
 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 1

Unicode Nearly Plain-Text Encoding of Mathematics
Murray Sargent III

Office Authoring Services, Microsoft Corporation
4-Apr-06

1. Introduction .. 2
2. Encoding Simple Math Expressions .. 3

2.1 Fractions .. 4
2.2 Subscripts and Superscripts... 6

2.3 Use of the Blank (Space) Character ... 7
3. Encoding Other Math Expressions .. 8

3.1 Delimiters .. 8
3.2 Literal Operators ... 10

3.3 Prescripts and Above/Below Scripts... 11
3.4 n-ary Operators ... 11

3.5 Mathematical Functions ... 12
3.6 Square Roots and Radicals ... 13

3.7 Enclosures.. 13
3.8 Stretchy Characters... 14

3.9 Matrices.. 15
3.10 Accent Operators ... 16

3.11 Differential, Exponential, and Imaginary Symbols 17
3.12 Unicode Subscripts and Superscripts .. 17

3.13 Concatenation Operators .. 17
3.14 Comma, Period, and Colon .. 18

3.15 Space Characters ... 18
3.16 Ordinary Text Inside Math Zones... 20

3.17 Phantoms and Smashes .. 20

3.18 Arbitrary Groupings .. 21
3.19 Equation Arrays ... 21

3.20 Math Zones ... 21
3.21 Equation Numbers .. 22

3.22 Linear Format Characters and Operands .. 22
3.23 Math Features Not In Linear Format ... 25

4. Input Methods... 26
4.1 ASCII Character Translations ... 26

4.2 Math Keyboards .. 27
4.3 Hexadecimal Input .. 27

4.4 Pull-Down Menus and Toolbars... 28

 Unicode Nearly Plain Text Encoding of Mathematics

2 Unicode Technical Note

4.5 Macros .. 28

4.6 Linear Format Math Autocorrect List.. 28
4.7 Handwritten Input .. 29

5. Recognizing Mathematical Expressions ... 29
6. Using the Linear Format in Programming Languages 30

6.1 Advantages of Linear Format in Programs ... 31
6.2 Comparison of Programming Notations ... 32

6.3 Export to TeX ... 35
7. Conclusions ... 35

Acknowledgements ... 36
Appendix A. Linear Format Grammar ... 36

Appendix B. Character Keywords and Properties .. 38
References.. 45

1. Introduction
Getting computers to understand human languages is important in increasing

the utility of computers. Natural-language translation, speech recognition and gen-
eration, and programming are typical ways in which such machine comprehension
plays a role. The better this comprehension, the more useful the computer, and
hence there has been considerable current effort devoted to these areas since the
early 1960s. Ironically one truly international human language that tends to be neg-
lected in this connection is mathematics itself.

With a few conventions, Unicode1 can encode most mathematical expressions
in readable nearly plain text. Technically this format is a “lightly marked up format”;
hence the use of “nearly”. The format is linear, but it can be displayed in built-up
presentation form. To distinguish the two kinds of formats in this paper, we refer to
the nearly plain-text format as the linear format and to the built-up presentation
format as the built-up format. This linear format can be used with heuristics based
on the Unicode math properties to recognize mathematical expressions without the
aid of explicit math-on/off commands. The recognition is facilitated by Unicode’s
strong support for mathematical symbols.2 Alternatively, the linear format can be
used in math “zones” explicitly controlled by the user either with on-off characters
as used in TeX or with a character format attribute in a rich-text environment. Use of
math zones is desirable, since the recognition heuristics are not infallible.

The linear format is more compact and easy to read than [La]TeX,3,4 or
MathML.5 However unlike those formats, it doesn’t attempt to include all typograph-
ical embellishments. Instead we feel it’s useful to handle some embellishments in
the higher-level layer that handles rich text properties like text and background col-
or, font size, footnotes, comments, hyperlinks, etc. In principle one can extend the

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 3

notation to include the properties of the higher-level layer, but at the cost of re-
duced readability. Hence embedded in a rich-text environment, the linear format
can faithfully represent rich mathematical text, whereas embedded in a plain-text
environment it lacks most rich-text properties and some mathematical typographi-
cal properties. The linear format is primarily concerned with presentation, but it has
some semantic features that might seem to be only content oriented, e.g., n-aryands
and function-apply arguments (see Secs. 3.4 and 3.5). These have been included to
aid in displaying built-up functions with proper typography, but they also help inte-
roperate with math-oriented programs.

Most mathematical expressions up through calculus can be represented unam-
biguously in the linear format, from which they can be exported to [La]TeX, MathML,
C++, and symbolic manipulation programs. The linear format borrows notation from
TeX for mathematical objects that don’t lend themselves well to a mathematical li-
near notation, e.g., for matrices.

A variety of syntax choices can be used for a linear format. The choices made in
this paper favor efficient input of mathematical formulae, sufficient generality to
support high-quality mathematical typography, the ability to round trip elegant ma-
thematical text at least in a rich-text environment, and a format that resembles a
real mathematical notation. Obviously compromises between these goals had to be
made.

The linear format is useful for 1) inputting technical text, 2) displaying such
text by text engines that cannot display a built-up format, and 3) computer pro-
grams. For more general storage and interchange of math expressions between
math-aware programs, MathML and other higher-level languages are preferred.

Section 2 motivates and illustrates the linear format for math using the fraction,
subscripts, and superscripts along with a discussion of how the ASCII space U+0020
is used to build up one construct at a time. Section 3 summarizes the usage of the
other constructs along with their relative precedences, which are used to simplify
the notation. Section 4 discusses input methods. Section 5 gives ways to recognize
mathematical expressions embedded in ordinary text. Section 6 explains how Un-
icode plain text can be helpful in programming languages. Section 7 gives conclu-
sions. The appendices present a simplified linear-format grammar and a partial list
of operators.

2. Encoding Simple Math Expressions
Given Unicode’s strong support for mathematics2 relative to ASCII, how much

better can a plain-text encoding of mathematical expressions look using Unicode?
The most well-known ASCII encoding of such expressions is that of TeX, so we use it
for comparison. MathML is more verbose than TeX and some of the comparisons

 Unicode Nearly Plain Text Encoding of Mathematics

4 Unicode Technical Note

apply to it as well. Notwithstanding TeX’s phenomenal success in the science and
engineering communities, a casual glance at its representations of mathematical ex-
pressions reveals that they do not look very much like the expressions they
represent. It’s not easy to make algebraic calculations by hand directly using TeX’s
notation. With Unicode, one can represent mathematical expressions more readably,
and the resulting nearly plain text can often be used with few or no modifications
for such calculations. This capability is considerably enhanced by using the linear
format in a system that can also display and edit the mathematics in built-up form.

The present section introduces the linear format with fractions, subscripts, and
superscripts. It concludes with a subsection on how the ASCII space character
U+0020 is used to build up one construct at a time. This is a key idea that makes the
linear format ideal for inputting mathematical formulae. In general where syntax
and semantic choices were made, input convenience was given high priority.

2.1 Fractions

One way to specify a fraction linearly is LaTeX’s \frac{numerator}{denominator}.
The { } are not printed when the fraction is built up. These simple rules immediately
give a “plain text” that is unambiguous, but looks quite different from the corres-
ponding mathematical notation, thereby making it harder to read.

Instead, we define a simple operand to consist of all consecutive letters and
decimal digits, i.e., a span of alphanumeric characters, those belonging to the Lx and
Nd General Categories (see The Unicode Standard 4.0,1 Table 4-2. General Category).
As such, a simple numerator or denominator is terminated by most nonalphanumer-
ic characters, including, for example, arithmetic operators, the blank (U+0020), Un-
icode characters U+2200 – U+23FF, and U+2500 – U+2AFF. The fraction operator is
given by the usual solidus / (U+002F). So the simple built-up fraction

𝑎𝑏𝑐
𝑑.

appears in linear format as abc/d. To force a display of the linear fraction, one can
use \/ (backslash followed by slash).

For more complicated operands (such as those that include operators), paren-
theses (), brackets [], or braces { } can be used to enclose the desired character
combinations. If parentheses are used and the outermost parentheses are preceded
and followed by operators, those parentheses are not displayed in built-up form,
since usually one does not want to see such parentheses. So the plain text (a + c)/d
displays as

𝑎+𝑐
𝑑 .

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 5

In practice, this approach leads to plain text that is easier to read than LaTeX’s, e.g.,
\frac{a + c}{d}, since in many cases, parentheses are not needed, while TeX requires
{ }’s. To force the display of the outermost parentheses, one encloses them, in turn,
within parentheses, which then become the outermost parentheses. For example,
((a + c))/d displays as

ȋ𝑎+𝑐Ȍ
𝑑 .

A really neat feature of this notation is that the plain text is, in fact, often a legi-
timate mathematical notation in its own right, so it is relatively easy to read. Con-
trast this with the MathML version, which (with no parentheses) reads as

<mfrac>
 <mrow>

<mi>a</mi>
<mo>+</mo>
<mi>c</mi>

 </mrow>
 <mi>d</mi>
 </mfrac>

Three built-up fraction variations are available: the “fraction slash” U+2044
(which one might input by typing \sdivide) builds up to a skewed fraction, the “divi-
sion slash” U+2215 (\ldivide) builds up to a potentially large linear fraction, and the
circled slash ⊘ (U+2298, \ndivide) builds up a small numeric fraction (although
characters other than digits can be used as well).

The same notational syntax is used for a “stack” which is like a fraction with no
fraction bar. The stack is used to create binomial coefficients and the stack operator
is ‘¦’ (\atop). For example, the binomial theorem

ȋ𝑎+𝑏Ȍ𝑛=෍ ൬𝑛𝑘൰𝑎
𝑘𝑏𝑛−𝑘

𝑛

𝑘=0

in linear format reads as (see Sec. 3.4 for a discussion of the n-aryand operator Ʋ)

(a + b)^n = ∑_(k=0)^n Ʋ (n ¦ k) a^k b^(n-k),

where (n ¦ k) is the binomial coefficient for the combinations of n items grouped k at
a time. The summation limits use the subscript/superscript notation discussed in
the next subsection.

 Unicode Nearly Plain Text Encoding of Mathematics

6 Unicode Technical Note

2.2 Subscripts and Superscripts

Subscripts and superscripts are a bit trickier, but they’re still quite readable.
Specifically, we introduce a subscript by a subscript operator, which we display as
the ASCII underscore _ as in TeX. A simple subscript operand consists of the string of
one or more characters with the General Categories Lx (alphabetic) and Nd (decimal
digits), as well as the invisible comma. For example, a pair of subscripts, such as 𝛿𝜇𝜈
is written as 𝛿_𝜇𝜈. Similarly, superscripts are introduced by a superscript operator,
which we display as the ASCII ^ as in TeX. So a^b means 𝑎𝑏. A nice enhancement for
a text processing system with build-up capabilities is to display the _ as a small sub-
script down arrow and the ^ as a small superscript up arrow, in order to convey the
semantics of these build-up operators in a math context.

Compound subscripts and superscripts include expressions within parenthes-
es, square brackets, and curly braces. So 𝛿𝜇+𝜈 is written as 𝛿_(𝜇+𝜈). In addition it is
worthwhile to treat two more operators, the comma and the period, in special ways.
Specifically, if a subscript operand is followed directly by a comma or a period that
is, in turn, followed by whitespace, then the comma or period appears on line, i.e., is
treated as the operator that terminates the subscript. However a comma or period
followed by an alphanumeric is treated as part of the subscript. This refinement ob-
viates the need for many overriding parentheses, thereby yielding a more readable
linear-format text (see Sec. 3.14 for more discussion of comma and period).

Another kind of compound subscript is a subscripted subscript, which works
using right-to-left associativity, e.g., a_b_c stands for 𝑎𝑏𝑐. Similarly a^b^c stands for
𝑎𝑏𝑐.

 Parentheses are needed for constructs such as a subscripted superscript like
𝑎𝑏𝑐, which is given by a^(b_c), since a^b_c displays as 𝑎𝑐𝑏 (as does a_c^b). The build-
up program is responsible for figuring out what the subscript or superscript base is.
Typically the base is just a single math italic character like the a in these examples.
But it could be a bracketed expression or the name of a mathematical function like
sin as in sin^2 x, which renders as sin2𝑥 (see Sec. 3.5 for more discussion of this
case). It can also be an operator, as in the examples +1 and =2. In Indic and other
cluster-oriented scripts the base is by default the cluster preceding the subscript or
superscript operator.

As an example of a slightly more complicated example, consider the expression
𝑊𝛿1𝜌1𝜍2

3𝛽 , which can be written with the linear format 𝑊^3𝛽_𝛿1𝜌1𝜍2, where Unicode
numeric subscripts are used. In TeX, one types

$W^{3\beta}_{\delta_1\rho_1\sigma_2}$

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 7

The TeX version looks simpler using Unicode for the symbols, namely $W^{3β}_{δ_1
ρ_ς_2}$ or $W {̂3β}_{δ1ρ1ς2}$, since Unicode has a full set of decimal subscripts and
superscripts. As a practical matter, numeric subscripts are typically entered using
an underscore and the number followed by a space or an operator, so the major
simplification is that fewer brackets are needed.

For the ratio
𝛼2

3

𝛽2
3 +𝛾23

the linear-format text can read as 𝛼₂³/(𝛽₂³ + 𝛾₂³), while the standard TeX version
reads as

$$\alpha_2^3 \over \beta_2^3 + \gamma_2^3$$·

The linear-format text is a legitimate mathematical expression, while the TeX ver-
sion bears no resemblance to a mathematical expression.
 TeX becomes cumbersome for longer equations such as

𝑊𝛿1𝜌1𝜍2
3𝛽 =𝑈𝛿1𝜌1

3𝛽 + 1
8𝜋2 න 𝑑𝛼2

′൦
𝑈𝛿1𝜌1

2𝛽 −𝛼2
′𝑈𝜌1𝜍2

1𝛽

𝑈𝜌1𝜍2
0𝛽 ൪

𝛼2

𝛼1

A linear-format version of this reads as

W_δ1ρ1ς2 3̂β=U_δ1ρ1 3̂β+1/8π̂2 ∫_α1 α̂2Ʋdα’2 [(U_δ1ρ1 2̂β-α’2
U_ρ1ς2 1̂β)/U_ρ1ς2 0̂β]

while the standard TeX version reads as

$$W_{\delta_1\rho_1\sigma_2}^{3\beta}
 = U_{\delta_1\rho_1}^{3\beta} + {1 \over 8\pi^2}
 \int_{\alpha_1}^{\alpha_2} d\alpha_2’ \left[
 {U_{\delta_1\rho_1}^{2\beta} - \alpha_2’
 U_{\rho_1\sigma_2}^{1\beta} \over
 U_{\rho_1\sigma_2}^{0\beta}} \right] $$.

2.3 Use of the Blank (Space) Character

The ASCII space character U+0020 is rarely needed for explicit spacing of built-
up text since the spacing around operators is should be provided automatically by
the math display engine (Sec. 3.15 discusses this automatic spacing). However the

 Unicode Nearly Plain Text Encoding of Mathematics

8 Unicode Technical Note

space character is very useful for delimiting the operands of the linear-format nota-
tion. When the space plays this role, it is eliminated upon build up. So if you type
\alpha followed by a space to get α, the space is eliminated when the α replaces the
\alpha. Similarly a_1 b_2 builds up as a1b2 with no intervening space.

Another example is that a space following the denominator of a fraction is
eliminated, since it causes the fraction to build up. If a space precedes the numerator
of a fraction, the space is eliminated since it may be necessary to delimit the start of
the numerator. Similarly if a space is used before a function-apply construct (see Sec.
3.5) or before above/below scripts (see Sec. 3.3), it is eliminated since it delimits
the start of those constructs.

In a nested subscript/superscript expression, the space builds up one script at
a time. For example, to build up a^b^c to abc, two spaces are needed if spaces are
used for build up. Some other operator like + builds up the whole expression, since
the operands are unambiguously terminated by such operators.

In TeX, the space character is also used to delimit control words like \alpha
and does not appear in built-up form. A difference between TeX’s usage and the li-
near format’s is that in TeX, blanks are invariably eliminated in built-up display,
whereas in the linear format blanks that don’t delimit operands or keywords do re-
sult in spacing. Additional spacing characters are discussed in Sec. 3.15.

One displayed use for spaces is in overriding the algorithm that decides that an
ambiguous unary/binary operator like + or − is unary. If followed by a space, the
operator is considered to be binary and the space isn’t displayed. Spaces are also
used to obtain the correct spacing around comma, period, and colon in various con-
texts (see Sec. 3.14).

3. Encoding Other Math Expressions
The previous section describes how we encode fractions, subscripts and super-
scripts in the linear format and gives a feel for that format. The current section de-
scribes how we encode other mathematical constructs using this approach and ends
with a more formal discussion of the linear format.

3.1 Delimiters

Brackets [], braces { }, and parentheses () represent themselves in the Un-
icode plain text, and a word processing system capable of displaying built-up formu-
las should be able to enlarge them to fit around what’s inside them. In general we
refer to such characters as delimiters. A delimited pair need not consist of the same
kinds of delimiters. For example, it’s fine to open with [and close with] and one
sees this usage in some mathematical documents. The closing delimiter can have a
subscript and/or a superscript. Delimiters are called fences in MathML.

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 9

These choices suffice for most cases of interest. But to allow for use of a delimi-
ter without a matching delimiter and to overrule the open/close character of delimi-
ters, the special keywords \open and \close can be used. These translate to the box-
drawings characters ├ and ┤, respectively. Box drawings characters are used for
the open/close delimiters because they aren’t likely to be used as mathematical cha-
racters and they are readily available in fonts. If used before any character that isn’t
a delimiter of the opposite sense, the open/close delimiter acts as an invisible deli-
miter, defining the corresponding end of a delimited expression. A common use of
this is the “case” equation, such as

𝑓ȋ𝑥Ȍ= ൜𝑥 if 𝑥≥ 0
−𝑥 if 𝑥< 0

� ,

which has the linear format “f(x) = {Ʈ (&x" if "x ≥ 0@−&x" if "x < 0)┤" (see Sec. 3.19
for a discussion of the equation-array operator Ʈ).

The open/close delimiters can be used to overrule the normal open/close cha-
racter of delimiters as in the admittedly strange, but nevertheless sometimes used,
expression “]a + b[”, which has the linear format “├]a+b┤[”. Note that a blank fol-
lowing an open or close delimiter is “eaten”. This is to allow an open delimiter to be
followed by a normal delimiter without combining the two into a single delimiter.
See also Sec. 3.18 on how to make arbitrary groupings.

The usage of open and close delimiters in the linear format is admittedly a
compromise between the explicit nature of TeX and the desire for a legitimate math
notation, but the flexibility can be worth the compromise especially when interope-
rating with ordinarily built-up text such as in a WYSIWYG math system. TeX uses
\left and \right for this purpose instead of \open and \close. We use the latter since
they apply to right-to-left mathematics used in many Arabic locales as well as to the
usual left-to-right mathematics.

Absolute values are represented by the ASCII vertical bar | (U+007C). The
evenness of its count at any given bracket nesting level typically determines wheth-
er the vertical bar is a close |. Specifically, the first appearance is considered to be an
open | (unless subscripted or superscripted), the next a close | (unless following an
operator), the next an open |, and so forth.

Nested absolute values can be handled unambiguously by discarding the out-
ermost parentheses within an absolute value. For example, the built-up expression
||x| - |y|| can have the linear format |(|x|−|y|)|. Some cases, such as this one, can be
parsed without the clarifying parentheses by noting that a vertical bar | directly fol-
lowing an operator is an open |. But the example |a|b−c|d| needs the clarifying pa-
rentheses since it can be interpreted as either (|a|b)−(c|d|) or |a(|b−c|)d|. The usual
algorithm gives the former, so if one wants the latter without the inner parentheses,
one can type |(a|b−c|d)|.

 Unicode Nearly Plain Text Encoding of Mathematics

10 Unicode Technical Note

Another case where we treat | as a close delimiter is if it is followed by a space
(U+0020). This handles the important case of the bra vector in Dirac notation. For
example, the quantum mechanical density operator ρ has the definition

𝜌= ෍ 𝑃𝜓ȁ𝜓 𝜓ȁۦ
𝜓

,

where the vertical bars can be input using the ASCII vertical bar.
If a | is followed by a subscript and/or a superscript and has no corresponding

open |, it is treated as a script base character, i.e., not a delimiter. Its built-up size
should be the height of the integral sign in the current display/inline mode.

The Unicode norm delimiter U+2016 (‖) has the same open/close definitions
as the absolute value character | except that it’s always considered to be a delimiter.

Delimiters can also have separators within them. The linear format doesn’t
formalize the comma separators of function arguments (MathML does), but it sup-
ports the vertical bar separator, which is represented by the box drawings light ver-
tical character│(U+2502). We tried using the ASCII | (U+007C) for this purpose too,
but the resulting ambiguities are insurmountable in general. One case using U+007C
as a separator that can be deciphered is that of the form (a|b), where a and b are
mathematical expressions. But (a|b|c) interprets the vertical bars as the absolute
value. The vertical bar separator grows in size to match the size of the surrounding
brackets.

Another common separator is the \mid character ∣ (U+2223), commonly used
in expressions like {𝑥 | 𝑓ȋ𝑥Ȍ= 0}. This separator also grows in size to match the
surrounding brackets and is spaced as a relational.

3.2 Literal Operators

Certain operators like brackets, braces, parentheses, superscript, subscript,
integral, etc., have special meaning in the linear-format notation. In fact, even a cha-
racter like ‘+’, which displays the same glyph in linear format as in built-up form
(aside from a possible size reduction), plays a role in the linear format in that it
terminates an operand. To remove the linear-format role of such an operator, we
precede it by the “literal operator”, for which the backslash \ is handy. So \[is dis-
played as an ordinary left square bracket, with no attempt by the build-up software
to match a corresponding right square bracket. Such quoted operators are automati-
cally included in the current operand.

Linear format operators always consist of a single Unicode character, although
a control word like \open may be used to input the character. Using a single charac-
ter has the advantage of being globalized, since the control word typically looks like
English. Users can define other control words that look like words in other languag-
es just so long as they map into the appropriate operator characters. A slight excep-
tion to the single-character operator rule occurs for accent operators that are ap-

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 11

plied to two or more characters (see Sec. 3.10). For these the accent combining
mark may be preceded by a no-break space for the sake of readability. Another ad-
vantage of using operator characters rather than control words is that the build-up
processing is simplified and therefore faster.

3.3 Prescripts and Above/Below Scripts

A special parenthesized syntax is used to form prescripts, that is, subscripts
and superscripts that precede their base. For this (_c^b)a creates the prescripted
variable c

b a.. Variables can have both prescripts and postscripts (ordinary
sub/superscripts).

Below scripts and above scripts are represented in general by the line drawing
operators \below (┬) and \above (┴), respectively. Hence the expression lim

𝑛→∞
𝑎𝑛

can be represented by lim┬ (n→∞) a_n. Since the operations det, gcd, inf, lim, lim
inf, lim sup, max, min, Pr, and sup are common, their below scripts are also accessi-
ble by the usual subscript operator _. So in display mode, lim

𝑛→∞
𝑎𝑛 can also be

represented by lim_(n→∞) a_n, which is a little easier to type than lim┬(n→∞) a_n.
Although for illustration purposes, the belowscript examples are shown here

in-line with the script below, ordinarily this choice is only for display-mode math.
When inline, below- and abovescripts entered with _ and ̂are shown as subscripts
and superscripts, respectively, as are the limits for n-ary operators. When entered
with ┬ and ┴, they remain below and above scripts in-line. If an above/below op-
erator or a subscript/superscript operator is preceded by an operator, that operator
becomes the base. See Sec. 3.8 for some examples.

3.4 n-ary Operators

n-ary operators like integral, summation and product are sub/superscripted or
above/below operators that have a third argument: the “n-aryand”. For the integral,
the n-aryand is the integrand, and for the summation, it’s the summand. For both
typographical and semantic purposes, it’s useful to identify these n-aryands. In the
linear format, this is done by following the sub/superscripted n-ary operator by the
naryand concatenation operator \naryand (Ʋ) which is U+2592. The operand that
follows this operator becomes the n-aryand. For example, the linear-format expres-
sion ∫_0̂aƲxⅆx/(x^2+a^2) has the built up form

න 𝑥 𝑑𝑥
𝑥2 +𝑎2

𝑎

0

where xⅆx/(x^2+a^2) is the integrand and ⅆ is the Unicode differential character
U+2146. Unlike with the fraction numerator and denominator, the outermost pa-
rentheses of a n-aryand are not removed on buildup, since parentheses are com-
monly used to delimit compound n-aryands.

 Unicode Nearly Plain Text Encoding of Mathematics

12 Unicode Technical Note

To delimit more complicated n-aryands without using parentheses or brackets
of some kind, use the \begin \end (〖 〗see Sec. 3.18) delimiters, which disappear
on build up.

Since \naryand isn’t the most intuitive name, there is the alias \of that can be
used. This also works as an alias for \funcapply in math function contexts (see Sec.
3.5). This alias is motivated by sentences like “The integral from 0 to b of xdx is one-
half b squared.”

Sometimes one wants to control the positions of the limit expressions explicit-
ly as in using TeX’s \limits (upper limit above, lower below) and \nolimits (upper
limit as superscript and lower as subscript) control words. To this end, if the n-ary
operator is followed by the digit 1, the limit expressions are displayed above and
below the n-ary operator and if followed by the digit 2, they are displayed as super-
script and subscript. More completely, the number can be one of the first four of the
following along with neither or one of the last two

nLimitsDefault 0
nLimitsUnderOver 1
nLimitsSubSup 2
nUpperLimitAsSuperScript 3
fDontGrowWithContent 64
fGrowWithContent 128

3.5 Mathematical Functions

Mathematical functions such as trigonometric functions like “sin” should be
recognized as such and not italicized. As such they are treated as ordinary text (see
Sec. 3.16). In addition it’s desirable to follow them with the Invisible Function Apply
operator U+2061 (\funcapply). This is a special binary operator and the operand
that follows it is the function argument. In converting to built-up form, this operator
transforms its operands into a two-argument object that renders with the proper
spacing for mathematical functions.

If the Function Apply operator is immediately followed by a subscript or su-
perscript expression, that expression should be applied to the function name and
the Function Apply operator moved passed the modified name to bind the operand
that follows as the function argument. For example, the function sin2 x falls into this
category.

Unlike with the fraction numerator and denominator, the outermost paren-
theses of the second operand of the function-apply operator are not removed on
buildup, since parentheses are commonly used to delimit function arguments. To
delimit a more complicated arguments without using parentheses or brackets of

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 13

some kind, use the〖 〗delimiters which disappear on build up. If brackets are used,
they and their included content comprise the function’s argument.

Since \funcapply isn’t the most intuitive name, \of can be used in function-
apply contexts. \of autocorrects to Ʋ (U+2592—\naryand, see Sec. 3.4), but context
can give it this convenient second use. This alias is motivated by sentences like “The
sine of 2x equals twice the sine of x times the cosine of x”, i.e., sin 2𝑥= 2 sin𝑥cos𝑥.

If a function name has a space in it, e.g., “lim sup”, the space is represented by a
no-break space (U+00A0) as described in Sec. 3.15. If an ordinary ASCII space were
used, it would imply build up of the “lim” function.

3.6 Square Roots and Radicals

Square, cube, and quartic roots can be represented by expressions started by
the corresponding Unicode radical characters √ (U+221A, \sqrt), ∙ (U+221B, \cbrt),
and √ (U+221C, \qdrt). These operators include the operand that follows. Examples
are √abc, √(a+b) and ∙(c+d), which display as ξ𝑎𝑏𝑐, ξ𝑎+𝑏, and ξ𝑐+𝑑3 ,
tively. In general, the nth root radical is represented by an expression like √(n&a),
where a is the complete radicand. Anything following the closing parenthesis is not
part of the radicand. For example, ξ(𝑛&𝑎+𝑏) displays as ξ𝑎+𝑏𝑛 .

3.7 Enclosures

To enclose an expression in a rectangle one uses the rectangle operator ▭
(U+25AD) followed by the operand representing the expression. This syntax is simi-
lar to that for the square root. For example ▭(𝐸=𝑚𝑐̂2) displays as 𝐸=𝑚𝑐2 . The
same approach is used to put an overbar above an expression, namely follow the
overbar operator ¯ (U+00AF) by the desired operand. For an underbar, use the op-
erator ▁ (U+2581).

In general the rectangle function can represent any combination of borders,
horizontal, vertical, and diagonal strikeouts, and enclosure forms defined by the
MathML <menclose> element, except for roots, which are represented as discussed
in the previous Section. The general syntax for enclosing an expression 𝑥 is ▭(𝑛&𝑥),
where 𝑛 is a mask consisting of any combination of the following flags:

fBoxLeft 1
fBoxTop 2
fBoxRight 4
fBoxBottom 8
fBoxBLTRStrike 16
fBoxTLBRStrike 32
fBoxVStrike 64
fBoxHStrike 128

 Unicode Nearly Plain Text Encoding of Mathematics

14 Unicode Technical Note

It is anticipated that the enclosure format number n is chosen via some kind of
friendly user interface, but at least the choice can be preserved in the linear format.
Note that the overbar function can also be given by ▭(2&𝑥) and the underbar by
▭(8&𝑥).

Other enclosures such as rounded box, circle, long division, actuarial, and el-
lipse can be encoded as for the rectangle operator but using appropriate Unicode
characters (not yet chosen here).

An abstract box can be put around an expression x to change alignment, spac-
ing category, size style, and other properties. This is defined by □(𝑛&𝑥), where □ is
U+25A1 and 𝑛 can be a combination of one Align option, one Space option, one Size
option and any flags in the following table:

nAlignBaseline 0
nAlignCenter 1
nSpaceDefault 0
nSpaceUnary 4
nSpaceBinary 8
nSpaceRelational 12
nSpaceSkip 16
nSpaceOrd 20
nSizeDefault 0
nSizeText 32
nSizeScript 64
nSizeScriptScript 96
fBreakable 128
fXPositioning 256
fXSpacing 512

3.8 Stretchy Characters

In addition to overbars and underbars, stretchable brackets are used in ma-
thematical text. For example, the “underbrace” and “overbrace” are as

𝑥+⋯+𝑥ᇩᇭᇭᇪᇭᇭᇫ
𝑘 times

𝑥+𝑦+𝑧ᇣᇧᇧᇤᇧᇧᇥ

>0

The linear formats for these are ⏞(x+⋯+x)^(k "times") and ⏟(x+y+z)_(>0), re-
spectively. Here the subscript and superscript operators are used for convenient
keyboard entry (and compatibility with TeX); one can also use Sec. 3.3’s be-

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 15

low/abovescript operators, respectively. The horizontal stretchable brackets are
given in the following table

U+23DC
⏜

U+23DD ⏝
U+23DE ⏞
U+23DF ⏟

U+23E0 ⏠
U+23B4 ⎴
U+23B5 ⎵

There are many other characters that can stretch horizontally to fit text, such

as various horizontal arrows. There are four configurations: a stretch character
above or below a baseline text, and text above or below a baseline stretched charac-
ter. Illustrating the linear format for these four cases with the stretchy character →
and the text 𝑎+𝑏, we have

(𝑎+𝑏)┴ → (𝑎+𝑏)┬ → → ┴(𝑎+𝑏) → ┬ (𝑎+𝑏)
which look like

𝑎+𝑏ሲۛۛ ሮۛ 𝑎+𝑏ሲۛۛ ሮۛ

3.9 Matrices

Matrices are represented by a notation very similar to TeX’s, namely an ex-
pression of the form

■ (exp1 [& exp2]… @ … expn-1 [& expn]…)

where ■ is the matrix character U+25A0 and @ is used to terminate rows, except
for the last row which is terminated by the closing paren. This causes exp1 to be
aligned over exp n-1, etc., to build up an n×m matrix array, where n is the maximum
number of elements in a row and m is the number of rows. The matrix is con-
structed with enough columns to accommodate the row with the largest number of
entries, with rows having fewer entries given sufficient null entries to keep the table
n×m. As an example, ■(𝑎&𝑏@𝑐&𝑑) displays as

𝑎 𝑏
𝑐 𝑑

 Unicode Nearly Plain Text Encoding of Mathematics

16 Unicode Technical Note

3.10 Accent Operators

Mathematics often has accented characters. Simple primed characters like 𝑎′
are represented by the character followed by the Unicode prime U+2032, which can
be typed in using the ASCII apostrophe '. Double primed characters have two Un-
icode primes, etc. In addition, Unicode has multiple prime characters that render
with somewhat different spacing than concatenations of U+2032. The primes are
special in that they need to be superscripted with appropriate use of heavier glyph
variants (see Sec. 3.12).

The ASCII asterisk is raised in ordinary text, but in a math zone it gets trans-
lated into U+2217, which is placed on the math axis as the +. To make it a super-
script or subscript, the user has to include it in a superscript or subscript expression.
For example, a*2 has the linear format version a^*2 or a^(*2). Here for convenience,
the asterisk is treated as an operand character if it follows a subscript or superscript
operator.

Other kinds of accented characters can be represented by Unicode combining
mark sequences. The combining marks are found in the Unicode ranges U+0300—
U+036F and U+20D0 – U+20FF. The most common accents in math are summarized
in the following table

\hat U+0302
\check U+030C
\tilde U+0303
\acute U+0301
\grave U+0300
\dot U+0307
\ddot U+0308
\dddot U+20DB
\bar U+0304
\vec U+20D7

If a combining mark should be applied to more than one character or to an ex-

pression, that character or expression should be enclosed in parentheses and fol-
lowed by the combining mark. Since this construct looks funny when rendered by
plain-text programs, a no-break space (U+00A0) can appear in between the paren-
theses and the combining mark. Special cases of this notation include overscoring
(use U+0305) and underscoring (use U+0332) mathematical expressions.

The combining marks are treated by a mathematics renderer as operators that
translate into special accent built-up functions with the proper spacing for mathe-
matical variables.

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 17

3.11 Differential, Exponential, and Imaginary Symbols

Unicode contains a number of special double-struck math italic symbols that
are useful for both typographical and semantic purposes. These are U+2145—
U+2149 for double-struck D, d, e, i, and j (ⅅ, ⅆ, ⅇ, ⅈ, ⅉȌ, respectively. They have the
meanings of differential, differential, natural exponent, imaginary unit, and imagi-
nary unit, respectively.

In US patent applications these characters should be rendered as ⅅ, ⅆ, ⅇ, ⅈ, ⅉ as
defined, but in regular US technical publications, these quantities can be rendered as
math italic. In European technical publications, they are sometimes rendered as
upright characters. Furthermore the D and d start a differential expression and
should have appropriate spacing for differentials. The linear format treats these
symbols as operand characters, but the display routines should provide the appro-
priate glyphs and spacings.

3.12 Unicode Subscripts and Superscripts

Unicode contains a small set of mostly numeric superscripts (U+00B2, U+00B3,
U+00B9, U+2070—U+207F) and a similar set of subscripts (U+2080—U+208F) that
should be rendered the same way that scripts of the corresponding script nesting
level would be rendered. To perform this translation, these characters can be
treated as high-precedence operators, spans of which combine into the correspond-
ing superscripts or subscripts when built up. Since numeric subscripts and super-
scripts are very common in mathematics, it’s worthwhile translating between stan-
dard built-up scripts in built-up format and the Unicode scripts in linear format.

The prime U+2032 and related multiple prime characters should also be
treated as superscript operators. Display routines should use an appropriate glyph
variant to render the superscripted prime. The ASCII apostrophe can be used to in-
put the prime. When it follows a variable, e.g., 𝑎′, it should be converted into a su-
perscript function with a as the base and the prime as the superscript. It’s also im-
portant to merge the prime into a superscript that follows, e.g., 𝑎′̂𝑐 should display
as 𝑎′𝑐, where both the prime and the c are in the same superscript argument.

3.13 Concatenation Operators

All remaining operators are “concatenation operators” so named because they
are concatenated with their surrounding text in built-up form. In addition a conca-
tenation operator has two effects: 1) it terminates whatever operand precedes it,
and 2) it implies appropriate surrounding space as discussed in Sec. 3.15 along with
the mathematical spacing tables of the font. Since the spacing around operators is
well-defined in this way, the user rarely needs to add explicit space characters.

 Unicode Nearly Plain Text Encoding of Mathematics

18 Unicode Technical Note

3.14 Comma, Period, and Colon

The comma, period, and colon have context sensitve spacing requirements that
can be represented in the linear format.

Comma: when surrounded by ASCII digits render with ordinary text
spacing. Else treat as punctuation with or without an ASCII blank fol-
lowing it. In either punctuation case the comma is displayed with a
small space following it. If two spaces follow, the comma is rendered as
a clause separator (a relatively large space follows the comma).

Period: when surrounded by ASCII digits render with ordinary text
spacing. Else treat as punctuation with or without an ASCII blank fol-
lowing it. In either punctuation case the period is displayed with a small
space following it. No clause separator option exists for the period. An
extended decimal-point heuristic useful in calculator scenarios allows
one to omit a leading 0, e.g., use numbers like .5. For this if the period is
followed by an ASCII digit and 1) is at the start of a math zone, 2) fol-
lows a built-up math object start character or end-of-argument charac-
ter, or 3) follows any operator except for closers and punctuation, then
the period should be classified as a decimal point. With this algorithm,
a/.3 displays as

𝑎
.3

Colon: <space> ‘:’ is displayed as Unicode RATIO U+2236 with relation-
al spacing. ‘:’ without a leading space is displayed as itself with punctua-
tion spacing.

3.15 Space Characters

Unicode contains numerous space characters with various widths and proper-
ties. These characters can be useful in tweaking the spacing in mathematical expres-
sions. Unlike the ASCII space, which is removed when causing build up as discussed
in Sec. 2.3, the other spaces are not removed on build up. Spaces of interest include
the no-break space (U+00A0) and the spaces U+2000—U+200B, 202F, 205F.

In mathematical typography, the widths of spaces are usually given in integral
multiples of an eighteenth of an em. The em space is given by U+2003. Various space
widths are defined in the following table, which includes the corresponding MathML
names having these widths by default

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 19

Space Unicode MathML name Autocorrect
0 em U+200B zero-width space \zwsp
1/18 em U+200A veryverythinmathspace \hairsp
2/18 em U+200A U+200A verythinmathspace
3/18 em U+2006 thinmathspace \thinsp
4/18 em U+205F mediummathspace \medsp
5/18 em U+2005 thickmathspace \thicksp
6/18 em U+2004 verythickmathspace \vthicksp
7/18 em U+2004 U+200A veryverythickmathspace
9/18 em U+2002 ensp \ensp
18/18 em U+2003 emsp \emsp
 U+00A0 no-break space \nbsp

In general, spaces act as concatenation operators and cause build up of higher-

precedence operators that precede them. But it’s useful for the zero-width space
(U+200B) to be treated as an operand character and not to cause build up of the
preceding operator. The no-break space (U+00A0) is used when two words need to
be separated by a blank, but remain on the same line together. The no-break space is
also treated as an operand character so that linear format combinations like
“lim sup” and “lim inf” can be recognized as single operands. If an ASCII space
(U+0020) were used after the “lim”, it would imply build up of the “lim” function,
rather than being part of the “lim sup” or “lim inf” function.

In math zones, most spacing is automatically implied by the properties of the
characters. The following table shows examples of how many 1/18ths of an em size
are automatically inserted between a character with the row property followed by a
character with the column property for text-level expressions (see also p. 170 of The
TeXbook and Appendix F of the MathML 2.0 specification)

 ord unary binary rel open close punct
ord 0 0 4 5 0 0 0
unary 0 0 4 0 0 0 0
binary 4 4 0 0 4 0 0
rel 5 5 0 0 5 0 0
open 0 0 0 0 0 0 0
close 0 0 4 5 0 0 0
punct 3 3 0 3 3 3 3

For the combinations described by this simple table, all script-level spacings are 0,
but a more complete table would have some nonzero values. For example, in the ex-
pression 𝑎+𝑏, the letters a and b have the ord (ordinary) property, while the + has

 Unicode Nearly Plain Text Encoding of Mathematics

20 Unicode Technical Note

the binary property in this context. Accordingly for the text level there is 4/18th em
between the a and the + and between the + and the b. A more complete table could
include properties like math functions (trigonometric functions, etc.), n-ary opera-
tors, tall delimiters, differentials, subformulas (e.g., expression with an over brace),
binary with no spacing (e.g., /), clause separators, ellipsis, factorial, and invisible
function apply.

The zero-width space (U+200B, \zwsp) is handy for use as a null argument.
For example, the expression 𝒱𝑎𝑏 shows the subscript 𝑎𝑏 kerned in under the over-
hang of the 𝒱. To prevent this kerning, one can insert a \zwsp before the subscript,
which then displays unkerned as 𝒱𝑎𝑏.

3.16 Ordinary Text Inside Math Zones

Sometimes one wants ordinary text inside a function argument or in a math
zone as in the formula

rate = distance
time .

For such cases, the alphabetic characters should not be converted to math alphabet-
ic characters and the typography should be that of ordinary text, not math text. To
embed such text inside functions or in general in a math zone, the text can be en-
closed inside ASCII double quotes. So the formula above would read in linear format
as

"rate"="distance"/"time".
If you want to include a double quote inside such text, insert \". Another example is
sin𝜃= ½𝑒𝑖𝜃+ c.c. To get the “c.c.” as ordinary text, enclose it with ASCII double
quotes. Otherwise the c’s will be italicized and the periods will have some space af-
ter them.

Alternatively ordinary text inside a math zone can be specified using a charac-
ter-format property. This property is exported to plain text started and ended with
the ASCII double quote. Note that no math object or math text can be nested inside
an ordinary text region. Instead if you paste a math object or text into an ordinary
text region, you split the region into two such regions with the math object and/or
text in between.

3.17 Phantoms and Smashes

Sometimes one wants to obtain horizontal and/or vertical spacings that differ
from the normal values. In [La]TeX this can be accomplished using phantoms to in-
troduce extra space or smashes to zero out space. In the linear format, six special
cases are defined as in the following table

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 21

Autocorrect LF op Op name width ascent descent ink
\phantom ⟡ U+27E1 white concave-sided diamond w a d no
\hphantom U+2B04 white left-right arrow w 0 0 no
\vphantom ⇳ U+21F3 white up-down arrow 0 a d no
\smash ⬈ U+2B0D black up-down arrow w 0 0 yes
\asmash ⬆ U+2B06 black up arrow w 0 d yes
\dsmash ⬇ U+2B07 black down arrow w a 0 yes

The general case is given by \phantom(n&<operand>), where n is any combination
of the following flags:

fPhantomShow 1
fPhantomZeroWidth 2
fPhantomZeroAscent 4
fPhantomZeroDescent 8
fPhantomTransparent 16

3.18 Arbitrary Groupings

The left/right white lenticular brackets〖 and 〗(U+3016 and U+3017) can be
used to delimit an arbitrary expression without displaying these brackets on build
up. The elimination of outermost parentheses for arguments of fractions, subscripts,
and superscripts solves such grouping problems nicely in most cases, but the white
lenticular brackets can handle any remaining cases. Note that in math zones, these
brackets should be displayed using a math font rather than an East Asian font.

3.19 Equation Arrays

To align one equation relative to another vertically, one can use an equation
array, such as

10𝑥+ 3𝑦= 2
3𝑥+ 13𝑦= 4

which has the linear format Ʈ(10&x+&3&y=2@3&x+&13&y=4), where Ʈ is U+2588.
Here the meaning of the ampersands alternate between align and spacer, with an
implied spacer at the start of the line. So every odd & is an alignment point and
every even & is a place where space may be added to align the equations. This con-
vention is used in AmSTeX.

3.20 Math Zones

Section 5 discusses heuristic methods to identify the start and end of math
zones in plain text. While the approaches given are surprisingly successful, they are

 Unicode Nearly Plain Text Encoding of Mathematics

22 Unicode Technical Note

not infallible. Hence if one knows the start and end of math zones, it’s desirable to
preserve this information in the linear format.

The linear format uses U+23A8 to start a math zone and U+23AC to end it.
These are the left and right curly bracket middle pieces, respectively, and would not
ordinarily be used in documents. They are designed for communication between
display drivers and display hardware when building up large curly braces.

When importing plain text, the user can execute a command to build up math
zones defined by these math-zone delimiters. Note that although there’s no way to
specify display versus inline modes (TeX’s $ versus $$), a useful convention for sys-
tems that mark math zones is that a paragraph consisting of a math zone is in dis-
play mode. If any part of the paragraph isn’t in a math zone including a possible
terminating period, then inline rendering is used.

3.21 Equation Numbers

Equation numbers are often used with equations presented in display mode.
To represent an equation number flushed right of the equation in the linear format,
enter the equation followed by a # (U+0023) followed by the desired equation
number text. For example Ʈ(E=mc^2#(30)) or more simply just E=mc^2#(30)
renders as

3.22 Linear Format Characters and Operands

The linear format divides the roughly 100,000 assigned Unicode characters in-
to three categories: 1) operand characters such as alphanumerics, 2) the bracket
characters described in Sec. 3.1, and 3) other operator characters such as those de-
scribed in Secs. 2.1—2.2 and 3.2—3.19. Operand characters include some nonal-
phanumeric characters, such as infinity (∞), exclamation point (!) if preceded by an
operand, Unicode minus (U+2212) or plus if either starts a sub/superscript operand,
and period and comma if they’re surrounded by ASCII (or full-width ASCII) digits. In
other contexts, period and comma are treated as operators with the same prece-
dence as plus. To reveal which characters are operators, operator-aware editors
could be instructed to display operators with a different color or some other
attribute.

In addition, operands include bracketed expressions and mixtures of such ex-
pressions and other operand characters. Hence f(x) can be an operand. More specif-
ic definitions of operands are given in the linear-format syntax of Appendix A. Oper-
ator Summary.

Operands in subscripts, superscripts, fractions, roots, boxes, etc. are defined in
part in terms of operators and operator precedence. While such notions are very

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 23

familiar to mathematically oriented people, some of the symbols that we define as
operators might surprise one at first. Most notably, the space (U+0020) is an impor-
tant operator in the plain-text encoding of mathematics since it can be used to ter-
minate operands as discussed in Sec. 2-3. A small but common list of operators is
given in Table 3.1

Table 3.1 List of principal operators ordered by increasing precedence

CR
([{ |├〖
)] } | ┤〗

&│
Space “ . , = − + * × · • ¶

 Ʋ
/ ¦
∫∑∏

_ ^
□ ▭  √∙ √ ▁ ̄
Combining marks

where CR = U+000D. Note that the ASCII vertical bar | (U+007C) shows up both as
an opening bracket and as a closing bracket. The choice is disambiguated by the
evenness of its count at any given bracket nesting level or other considerations (see
Sec. 3.1). So typically the first appearance is considered to be an open |, the next a
close |, the next an open |, and so forth. The vertical bar appearing on the same level
as & is considered to be a vertical bar separator and is given by the box drawings
light vertical character (U+2502). We tried using the ASCII U+007C for this too, but
the resulting ambiguities were insurmountable.

As in arithmetic, operators have precedence, which streamlines the interpreta-
tion of operands. The operators are grouped above in order of increasing prece-
dence, with equal precedence values on the same line. For example, in arithmetic,
3+1/2 = 3.5, not 2. Similarly the plain-text expression α + β/γ means

𝛼+𝛽𝛾 not 𝛼+𝛽
𝛾

Precedence can be overruled using parentheses, so (α + β)/γ gives the latter.
The following gives a list of the syntax for a variety of mathematical constructs

(see Appendix A for a complete grammar).

 Unicode Nearly Plain Text Encoding of Mathematics

24 Unicode Technical Note

exp1/exp2 Create a built-up fraction with numerator exp1 and denomina-
tor exp2. Numerator and denominator expressions are termi-
nated by operators such as /*]) and blank (can be overruled
by enclosing in parentheses).

exp1¦exp2 Similar to fraction, but no fraction bar is displayed. Some-
times called a stack.

base^exp1 Superscript expression exp1 to the base base. The super-
scripts 0 – 9 + - () exist as Unicode symbols. Sub/superscript
expressions are terminated, for example, by /*]) and blank.
Sub/superscript operators associate right to left.

base_exp1 Subscript expression exp1 to the base base. The subscripts 0 –

9 + - () exist as Unicode symbols.
base_exp1^exp2 Subscript expression exp1 and superscript expression exp2 to

the base base. The subscripts 0 – 9 + - () exist as Unicode sym-
bols.

 (_exp1^exp2)base Prescript the subscript exp1 and superscript exp2 to the base
base.

 base┴exp1 Display expression exp1 centered above the base base.
Above/below script operators associate right to left.

base┬exp1 Display expression exp1 centered below the base base.
[exp1] Surround exp1 with built-up brackets. Similarly for { } and ().

Similarly for { }, (), | |. See Sec. 3.1 for generalizations.
 [exp1]^exp2 Surround exp1 with built-up brackets followed by super-

scripted exp2 (moved up high enough).
□exp1 Abstract box around exp1.
▭exp1 Rectangle around exp1.
▁exp1 Underbar under exp1 (underbar operator is U+2581, not the

ASCII underline character U+005F).
¯ exp1 Overbar above exp1.
√exp1 Square root of exp1.
∙exp1 Cube root of exp1.
√exp1 Fourth root of exp1.
√(exp1&exp2) exp1th root of exp2.

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 25

∑_exp1^exp2Ʋexp3 Summation from exp1 to exp2 with summand exp3. _exp1 and
^exp2 are optional.

∏_exp1^exp2Ʋexp3 Product from exp1 to exp2 with multiplicand exp3. _exp1 and
^exp2 are optional.

∫_exp1^exp2Ʋexp3 Integral from exp1 to exp2 with integrand exp3. _exp1 and ^exp2
are optional.

(exp1 [& exp2]… [@ Align exp1 over exp n-1, etc., to build up an array (see Appendix
 … A for complete syntax).
 expn-1 [& expn]…])

Note that Unicode’s plethora of mathematical operators2 fill out the capabilities of
the approach in representing mathematical expressions in the linear format.

Precedence simplifies the text representing formulas, but may need to be over-
ruled. To terminate an operand (shown above as, for example, exp1) that would oth-
erwise combine with the following operand, insert a blank (U+0020). This blank
does not show up when the expression is built up. Blanks that don’t terminate ope-
rands may be used to space formulas in addition to the built-in spacing provided by
a math display engine.

To form a compound operand, parentheses can be used as described for the
fraction above. For such operands, the outermost parentheses are removed. These
operands occur for fraction numerators and denominators, subscript and super-
script expressions, and arguments of functions like square root. Parentheses ap-
pearing in other contexts are always displayed in built-up format.

A curious aspect of the notation is that implied multiplication by juxtaposing
two variable letters has very high precedence (just below that of diacritics), while
explicit multiplication by asterisk and raised dot has a precedence equal to that of
plus. So even though the analysis is similar to that for arithmetic expressions, it dif-
fers occasionally from the latter.

3.23 Math Features Not In Linear Format

A number of math features have been reserved for a higher level instead of be-
ing included in the linear format. This compromise is made for the sake of readabili-
ty of the linear format. In addition rich-text properties are missing such as text and
background color and font characteristics other than the standard Unicode math
styles. Hence to obtain a full featured mathematical representation with the linear
format requires that the linear format be embedded in an appropriate rich-text en-
vironment.

Math features currently missing from the linear format include:

 Unicode Nearly Plain Text Encoding of Mathematics

26 Unicode Technical Note

¶ Arbitrary position tweaks of built-up functions and their arguments (spac-
ing tweaks and phantoms are included: see Secs. 3.15 and 3.17)

¶ User-defined soft breaks (U+00AD and U+000B?)

4. Input Methods
In view of the large number of characters used in mathematics, it is useful to

give some discussion of input methods. The ASCII math symbols are easy to find, e.g.,
+ - / * [] () { }, but often need to be used as themselves. To handle these cases and
to provide convenient entry of many other symbols, one can use an escape character,
the backslash (\), followed by the desired operator or its autocorrect name. Note
that a particularly valuable use of the nearly plain-text math format in general is for
inputting formulas into technical documents or programs. In contrast, the direct in-
put of tagged formats like MathML is very cumbersome.

4.1 ASCII Character Translations

From syntax and typographical points of view, the Unicode minus sign
(U+2212) is displayed instead of the ASCII hyphen-minus (U+002D) and the prime
(U+2032) is used instead of the ASCII apostrophe (U+0027), but in math zones the
minus sign and prime can be entered using these ASCII counterparts. Note that for
proper typography, the prime should have a large glyph variant that when super-
scripted looks correct. The primes in most fonts are chosen to look approximately
like a superscript, but they don’t provide the desired size and placement to merge
well with other superscripts.

Similarly it is easier to type ASCII letters than italic letters, but when used as
mathematical variables, such letters are traditionally italicized in print. Accordingly
a user might want to make italic the default alphabet in a math context, reserving
the right to overrule this default when necessary. A more elegant approach in math
zones is to translate letters deemed to be standalone to the appropriate math alpha-
betic characters (in the range U+1D400–U+1D7FF or in the Letterlike Block
U+2100—U+213F). Letter combinations corresponding to standard function names
like “sin” and “tan” should be represented by ASCII alphabetics. As such they are not
italicized and are rendered with normal typography, i.e., not mathematical typogra-
phy. Other post-entry enhancements include mappings like

!! ų U+203C
+- ± U+00B1
-+ ∓ U+2213
:: ∷ U+2237
:= ≔ U+2254

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 27

<= ≤ U+2264
>= ≥ U+2265
<< ≪ U+226A
>> ≫ U+226B
/= ≠ U+2260
~= ≅ U+2245

-> → U+2192

It’s not a good idea to map != into ≠, since ! is often used in mathematics to mean fac-
torial. Also <- shouldn’t map into ←, since expressions like x < −b are common. If
you don’t like an automatic translation when entering math, you can undo the trans-
lation by typing, for example, Ctrl+z. Suffice it to say that intelligent input algorithms
can dramatically simplify the entry of mathematical symbols and expressions.

4.2 Math Keyboards

A special math shift facility for keyboard entry could bring up proper math
symbols. The values chosen can be displayed on an on-screen keyboard. For exam-
ple, the left Alt key could access the most common mathematical characters and
Greek letters, the right Alt key could access italic characters plus a variety of arrows,
and the right Ctrl key could access script characters and other mathematical sym-
bols. The numeric keypad offers locations for a variety of symbols, such as
sub/superscript digits using the left Alt key. Left Alt CapsLock could lock into the
left-Alt symbol set, etc. This approach yields what one might call a “sticky” shift.
Other possibilities involve the NumLock and ScrollLock keys in combinations with
the left/right Ctrl/Alt keys. Pretty soon one realizes that this approach rapidly ap-
proaches literally billions of combinations, that is, several orders of magnitude more
than Unicode can handle!

4.3 Hexadecimal Input

A handy hex-to-Unicode entry method can be used to insert Unicode charac-
ters in general and math characters in particular. Basically one types a character’s
hexadecimal code (in ASCII), making corrections as need be, and then types Alt+x.
The hexadecimal code is replaced by the corresponding Unicode character. The
Alt+x is a toggle, that is, type it once to convert a hex code to a character and type it
again to convert the character back to a hex code. Toggling back to the hex code is
very useful for figuring out what a character is if the glyph itself doesn’t make it
clear or for looking up the character properties in the Unicode Standard. If the hex
code is preceded by one or more hexadecimal digits, select the desired code so that
the preceding hexadecimal characters aren’t included in the code. The code can

 Unicode Nearly Plain Text Encoding of Mathematics

28 Unicode Technical Note

range up to the value 0x10FFFF, which is the highest character in the 17 planes of
Unicode.

4.4 Pull-Down Menus and Toolbars

Pull-down menus and toolbars are popular methods for handling large charac-
ter sets, but they tend to be slower than keyboard approaches if you know the right
keys to type. A related approach is the symbol box, which is an array of symbols ei-
ther chosen by the user or displaying the characters in a font. Symbols in symbol
boxes can be dragged and dropped onto key combinations on the on-screen key-
board(s), or directly into applications. Multiple tabs can organize the symbol selec-
tions according to subject matter. On-screen keyboards and symbol boxes are valu-
able for entry of mathematical expressions and of Unicode text in general.

4.5 Macros

The autocorrect and keyboard macro features of some word processing sys-
tems provide other ways of entering mathematical characters for people familiar
with TeX. For example, typing \alpha inserts α if the appropriate autocorrect entry
is present. This approach is noticeably faster than using menus and is particularly
attractive to those with some familiarity with TeX.

4.6 Linear Format Math Autocorrect List

The linear format math autocorrect list includes most of those defined in Ap-
pendix F of The TeXbook, like \alpha for α, plus a number of others useful for input-
ting the linear format as shown in the following table

Control word Character Control word Character
\int ∫ (U+222B) \sum ∑ (U+2211)
\prod ∏ (U+220F) \naryand Ʋ (U+2592)
\funcapply (U+2061) \of Ʋ (U+2592)
\rect ▭ (U+25AD) \box □ (U+25A1)
\open ├ (U+251C) \close ┤ (U+2524)
\above ┴ (U+2534) \below ┬ (U+252C)
\underbar ▁ (U+2581) \overbar ¯ (U+00AF)
\underbrace ︸(U+23DF) \overbrace ︷(U+23DE)
\begin 〖 (U+3016) \end 〗 (U+3017)
\phantom ⟡(U+27E1) \smash ⬈(U+2B0D)
\hphantom (U+2B04) \vphantom ⇳(U+21F3)
\asmash ⬆(U+2B06) \dsmash ⬇(U+2B07)
\matrix ■ (U+25A0) \eqarray Ʈ (U+2588)

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 29

Appendix B contains a default set of keywords containing both The TeXbook key-
words and the linear format keywords

Users can define their own control words for convenience or preference, such
as \a for α, which requires less typing than the official TeX control word \alpha. This
also allows localization of the control word list.

4.7 Handwritten Input

Particularly for PDAs and Tablet PCs, handwritten input is attractive provided
the handwriting recognizer is able to decipher the user’s handwriting. For this ap-
proach, it’s desirable to bypass the linear format altogether and recognize built-up
mathematical expressions.

5. Recognizing Mathematical Expressions
Plain-text linearly formatted mathematical expressions can be used “as is” for

simple documentation purposes. Use in more elegant documentation and in pro-
gramming languages requires knowledge of the underlying mathematical structure.
This section describes some of the heuristics that can distill the structure out of the
plain text.

Note that if explicit math-zone-on and math-zone-off characters are desired,
Sec. 2.20 specifies that U+23A8 starts a math zone and U+23AC ends it. These are
the left and right curly bracket middle pieces, respectively, and would not ordinarily
be used in documents. They are designed to be used by display programs in building
up large curly braces.

Many mathematical expressions identify themselves as mathematical, obviat-
ing the need to declare them explicitly as such. One well-known TeX problem is
TeX’s inability to detect expressions that are clearly mathematical, but that are not
enclosed within $’s. If one leaves out a $ by mistake, one gets many error messages
because TeX interprets subsequent text in the wrong mode.

An advantage of recognizing mathematical expressions without math-on and
math-off syntax is that it is much more tolerant to user errors of this sort. Resyncing
is automatic, while in TeX one basically has to start up again from the omission in
question. Furthermore, this approach could be useful in an important related en-
deavor, namely in recognizing and converting the mathematical literature that is not
yet available in an object-oriented machine-readable form, into that form.

It is possible to use a number of heuristics for identifying mathematical ex-
pressions and treating them accordingly. These heuristics are not foolproof, but they
lead to the most popular choices. Special commands discussed at the end of this sec-
tion can be used to overrule these choices. Ultimately the approach could be used as
an autoformat style wizard that tags expressions with a rich-text math style whose
state is revealed to the user by a toolbar button. The user could then override cases

 Unicode Nearly Plain Text Encoding of Mathematics

30 Unicode Technical Note

that were tagged incorrectly. A math style would connect in a straightforward way
to appropriate MathML tags.

 The basic idea is that math characters identify themselves as such and poten-
tially identify their surrounding characters as math characters as well. For example,
the fraction ⁄ (U+2044) and ASCII slashes, symbols in the range U+2200 through
U+22FF, the symbol combining marks (U+20D0 – U+20FF), the math alphanumerics
(U+1D400 – U+1D7FF), and in general, Unicode characters with the mathematics
property, identify the characters immediately surrounding them as parts of math
expressions.

If Latin letter mathematical variables are already given in one of the math al-
phabets, they are considered parts of math expressions. If they are not, one can still
have some recognition heuristics as well as the opportunity to italicize appropriate
variables. Specifically ASCII letter pairs surrounded by whitespace are often ma-
thematical expressions, and as such should be italicized in print. If a letter pair fails
to appear in a list of common English and European two-letter words, it is treated as
a mathematical expression and italicized. Many Unicode characters are not mathe-
matical in nature and suggest that their neighbors are not parts of mathematical ex-
pressions.

Strings of characters containing no whitespace but containing one or more un-
ambiguous mathematical characters are generally treated as mathematical expres-
sions. Certain two-, three-, and four-letter words inside such expressions should not
be italicized. These include trigonometric function names like sin and cos, as well as
ln, cosh, etc. Words or abbreviations, often used as subscripts (see the program in
Sec. 6), also should not be italicized, even when they clearly appear inside mathe-
matical expressions.

Special cases will always be needed, such as in documenting the syntax itself.
The literal operator introduced earlier (\) causes the operator that follows it to be
treated as an nonbuildup operator. This allows the printing of characters without
modification that by default are considered to be mathematical and thereby subject
to a changed display. Similarly, mathematical expressions that the algorithms treat
as ordinary text can be sandwiched between math-on and math-off symbols or by an
ordinary text attribute if they need to be embedded in the math zone, e.g., in the
numerator of a fraction.

6. Using the Linear Format in Programming Languages
In the middle 1950’s, the authors of FORTRAN named their computer language

after FORmula TRANslation, but they only went part way. Arithmetic expressions in
Fortran and other current high-level languages still do not look like mathematical
formulas and considerable human coding effort is needed to translate formulas into

_Ref334433780

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 31

their machine comprehensible counterparts. For example, Fortran’s superscript
a**k isn’t as readable as ak and Fortran’s subscript a(k) isn’t as readable as ak. Alfred
North Whitehead once said that notation is a great teacher and that a perfect nota-
tion would be a substitute for thought. From this point of view, modern computer
languages are badly lacking. Specialized mathematical applications such Mathema-
tica are substantially better in this regard.

Using real mathematical expressions in computer programs would be far supe-
rior in terms of readability, reduced coding times, program maintenance, and
streamlined documentation. In studying computers we have been taught that this
ideal is unattainable, and that one must be content with the arithmetic expression as
it is or some other non-mathematical notation such as TeX’s. It’s worth reexamining
this premise. Whereas true mathematical notation clearly used to be beyond the
capabilities of machine recognition, we’re getting a lot closer now.

In general, mathematics has a very wide variety of notations, none of which
look like the arithmetic expressions of programming languages. Although ultimately
it would be desirable to be able to teach computers how to understand all mathe-
matical expressions, we start with our Unicode linear format.

6.1 Advantages of Linear Format in Programs

In raw form, these expressions look very like traditional mathematical expres-
sions. With use of the heuristics described above, they can be printed or displayed
in traditional built-up form. On disk, they can be stored in pure-ASCII program files
accepted by standard compilers and symbolic manipulation programs like Derive,
Mathematica, and Macsyma. The translation between Unicode symbols and the AS-
CII names needed by ASCII-based compilers and symbolic manipulation programs
can be carried out via table-lookup (on writing to disk) and hashing (on reading
from disk) techniques.

Hence formulas can be at once printable in manuscripts and computable, ei-
ther numerically or analytically. Note that this is a goal of MathML as well, but at-
tained in a relatively complex way using specialized tools. The idea here is that regu-
lar programming languages can have expressions containing standard arithmetic
operations and special characters, such as Greek, italics, script, and various mathe-
matical symbols like the square root. Two levels of implementation are envisaged:
scalar and vector. Scalar operations can be performed on traditional compilers such
as those for C and Fortran. The scalar multiply operator is represented by a raised
dot, a legitimate mathematical symbol, instead of the asterisk. To keep auxiliary
code to a minimum, the vector implementation requires an object-oriented language
such as C++.

The advantages of using the plain-text linear format are at least threefold:

 Unicode Nearly Plain Text Encoding of Mathematics

32 Unicode Technical Note

1) many formulas in document files can be programmed simply by copying
them into a program file and inserting appropriate multiplication dots.
This dramatically reduces coding time and errors.

2) The use of the same notation in programs and the associated journal ar-
ticles and books leads to an unprecedented level of self documentation. In
fact, since many programmers document their programs poorly or not at all,
this enlightened choice of notation can immediately change nearly useless
or nonexistent documentation into excellent documentation.

3) In addition to providing useful tools for the present, these proposed initial
steps should help us figure out how to accomplish the ultimate goal of
teaching computers to understand and use arbitrary mathematical expres-
sions. Such machine comprehension would greatly facilitate future compu-
tations as well as the conversion of the existing paper literature and hand
written input into machine usable form.

The concept is portable to any environment that supports Unicode, and it takes
advantage of the fact that high-level languages like C and Fortran accept an “escape”
character (“_” and “$”, respectively) that can be used to access extended symbol sets
in a fashion similar to TeX. In addition, the built-in C preprocessor allows niceties
such as aliasing the asterisk ith a raised dot, which is a legitimate mathematical
symbol for multiplication. The Java and C# languages allow direct use of Unicode
variable names, which is a major step in the right direction. Compatibility with un-
enlightened ASCII-only compilers can be done via an ASCII representation of Un-
icode characters.

6.2 Comparison of Programming Notations

To get an idea as to the differences between the standard way of programming
mathematical formulas and the proposed way, compare the following versions of a
C++ routine entitled IHBMWM (inhomogeneously broadened multiwave mixing)

void IHBMWM(void)
{
 gammap = gamma*sqrt(1 + I2);
 upsilon = cmplx(gamma+gamma1, Delta);
 alphainc = alpha0*(1-(gamma*gamma*I2/gammap)/(gammap + upsilon));

 if (!gamma1 && fabs(Delta*T1) < 0.01)
 alphacoh = -half*alpha0*I2*pow(gamma/gammap, 3);
 else

{
 Gamma = 1/T1 + gamma1;
 I2sF = (I2/T1)/cmplx(Gamma, Delta);

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 33

 betap2 = upsilon*(upsilon + gamma*I2sF);
 beta = sqrt(betap2);
 alphacoh = 0.5*gamma*alpha0*(I2sF*(gamma + upsilon)
 /(gammap*gammap – betap2))
 ((1+gamma/beta)(beta – upsilon)/(beta + upsilon)
 - (1+gamma/gammap)*(gammap – upsilon)/
 (gammap + upsilon));
 }
 alpha1 = alphainc + alphacoh;
}

void IHBMWM(void)
{
 𝛾= 𝛾•ξ(1 +𝐼2);
 𝜐=𝛾+𝛾1Ӟ+𝑖•Δ;
 𝛼_inc = 𝛼0•(1−(𝛾•𝛾•𝐼2 /𝛾’)/(𝛾’+𝜐));
 if (!𝛾1 || fabs(Δ•𝑇1) < 0.01)

 𝛼_coh = −.5•𝛼0•𝐼2 •pow(𝛾/𝛾’, 3);
 else

{
 𝛤= 1/𝑇1 +𝛾1 ;
 𝐼2ℱ= (𝐼2/𝑇1)/(Γ+𝑖•Δ);

𝛽2 =𝜐•(𝜐+𝛾•𝐼2ℱ);
 𝛽=ξ𝛽2;
 𝛼coh = .5•𝛾•𝛼0•(𝐼2ℱ(𝛾+𝜐)/(𝛾’•𝛾’−𝛽2))
 × ((1 + 𝛾/𝛽)•(𝛽−𝜐)/(𝛽+𝜐)−(1 +𝛾/𝛾’)•(𝛾’−𝜐)/(𝛾’+𝜐));
 }
 𝛼1 = 𝛼inc +𝛼coh ;
}

The above function runs fine with current C++ compilers, but C++ does impose some
serious restrictions based on its limited operator table. For example, vectors can be
multiplied together using dot, cross, and outer products, but there’s only one aste-
risk to overload in C++. In built-up form, the function looks even more like mathe-
matics, namely

 Unicode Nearly Plain Text Encoding of Mathematics

34 Unicode Technical Note

void IHBMWM(void)
{
 𝛾= 𝛾•ඥ1 +𝐼2 ;
 𝜐=𝛾+𝛾1 +𝑖•Δ;
 𝛼inc = 𝛼0•൬1−𝛾•𝛾•𝐼2 /𝛾’

𝛾’+𝜐 ൰;
 if (!𝛾1 || fabs(Δ•𝑇1) < 0.01)

 𝛼coh = −.5•𝛼0•𝐼2 •ȋ𝛾/𝛾’Ȍ3;
 else

{
 Γ= 1/𝑇1 +𝛾1;
 𝐼2ℱ= 𝐼2/𝑇1

Γ+𝑖•Δ;
𝛽2 =𝜐•(𝜐+𝛾•𝐼2ℱ);

 𝛽=ඥ𝛽2;

 𝛼coh = .5•𝛾•𝛼0•𝐼2ℱ
ȋ𝛾+𝜐Ȍ

𝛾’•𝛾’−𝛽2൭൬1 +𝛾𝛽൰•
𝛽−𝜐
𝛽+𝜐−൬1 + 𝛾𝛾′൰•

𝛾’−𝜐
𝛾’+𝜐൱;

 }
 𝛼1 = 𝛼inc +𝛼coh ;
}

The ability to use the second and third versions of the function was built into
the PS Technical Word Processor circa 1988. With it we already came much closer
to true formula translation on input, and the output is displayed in standard ma-
thematical notation. Lines of code can be previewed in built-up format, complete
with fraction bars, square roots, and large parentheses. To code a formula, one cop-
ies it from a technical document, pastes it into a program file, inserts appropriate
raised dots for multiplication and compiles. No change of variable names is needed.
Call that 70% of true formula translation! In this way, the C++ function on the pre-
ceding page compiles without modification. The code appears nearly the same as the
formulas in print [see Chaps. 5 and 8 of Meystre and Sargent7].

 Questions remain such as to whether subscript expressions in the Unicode
plain text should be treated as part of program-variable names, or whether they
should be translated to subscript expressions in the target programming language.
Similarly, it would be straightforward to automatically insert an asterisk (indicating
multiplication) between adjacent symbols, rather than have the user do it. However
here there is a major difference between mathematics and computation: symbolical-
ly, multiplication is infinitely precise and infinitely fast, while numerically, it takes
time and is restricted to a binary subset of the rationals with limited (although
usually adequate) precision. Consequently for the moment, at least, it seems wiser
to consider adjacent symbols as part of a single variable name, just as adjacent ASCII

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 35

letters are part of a variable name in current programming languages. Perhaps intel-
ligent algorithms will be developed that decide when multiplication should be per-
formed and insert the asterisks optimally.

6.3 Export to TeX

Export to TeX is similar to that to programming languages, but has a modified
set of requirements. With current programs, comments are distilled out with dis-
tinct syntax. This same syntax can be used in the linear format, although it is inter-
esting to think about submitting a mathematical document to a preprocessor that
can recognize and separate out programs for a compiler. In this connection, compi-
ler comment syntax is not particularly pretty; ruled boxes around comments and
vertical dividing lines between code and comments are noticeably more readable. So
some refinement of the ways that comments are handled would be very desirable.
For example, it would be nice to have a vertical window-pane facility with syn-
chronous window-pane scrolling and the ability to display C code in the left pane
and the corresponding // comments in the right pane. Then if one wants to see the
comments, one widens the right pane accordingly. On the other hand, to view lines
with many characters of code, the // comments needn’t get in the way.

With TeX, the text surrounding the mathematics is part and parcel of the tech-
nical document, and TeX needs its $’s to distinguish the two. These can be included
in the plain text, but we have repeatedly pointed out how ugly this solution is. The
heuristics described above go a long way in determining what is mathematics and
what is natural language. Accordingly, the export method consists of identifying the
mathematical expressions and enclosing them in $’s. The special symbols are trans-
lated to and from the standard TeX ASCII names via table lookup and hashing, as for
the program translations. Better yet, TeX should be recompiled to use Unicode. It
would be nice to have dedicated Unicode characters for this purpose particularly
when the math zones have been reliably determined. Alternatively one can use La-
TeX’s \[…\] open/close approach.

Export to MathML also requires knowing the start and end of a math zone. The
built-up functions all have corresponding MathML entities. In addition one needs to
tag numbers, operators, and identifiers.

7. Conclusions
We have shown how with a few additions to Unicode, mathematical expres-

sions can usually be represented with a readable Unicode nearly plain-text format,
which we call the linear format. The text consists of combinations of operators and
operands. A simple operand consists of a span of non-operators, a definition that
substantially reduces the number of parenthesis-override pairs and thereby in-

 Unicode Nearly Plain Text Encoding of Mathematics

36 Unicode Technical Note

creases the readability of the plain text. To simplify the notation, operators have
precedence values that control the association of operands with operators unless
overruled by parentheses. Heuristics can be applied to Unicode plain text to recog-
nize what parts of a document are mathematical expressions. This allows the Un-
icode plain text to be used in a variety of ways, including in technical document
preparation particularly for input purposes, symbolic manipulation, and numerical
computation.

A variety of syntax choices could be used for a linear format. The choices made
in this paper favor efficient input of mathematical formulae, sufficient generality to
support high-quality mathematical typography, the ability to round trip elegant ma-
thematical text at least in a rich-text environment, and a format that resembles a
real mathematical notation. Obviously compromises between these goals had to be
made.

The heuristics given for recognizing mathematical expressions work well, but
they are not infallible. An effective use of the heuristics would be by an autoformat-
ting wizard that delimits what it thinks are math zones with on/off codes or a cha-
racter-format attribute. The user could then overrule any incorrect choices. Once
the math zones are identified unequivocally, export to MathML, compilers, and other
consumers of mathematical expressions is straightforward.

Acknowledgements
This work has benefitted from discussions with many people, notably PS Tech-

nical Word Processor users, Asmus Freytag, Barbara Beeton, Ken Whistler, Donald
Knuth, Jennifer Michelstein, Ethan Bernstein, Said Abou-Hallawa, Jason Rajtar, Ge-
raldine Wade, Ross Mills, Ron Whitney, Sergey Malkin, José Oglesby, Isao Yamauchi,
Yuriko Rosnow, Jinsong Yu, Sergey Genkin, Victor Kozyrev, Andrei Burago, and
Eliyezer Kohen. Earlier related work is listed in Ref. 8.

Appendix A. Linear Format Grammar
This grammar is somewhat simplified compared to the model in the text.

char ← Unicode character
space ← ASCII space (U+0020)
αASCII ← ASCII A-Z a-z
nASCII ← ASCII 0-9
αnMath ← Unicode math alphanumeric (U+1D400 – U+1D7FF with some

Letterlike symbols U+2102 – U+2134)
αnOther ← Unicode alphanumeric not including αnMath nor nASCII
αn ← αnMath | αnOther

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 37

diacritic ← Unicode combining mark
opArray ← ‘&’ | VT | ‘■’
opClose ← ‘)’ | ‘]’ | ‘}’ | ‘⌍’
opCloser ← opClose | “\close”
opDecimal ← ‘.’ | ‘,’
opHbracket ← Unicode math horizontal bracket
opNary ← Unicode integrals, summation, product, and other nary ops
opOpen ← ‘(’ | ‘[’ | ‘{’ | ‘⌌’
opOpener ← opOpen | “\open”
opOver ← ‘/’ | “\atop”
opBuildup ← ‘_’ | ‘̂’ | ‘√’ | ‘∙’ | ‘√’ | ‘□’ | ‘/’ | ‘|’ | opArray | opOpen | opClose |

opNary | opOver | opHbracket | opDecimal
other ← char – {αn + nASCII + diacritic + opBuildup + CR}

diacriticbase ← αn | nASCII | ‘(’ exp ‘)’
diacritics ← diacritic | diacritics diacritic
atom ← αn | diacriticbase diacritics
atoms ← atom | atoms atom
digits ← nASCII | digits nASCII
number ← digits | digits opDecimal digits

expBracket ← opOpener exp opCloser
 ← ‘||’ exp ‘||’
 ← ‘|’ exp ‘|’
word ← αASCII | word αASCII
scriptbase ← word | word nASCII | αnMath | number | other | expBracket |

opNary
soperand ← operand | ‘∞’ | ‘-’ operand | “-∞”
expSubsup ← scriptbase ‘_’ soperand ‘̂’ soperand |
 scriptbase ‘̂’ soperand ‘_’ soperand
expSubscript ← scriptbase ‘_’ soperand
expSuperscript ← scriptbase ‘̂’ soperand
expScript ← expSubsup | expSubscript | expSuperscript

entity ← atoms | expBracket | number
factor ← entity | entity ‘!’ | entity “!!” | function | expScript
operand ← factor | operand factor
box ← ‘□’ operand

 Unicode Nearly Plain Text Encoding of Mathematics

38 Unicode Technical Note

hbrack ← opHbracket operand
sqrt ← ‘√’ operand
cubert ← ‘∙’ operand
fourthrt ← ‘√’ operand
nthrt ← “√(” operand ‘&’ operand ‘)’
function ← sqrt | cubert | fourthrt | nthrt | box | hbrack
numerator ← operand | fraction
fraction ← numerator opOver operand

row ← exp | row ‘&’ exp
rows ← row | rows ‘@’ row
array ← “\array(” rows ‘)’

element ← fraction | operand | array
exp ← element | exp other element

Appendix B. Character Keywords and Properties
The following table gives the default math keywords, their target characters and
codes along with spacing and linear-format build-up properties. A full keyword con-
sists of a backslash followed by a keyword in the table. The second column will be
converted to the appropriate character glyphs when this document’s format is up-
graded to use the Cambria Math font.

Keyword Glyph Code Spacing LF Property

above ┴ U+2534 ordinary subsup upper
acute ́ U+0301 ordinary accent
aleph ℵ U+2135 ordinary operand
alpha Α U+03B1 ordinary operand
amalg ∐ U+2210 ordinary nary
angle ∠ U+2220 relational normal
aoint ∳ U+2233 ordinary nary
approx ≈ U+2248 relational normal
asmash ⬆ U+2B06 ordinary encl phantom
ast ∗ U+2217 binary normal
asymp ≍ U+224D relational normal
atop ¦ U+00A6 ordinary divide
bar ̅ U+0305 ordinary accent

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 39

Bar ̿ U+033F ordinary accent
because ∵ U+2235 relational normal
begin 〖 U+3016 open open
below ┬ U+252C ordinary subsup lower
beth ℶ U+2136 ordinary operand
beta Β U+03B2 ordinary operand
bot ⊥ U+22A5 relational normal
bowtie ⋈ U+22C8 relational normal
box □ U+25A1 ordinary encl box
bra ۦ U+27E8 open open
breve ̆ U+0306 ordinary accent
bullet ∙ U+2219 binary normal
cap ∩ U+2229 binary normal
cbrt ∙ U+221B open encl root
cdot ⋅ U+22C5 binary normal
cdots ⋯ U+22EF ordinary normal
check ̌ U+030C ordinary accent
chi χ U+03C7 ordinary operand
circ ∘ U+2218 binary normal
close ┤ U+2524 ordinary close
clubsuit ǃ U+2663 ordinary normal
coint ∲ U+2232 ordinary nary
cong ≅ U+2245 relational normal
cup ∪ U+222A binary normal
daleth ℸ U+2138 ordinary operand
dashv ⊣ U+22A3 relational stretch horz
Dd ⅅ U+2145 differential operand
dd ⅆ U+2146 differential operand
ddddot ⃜ U+20DC ordinary accent
dddot ⃛ U+20DB ordinary accent
ddot ̈ U+0308 ordinary accent
ddots ⋱ U+22F1 relational normal
degree ° U+00B0 ordinary operand
Delta Δ U+0394 ordinary operand
delta Δ U+03B4 ordinary operand

 Unicode Nearly Plain Text Encoding of Mathematics

40 Unicode Technical Note

diamond ⋄ U+22C4 binary normal
diamondsuit ♢ U+2662 ordinary normal
div ÷ U+00F7 binary normal
dot ̇ U+0307 ordinary accent
doteq ≐ U+2250 relational normal
dots … U+2026 ordinary normal
downarrow ↓ U+2193 relational normal
Downarrow ⇓ U+21D3 relational normal
dsmash ⬇ U+2B07 ordinary encl phantom
ee ⅇ U+2147 ordinary operand
ell ℓ U+2113 ordinary operand
emptyset ∅ U+2205 unary operand
emsp U+2003 skip normal
end 〗 U+3017 close close
ensp U+2002 skip normal
epsilon ϵ U+03F5 ordinary operand
eqarray Ʈ U+2588 ordinary encl eqarray
eqno # U+0023 ordinary marker
equiv ≡ U+2261 relational normal
eta Η U+03B7 ordinary operand
exists ∃ U+2203 unary normal
forall ∀ U+2200 unary normal
funcapply ⁡ U+2061 binary subsupFA
Gamma Γ U+0393 ordinary operand
gamma Γ U+03B3 ordinary operand
ge ≥ U+2265 relational normal
geq ≥ U+2265 relational normal
gets ← U+2190 ordinary stretch horiz
gg ≫ U+226B relational normal
gimel ℷ U+2137 ordinary operand
grave ̀ U+0300 ordinary accent
hairsp U+200A skip normal
hat ̂ U+0302 ordinary accent
hbar ℏ U+210F ordinary operand
heartsuit ♡ U+2661 ordinary normal

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 41

hookleftarrow ↩ U+21A9 relational stretch horiz
hookrightarrow ↪ U+21AA relational stretch horiz
hphantom ⬉ U+2B04 ordinary encl phantom
hvec ⃑ U+20D1 ordinary accent
ii ⅈ U+2148 ordinary operand
iiiint 2A0C U+2A0C ordinary nary
iiint ∭ U+222D ordinary nary
iint ∬ U+222C ordinary nary
Im ℑ U+2111 ordinary operand
imath ı U+0131 ordinary operand
in ∈ U+2208 relational normal
inc ∆ U+2206 unary operand
infty ∞ U+221E ordinary operand
int ∫ U+222B ordinary nary
iota ι U+03B9 ordinary operand
jj ⅉ U+2149 ordinary operand
jmath 0237 U+0237 ordinary operand
kappa κ U+03BA ordinary operand
ket ۧ U+27E9 close close
Lambda Λ U+039B ordinary operand
lambda λ U+03BB ordinary operand
langle ۦ U+27E8 open open
lbrace { U+007B open open
lbrack [U+005B open open
lceil ⌈ U+2308 open open
ldots … U+2026 ordinary normal
le ≤ U+2264 relational normal
leftarrow ← U+2190 relational stretch horiz
Leftarrow ⇐ U+21D0 relational stretch horiz
leftharpoondown ↽ U+21BD relational stretch horiz
leftharpoonup ↼ U+21BC relational stretch horiz
leftrightarrow ź U+2194 relational stretch horiz
Leftrightarrow ⇔ U+21D4 relational stretch horiz
leq ≤ U+2264 relational normal
lfloor ⌊ U+230A open open

 Unicode Nearly Plain Text Encoding of Mathematics

42 Unicode Technical Note

ll ≪ U+226A relational normal
mapsto ↦ U+21A6 relational stretch horiz
matrix ■ U+25A0 ordinary encl matrix
medsp U+205F Ordinary normal
mid ∣ U+2223 relational list delims
models ⊨ U+22A8 relational stretch horz
mp ∓ U+2213 unary/binary unary/binary
mu Μ U+03BC ordinary operand
nabla ∇ U+2207 unary operand
naryand Ʋ U+2592 ordinary normal
nbsp U+00A0 skip normal
ne ≠ U+2260 relational normal
nearrow ↗ U+2197 relational normal
ni ∋ U+220B relational normal
norm ‖ U+2016 ordinary open/close
nu ν U+03BD ordinary operand
nwarrow ↖ U+2196 relational normal
odot ⊙ U+2299 binary normal
of Ʋ U+2592 ordinary normal
oint ∮ U+222E ordinary nary
oiint ∯ U+222F ordinary nary
oiiint ∰ U+2230 ordinary nary
Omega Ω U+03A9 ordinary operand
omega ω U+03C9 ordinary operand
ominus ⊖ U+2296 binary normal
open ├ U+251C ordinary open
oplus ⊕ U+2295 binary normal
oslash ⊘ U+2298 binary normal
otimes ⊗ U+2297 binary normal
over / U+002F binarynsp divide
overbar ¯ U+00AF ordinary encl overbar
overbrace ⏞ U+23DE ordinary stretch over
overparen ⏜ U+23DC ordinary stretch over
parallel ∥ U+2225 relational normal
partial ∂ U+2202 unary operand

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 43

phantom ⟡ U+27E1 ordinary encl phantom
Phi Φ U+03A6 ordinary operand
phi ϕ U+03D5 ordinary operand
Pi Π U+03A0 ordinary operand
pi π U+03C0 ordinary operand
pm ± U+00B1 unary/binary unary/binary
pppprime ⁗ U+2057 ordinary Unisubsup
ppprime ‴ U+2034 ordinary Unisubsup
pprime ″ U+2033 ordinary Unisubsup
prec ≺ U+227A relational normal
preceq ≼ U+227C relational normal
prime ′ U+2032 ordinary Unisubsup
prod ∏ U+220F ordinary nary
propto ∝ U+221D relational normal
Psi Ψ U+03A8 ordinary operand
psi Ψ U+03C8 ordinary operand
qdrt √ U+221C open encl root
rangle ۧ U+27E9 close close
ratio ∶ U+2236 relational normal
rbrace } U+007D close close
rbrack] U+005D close close
rceil ⌉ U+2309 close close
rddots ⋰ U+22F0 relational normal
Re ℜ U+211C ordinary operand
rect ▭ U+25AD ordinary encl rect
rfloor ⌋ U+230B close close
rho ρ U+03C1 ordinary operand
rightarrow → U+2192 relational stretch horiz
Rightarrow ⇒ U+21D2 relational stretch horiz
rightharpoondown ⇁ U+21C1 relational stretch horiz
rightharpoonup ⇀ U+21C0 relational stretch horiz
sdivide ⁄ U+2044 binarynsp divide
searrow ↙ U+2198 relational normal
setminus ∖ U+2216 binary normal
Sigma Σ U+03A3 ordinary operand

 Unicode Nearly Plain Text Encoding of Mathematics

44 Unicode Technical Note

sigma Σ U+03C3 ordinary operand
sim ∼ U+223C relational normal
simeq ≃ U+2243 relational normal
smash ⬈ U+2B0D ordinary encl phantom
spadesuit ǂ U+2660 ordinary normal
sqcap ⊓ U+2293 binary normal
sqcup ⊔ U+2294 binary normal
sqrt √ U+221A open encl root
sqsubseteq ⊑ U+2291 relational normal
sqsuperseteq ⊒ U+2292 relational normal
star ⋆ U+22C6 binary normal
subset ⊂ U+2282 relational normal
subseteq ⊆ U+2286 relational normal
succ ≻ U+227B relational normal
succeq ≽ U+227D relational normal
sum ∑ U+2211 ordinary nary
superset ⊃ U+2283 relational normal
superseteq ⊇ U+2287 relational normal
swarrow ↘ U+2199 relational normal
tau Τ U+03C4 ordinary operand
therefore ∴ U+2234 relational normal
Theta Θ U+0398 ordinary operand
theta θ U+03B8 ordinary operand
thicksp U+2005 skip normal
thinsp U+2006 skip normal
tilde ̃ U+0303 ordinary accent
times × U+00D7 binarynsp normal
to → U+2192 relational stretch horiz
top ⊤ U+22A4 relational normal
tvec ⃡ U+20E1 ordinary accent
underbar ▁ U+2581 ordinary encl under-

bar underbrace ⏟ U+23DF ordinary stretch under
underparen ⏝ U+23DD ordinary stretch under
uparrow ↑ U+2191 relational normal
Uparrow ⇑ U+21D1 relational normal

 Unicode Nearly Plain Text Encoding of Mathematics

Unicode Technical Note 45

updownarrow Ż U+2195 relational normal
Updownarrow ⇕ U+21D5 relational normal
uplus ⊎ U+228E binary normal
Upsilon Υ U+03A5 ordinary operand
upsilon Υ U+03C5 ordinary operand
varepsilon Ε U+03B5 ordinary operand
varphi Φ U+03C6 ordinary operand
varpi Π U+03D6 ordinary operand
varrho Ρ U+03F1 ordinary operand
varsigma Σ U+03C2 ordinary operand
vartheta Θ U+03D1 ordinary operand
vbar │ U+2502 ordinary list delims
vdash ⊢ U+22A2 relational stretch horz
vdots ⋮ U+22EE relational normal
vec ⃗ U+20D7 ordinary accent
vee ∨ U+2228 binary normal
vert | U+007C ordinary open/close
Vert ‖ U+2016 ordinary open/close
vphantom ⇳ U+21F3 relational encl phantom
vthicksp U+2004 skip normal
wedge ∧ U+2227 binary normal
wp ℘ U+2118 ordinary operand
wr ≀ U+2240 binary normal
Xi Ξ U+039E ordinary operand
xi ξ U+03BE ordinary operand
zeta ζ U+03B6 ordinary operand
zwnj U+200C ordinary normal
zwsp U+200B ordinary normal

References
1. The Unicode Standard, Version 4.0, (Reading, MA, Addison-Wesley, 2003. ISBN 0-

321-18578-1) or online as http://www.unicode.org/versions/Unicode4.0.0/

http://www.unicode.org/versions/Unicode4.0.0/

 Unicode Nearly Plain Text Encoding of Mathematics

46 Unicode Technical Note

2. Barbara Beeton, Asmus Freytag, Murray Sargent III, Unicode Technical Report
#25 “Unicode Support for Mathematics”, http://www.unicode.org/reports/tr25

3. Leslie Lamport, LaTeX: A Document Preparation System, User’s Guide & Reference
Manual, 2nd edition (Addison-Wesley, 1994; ISBN 1-201-52983-1)

4. Donald E. Knuth, The TeXbook, (Reading, Massachusetts: Addison-Wesley 1984)

5. Mathematical Markup Language (MathML) Version 2.0 (Second Edition)
http://www.w3.org/TR/2003/REC-MathML2-20031021/ .

6. PS Technical Word Processor, Scroll Systems, Inc. (1989). This WP used a non-
Unicode version of the plain-text math notation.

7. P. Meystre and M. Sargent III (1991), Elements of Quantum Optics, Springer-
Verlag

8. Some of these ideas were discussed in the following presentations: M. Sargent III,

Unicode, Rich Text, and Mathematics, 7th International Unicode Conference, San
Jose, California, Sept (1995); Murray Sargent III and Angel L. Diaz, MathML and
Unicode, 15th International Unicode Conference, San Jose, California, Sept
(1999); Murray Sargent III, Unicode Plain Text Encoding of Mathematics, 16th In-
ternational Unicode Conference, Amsterdam, Holland, March (2000); Murray
Sargent III, Unicode Support for Mathematics, 17th International Unicode Confe-
rence, San Jose, California, Sept (2000); Murray Sargent III, Unicode Support for
Mathematics, 22nd International Unicode Conference, San Jose, California, Sept
(2002); Murray Sargent III, Unicode Nearly Plain-Text Encoding of Mathematics,
26th Internationalization and Unicode Conference, San Jose, California, Sept
(2004). Murray Sargent III, Editing and Display of Mathematics using Unicode,
29th Internationalization and Unicode Conference, San Francisco, California,
March (2006).

http://www.unicode.org/reports/tr25
http://www.w3.org/TR/2003/REC-MathML2-20031021/

