapping

different vendors do different things

PUA conflicts:

HKSCS 9571 (U+2721B) U+E78D

GB18030 A6D9 (,) U+E78D

PUA differentiation:

HKSCS 8BFA (U+20087) U+F572

GB18030 FE51 (U+20087) U+E816

no need for PUA with Unicode 4.1

Handling other characters standards via Unicode, in particular the East Asian ones, has a few pitfalls.

First, there is not always an official mapping between another standard and Unicode, and in practice,
different vendors have implemented different mappings.

Second, uses of the PUA by mappings of different standards are not necessarily compatible.
Sometimes there are conflicts, sometimes there is differentiation.

Consider the case of HKSCS 9571, which is clearly U+2721B: under the mapping to Unicode 3.0, this
character is mapped in the PUA to U+E78D. At the same time, the GB 18030 character A6D9, which
is clearly not U+2721B, is also mapped in the PUA to U+E78D. In other words, when encountering
Unicode text that contains U+E78D, one needs to know if it follows the HKSCS usage of the PUA, or
the GB 18030 usage of the PUA (or yet some other usage).

Consider the case of HKSCS 8BFA, which is clearly U+20087: under the mapping to Unicode 3.0,
this character is mapped in the PUA to U+F572. At the same time, this same character U+20087 is
also present in GB18030 as FE51, and it is also mapped to the PUA, but at U+E816. This time, we
have the symmetric situation, where the same character is mapped to different PUA code points.

The good news is that with Unicode 4.1, it is possible to fully support GB 18030 and HKSCS without
using the PUA at all.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 75



Part VIII

Resources

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 76



Unicode Inc. Resources

Unicode Consortium: http://www.unicode.org

UAXes

technical reports

UCD

unibook: application to explore the UCD

online Unihan database

The Unicode Standard, Version 4.0

ISBN 0-321-18578-1

also at www.unicode.org

Unicode Guide

6 pages laminated quick study guide

ISBN 9781423201809

The Unicode Consortium maintains a web site where you will find the standard itself, the technical
reports, the Unicode Character Database, and many other things. Among them is unibook, a very
useful program to examine the UCD (the code charts in the published standard are built by this
application). There is also the online Unihan database, which permits a more interactive exploration
of the Unihan database, which contains all sorts of metadata about the Han ideographs.

The published book can be found in all good bookstores...

There is also a 6 page quick study guide, published by BarCharts.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 77

@href


Internationalization and Unicode Conference

Internationalization and Unicode Conference

once or twice a year

IUC 30, Washington DC, November 2006

(http://www.unicode.org/conference)

The International Unicode Conference is a good place to stay in touch with the Unicode community.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 78

@href


Other Resources

IBM’s site for Unicode: http://www.ibm.com/developer/unicode

International Components for Unicode:

http://oss.software.ibm.com/developerworks/opensource/icu/project/

Mark Davis’ site: http://www.macchiato.com

Michael Everson’s site: http://www.evertype.com

Unicode Demystified by Richard Gillam (ISBN 0201700522), August

2002

Unicode Explained by Jukka Korpela (ISBN 0-596-10121-X), June 2006

There are of course many other web pages about Unicode. Here are some we have found useful.

There are a few books on Unicode besides the Unicode Inc. publications.

© Adobe Systems - To the BMP and beyond! July 20, 2006 - Slide 79

@href
@href
@href
@href

	To the BMP and beyond!
	Content
	Why Unicode
	ASCII
	Many other standards
	Unicode

	Character model
	Four layers
	Abstract character set
	Coded character set
	17 Planes
	Private Use Area
	Surrogate code points and scalar values
	Character encoding forms: UTFs
	UTF-8
	UTF-16
	UTF-32
	Character encoding schemes
	Character Latin A
	Character Hiragana MA
	Character Deseret AY
	Terminology

	Principles of the Abstract Character Set
	Principles
	Characters, not glyphs
	Plain text only
	Unification, within each script, across languages
	Well-defined semantics for characters
	Dynamic composition
	Dynamic composition (2)
	Equivalence for precomposed forms
	Characters are stored in logical order
	Round-tripping with some other standards

	The characters in 5.0
	How many?
	The scripts
	The scripts (2)
	The scripts (3)
	Block descriptions
	Code charts
	Code charts (2)

	Development of the standard
	Unicode Inc.
	Technical committees
	Standards
	CLDR and LDML
	The Unicode Standard
	ISO/IEC 10646

	Processing
	Properties and algorithms
	The Bidirectional Algorithm
	The Bidirectional Algorithm (2)
	The Bidirectional Algorithm (3)
	Unicode Normalization Forms
	Canonical Decomposition Property
	NFD
	NFC
	NFKD, NFKC
	Case mappings
	Unicode Collation Algorithm

	Unicode and other standards
	Transcoding
	Transcoding
	Transcoding
	Transcoding
	Transcoding
	Transcoding
	Character Hiragana MA (revisited)
	XML
	Anatomy of an implementation
	Anatomy of an implementation (2)
	JIS X 0208:1997 and JIS X 0213:2000
	GB 18030-2000
	HKSCS
	The bad news

	Resources
	Unicode Inc. Resources
	Internationalization and Unicode Conference
	Other Resources
	Resources at Adobe




