
꧁ Implementing Javanese ꧂

Norbert Lindenberg
Version 1, 2022-09-13

This document assists in implementing the Javanese script in fonts, rendering systems,
keyboards, and other software by providing information that complements information in
The Unicode Standard.

Contents

1 Reference materials 2
2 Script identification 2
3 Special characters 3
4 Conjunct forms 3
5 Encoding order of orthographic syllable components 6
6 Rendering 9
7 Keyboards 12
8 Line breaking 14
9 Acknowledgments 14

© 2022 Lindenberg Software LLC. Norbert Lindenberg, Lindenberg Software LLC, and the Unicode Consortium make
no expressed or implied warranty of any kind, and assume no liability for errors or omissions. No liability is assumed
for incidental and consequential damages in connection with or arising out of the use of the information or programs
contained in or accompanying this technical note. The Unicode Terms of Use apply.

https://www.unicode.org/copyright.html

Implementing Javanese 2

1 Reference materials

The materials listed here should be consulted together with this document.

• The Unicode Consortium: The Unicode Standard, Version 15.0.0. The Unicode
Consortium, 2022. Provides an introduction in section 17.4 Javanese, the code chart
for the Javanese block, and comprehensive character data.

• Richard Ishida: Javanese. GitHub, 2022. Comprehensive information on the script
and its use for the Javanese language.

• Yayasan Pustaka Nusatama: ꧋ꦥꦼꦣꦺ�ꦴꦩ꧀ꦩꦤ꧀ꦥꦤꦼꦸꦭꦶꦱ꧀ꦱꦤ꧀ꦲꦲꦏ꧀ꦱꦫꦗꦮ – Pedoman
Penulisan Aksara Jawa. Yayasan Pustaka Nusatama, 2002. Guidelines to writing in
Javanese script; endorsed by governments of Yogyakarta, Central Java, and East
Java.

• Badan Standardisasi Nasional: Fon (font) aksara nusantara. SNI 9047:2021. Badan
Standardisasi Nasional, 2021. Indonesian national standard on fonts for Javanese,
Sundanese, and Balinese.

• Badan Standardisasi Nasional: Tata letak papan tombol aksara nusantara. SNI
9048:2021. Badan Standardisasi Nasional, 2021. Indonesian national standard on
keyboards for Javanese, Sundanese, and Balinese.

• Microsoft Corporation: Creating and supporting OpenType fonts for the Universal
Shaping Engine. Microsoft Corporation, 2020. Documents the OpenType shaping
engine that supports Javanese.

• Aditya Bayu Perdana: Rediscovering design in a supplanted script: The case of
Javanese. Typographic Design Center, 2022. History of type design for Javanese.

• Lindenberg Software LLC: Aksara Jawa. Lindenberg Software LLC, 2016-2022.
Application providing a font and a keyboard for Javanese for iOS and iPadOS.

2 Script identification

The ISO 15924 script code for Javanese is “Java”. The OpenType script tag is “java”.

https://www.unicode.org/Public/15.0.0/ucd/
https://apps.apple.com/app/id921451340
https://typegeist.org/article/rediscovering-design-in-a-supplanted-script-the-case-of-javanese
https://typegeist.org/article/rediscovering-design-in-a-supplanted-script-the-case-of-javanese
https://docs.microsoft.com/en-us/typography/script-development/use
https://docs.microsoft.com/en-us/typography/script-development/use
https://r12a.github.io/scripts/javanese/jv.html
https://www.unicode.org/charts/PDF/UA980.pdf
https://www.unicode.org/charts/PDF/UA980.pdf
https://www.unicode.org/versions/Unicode15.0.0/ch17.pdf

Implementing Javanese 3

3 Special characters

The following characters are mentioned multiple times in this document:

• U+A9C0  ꧀� JAVANESE PANGKON is the Javanese virama. This character is used both
by itself, to represent the visible vowel killer, and as the first part of the character
sequences used to encode the conjunct forms, or pasangan, of consonants, vocalic
liquids, and independent vowels. This document uses PANGKON to denote the code
point, and pangkon specifically for the visible vowel killer.

• U+A9BF ꦿ꧀ JAVANESE CONSONANT SIGN CAKRA is a medial consonant with complex
rendering: In its normal form, it wraps around the bottom and left side of the base
glyph or conjunct form it is attached to, and may form ligatures with other charac-
ters. However, in cases where this gets too complicated, a simplified form of cakra to
the left of the base, ꦿ꧀, can be used instead.

4 Conjunct forms

The following table shows the base consonants, vocalic liquids, and independent vowels
(together the letters of the Javanese script) and their conjunct forms.

Base character Base form Conjunct form

Consonants

ka ꦏ ꧀�

ka sasak (qa) ꦐ ꧀

ka murda (kha) ꦑ ꧀�

ga ꦒ ꧀�

ga murda (gha) ꦓ ꧀�

nga ꦔ ꧀�

ca ꦕ ꧀�

Implementing Javanese 4

Base character Base form Conjunct form

ca murda (cha) ꦖ ꧀�

ja ꦗ ꧀�

nya murda (jnya) ꦘ ꧀�

ja mahaprana (jha) ꦙ ꧀�

nya ꦚ ꧀!, ꧀"

tta ꦛ ꧀$

tta mahaprana (ttha) ꦜ ꧀&

dda ꦝ ꧀(

dda mahaprana (ddha) ꦞ ꧀*

na murda (nna) ꦟ ꧀,

ta ꦠ ꧀.

ta murda (tha) ꦡ ꧀0

da ꦢ ꧀2

da mahaprana (dha) ꦣ ꧀4

na ꦤ ꧀6

pa ꦥ ꧀8

pa murda (pha) ꦦ ꧀:

ba ꦧ ꧀<, ꧀=

ba murda (bha) ꦨ ꧀?

Implementing Javanese 5

Base character Base form Conjunct form

ma ꦩ ꧀A

ya ꦪ ꧀C

ra ꦫ ꧀E

ra agung ꦬ ꧀G

la ꦭ ꧀I

wa ꦮ ꧀K

sa murda (sha) ꦯ ꧀M

sa mahaprana (ssa) ꦰ ꧀O

sa ꦱ ꧀Q

ha ꦲ ꧀S

Vocalic liquids

pa cerek (vocalic r) ꦉ ꧀U

nga lelet (vocalic l) ꦊ ꧀W

nga lelet raswadi (vocalic ll) ꦋ ꧀Y

Independent vowels

a ꦄ ꧀[

i kawi ꦅ ꧀]

i ꦆ ꧀_

ii ꦇ ꧀a

u ꦈ ꧀c

Implementing Javanese 6

Base character Base form Conjunct form

e ꦌ ꧀e

ai ꦍ ꧀g

o ꦎ ꧀i

Conjunct forms are encoded by preceding the letter with PANGKON. The formation of
conjunct forms can be prevented by inserting U+200C ZERO WIDTH NON-JOINER between
PANGKON and the letter. The second conjunct forms of nya and ba are stylistic variants,
which should be implemented as font features. The Indonesian standard SNI 9047:2021
shows these stylistic variants encoded as sequences of PANGKON, U+200D ZERO WIDTH
JOINER, and consonant; this has the disadvantage, however, of breaking conjunct formation
in fonts that do not specifically support the variant glyphs.

5 Encoding order of orthographic syllable components

Javanese, like other Brahmic scripts, has features where phonetic and visual order of char-
acters within an orthographic syllable may differ: Dependent vowels and a medial conso-
nant to the left of the base, and bindus and a final consonant above the base or a spacing
conjunct form rather than above a right-side dependent vowel. For example, the compo-
nents of the syllable ꦤꦺꦴꦤkꦂ are generally pronounced in the order ꦤ n, ꦤꦺꦴ꧀k o, ꧀ꦂ r → nor. The
script’s encoding uses a primarily phonetic ordering. In addition, the conjunct forms of
letters are encoded as sequences of PANGKON and the respective letter; such sequences
should generally not be broken up. Characters and conjunct forms within an orthographic
syllable should be encoded in the relative order shown in the following table. The encoding
column uses the syntax defined in the section A.2 Extended BNF of The Unicode Standard.
The count column states how many characters of each class occur in real-life orthographic
syllables.

https://www.unicode.org/versions/Unicode15.0.0/appA.pdf
https://www.unicode.org/glossary/#orthographic_syllable

Implementing Javanese 7

Class Characters Encoding Count

consonant,
vocalic liquid,
independent
vowel, number,
generic base

ꦏ ꦐ ꦑ ꦒ ꦓ ꦔ ꦕ ꦖ ꦗ

ꦘ ꦙ ꦚ ꦛ ꦜ ꦝ ꦞ ꦟ ꦠ

ꦡ ꦢ ꦣ ꦤ ꦥ ꦦ ꦧ ꦨ ꦩ ꦪ

ꦫ ꦬ ꦭ ꦮ ꦯ ꦰ ꦱ ꦲ ꦉ ꦊ

ꦋ ꦄ ꦅ ꦆ ꦇ ꦈ ꦌ ꦍ ꦎ ꧐

꧑ ꧒ ꧓ ꧔ ꧕ ꧖ ꧗ ꧘ ꧙ ꧀

[U+A984..U+A9B2,
U+A9D0..U+A9D9,
U+25CC]

1

nukta ꧀x U+A9B3 0 to 1

conjunct form ꧀� ꧀ ꧀� ꧀� ꧀� ꧀� ꧀� ꧀� ꧀�

꧀� ꧀� ꧀! ꧀$ ꧀& ꧀(꧀* ꧀, ꧀. ꧀0

꧀2 ꧀4 ꧀6 ꧀8 ꧀: ꧀< ꧀? ꧀A ꧀C

꧀E ꧀G ꧀I ꧀K ꧀M ꧀O ꧀Q ꧀S

꧀U ꧀W ꧀Y ꧀[꧀] ꧀_ ꧀a ꧀c ꧀e

꧀g ꧀i

U+A9C0
[U+A984..U+A9B2]

0 to 2

nukta for
conjunct form

꧀x U+A9B3 0 to 1

virama ꧀� U+A9C0 0 to 1

bottom-left or
bottom medial
consonant

 ꦿ꧀ ꧀y [U+A9BF, U+A9BD] 0 to 1

bottom-right
medial consonant

꧀z U+A9BE 0 to 1

left-side depen-
dent vowel

ꦤꦺꦴ꧀ ꦻ꧀ [U+A9BA..U+A9BB] 0 to 1

top dependent
vowel

꧀| ꧀} ꧀ ~ [U+A9B6..U+A9B7,
U+A9BC]

0 to 1

Implementing Javanese 8

Class Characters Encoding Count

bottom depen-
dent vowel

꧀� ꧀� [U+A9B8..U+A9B9] 0 to 1

right-side depen-
dent vowel

꧀k ꧀� [U+A9B4..U+A9B5] 0 to 1

bindu ꧀� ꧀� [U+A980..U+A981] 0 to 1

visarga ꧀� U+A983 0 to 1

final consonant ꧀ꦂ U+A982 0 to 1

If a virama (PANGKON) is used without an immediately following letter, it represents the
visible vowel killer pangkon, which ends the orthographic syllable, and no character shown
later in the table should follow. Instead, it may be followed by punctuation, by a line break,
by U+200C ZERO WIDTH NON-JOINER to force an orthographic syllable break, or by space
when using Western-style word separation.

A nukta should only be used after the base character or after a spacing conjunct form, not
after a below-base conjunct form.

Some documents in the Kawi and Sanskrit languages use U+A982 ꧀ꦂ JAVANESE SIGN LAYAR,
which normally is a final consonant, as a syllable-initial consonant, also known as repha.
The syllable ꦤꦺꦴꦤkꦂ is then pronounced in the order ꧀ꦂ r, ꦤ n, ꦤꦺꦴ꧀k o → rno. This does not
affect the encoded representation, which keeps treating LAYAR as a final consonant.

The encoding order shown above is the one resulting from the OpenType Universal
Shaping Engine’s default interpretation of the Unicode character data for Javanese charac-
ters, with existing overrid es that move U+A9BF ꦿ꧀ JAVANESE CONSONANT SIGN CAKRA into
the same group as U+A9BD ꧀y JAVANESE CONSONANT SIGN KERET, and U+A9BE ꧀z

JAVANESE CONSONANT SIGN PENGKAL out of that group. The engine inserts dotted circles
into character sequences with out-of-order marks, so that OpenType fonts only need to
deal with correctly ordered characters. Fonts based on technologies other than OpenType,
such as Apple Advanced Typography or Graphite, should themselves insert dotted circles
into character sequences with out-of-order marks.

https://github.com/microsoft/font-tools/blob/905c73e4b4431c2403f0ea645162fbb747e55ad4/USE/IndicPositionalCategory-Additional.txt
https://github.com/microsoft/font-tools/blob/905c73e4b4431c2403f0ea645162fbb747e55ad4/USE/IndicPositionalCategory-Additional.txt

Implementing Javanese 9

Keyboards and other text-generating software should ensure that typed or generated text
conforms to this encoding order. Spelling checkers and other text-validating software
should use this encoding order in their reference data.

Note that the encoding order shown above differs from that documented in the Unicode
Standard up to version 14.0, which was both incomplete and incorrect. The Unicode Tech-
nical Committee has remove d the information on syllable structure from version 15.0 of
the standard.

6 Rendering

The following steps must be taken, in the order given, for each orthographic syllable to
achieve orthographically correct rendering:

1. Combine each sequence of PANGKON and an immediately following letter to a
conjunct form. However, where a conjunct form would collide with below-base
parts of the base, or where too many conjunct forms are stacked, it may be accept-
able to show pangkon and the letter separately, in which case the letter becomes a
base itself.

꧀� + ꦏ → ꧀� -ka

꧀� + ꦉ → ꧀U -rĕ

꧀� + ꦄ → ꧀[-a

꧀� + ꦏ + ꧀� + ꦭ → ꧀�꧀ꦭ or ꧀� ꦏI -kla

2. Move all pre-base vowels (ꦤꦺꦴ꧀ and ꦻ꧀) before the base.

ꦏ + ꦤꦺꦴ꧀ → ꦤꦺꦴꦏ ke

3. Convert any cakra (ꦿ꧀) to its left-side variant (ꦿ꧀) where necessary to prevent colli-
sions with other glyphs.

ꦏ + ꦿ꧀ + ꧀z → ꦏ + ꦿ꧀ + ꧀z -krya

4. Move any cakra converted to its left-side variant before its base glyph (but after pre-
base vowels).

https://www.unicode.org/L2/L2022/22061.htm#171-A90
https://www.unicode.org/L2/L2022/22041-javanese-ortho.pdf
https://www.unicode.org/L2/L2022/22061.htm#171-A90
https://www.unicode.org/L2/L2022/22061.htm#171-A90
https://www.unicode.org/L2/L2022/22061.htm#171-A90
https://www.unicode.org/L2/L2022/22061.htm#171-A90

Implementing Javanese 10

ꦏ + ꦿ꧀ + ꧀z → ꦿꦏꦾ krya

For OpenType fonts using the Universal Shaping Engine, step 1 needs to be implemented
in the font; step 2 should be implemented by the shaping engine based on Unicode char-
acter data; steps 3 and 4 are implemented by applying the “pref ” feature to convert to the
left-side form of cakra, which should cause the shaping engine to reorder the glyph.

Several additional steps may be taken to improve typography and to support stylistic pref-
erences:

• Several glyphs take on connecting forms when below-base marks attach to them.
The combinations may be implemented as ligatures – see the paragraph “Ligatures
versus glyph positioning” below.

꧀� + ꧀� → ꧀�ꦸ -ku

꧀ + ꧀� → ꧀�ꦹ -quu

꧀. + ꧀y → ꧀�ꦽ -trĕ

꧀I + ꧀z → ꧀�ꦾ -lya

• Cakra usually wraps around the bottom and left side of the base glyph or conjunct
form it is attached to. When attached to a spacing conjunct form, it only wraps
around that, not around the base glyph. Cakra also forms ligatures with an attached
dependent vowel U+A9B8 ꧀� JAVANESE VOWEL SIGN SUKU. When it gets too compli-
cated, however, falling back to the left-side form of cakra is fine. Combinations of
the left-side form of cakra with spacing conjunct forms are not known, so it is not
clear whether in such a combination the cakra should be positioned to the left of the
base glyph or to the left of the spacing conjunct form.

ꦏ + ꦿ꧀ → ꦏꦿ kra

ꦤ + ꦿ꧀ → ꦤꦿ nra

ꦤ + ꧀2 + ꦿ꧀ → ꦤ꧀ꦢꦿꦤ ndra

ꦤ + ꦿ꧀ + ꧀� → ꦤꦿꦸ nru

ꦤ + ꧀2 + ꦿ꧀ + ꧀� → ꦿꦤ�ꦸ ndru

Implementing Javanese 11

ꦏ + ꧀� + ꦿ꧀ + ꧀� → ꦿꦏ�ꦸ kkru

ꦤ + ꧀8 + ꦿ꧀ → ꦤ꧀ꦥꦿ npra

ꦤ + ꧀. + ꦿ꧀ + ꧀z → ꦿꦤ�ꦾ ntrya

• Glyphs that sit below below-base glyphs may be reduced in height, and below-base
vowels may be attached at a higher-than-usual position, to reduce overall line
height.

꧀. + ꧀z → ꧀�ꦾ -tya

꧀. + ꧀z + ꧀� → ꧀�ꦾꦸ -tyu

꧀� + ꧀I → ꧀�꧀ꦭ -kla

• Above-base marks are commonly not stacked, but displayed side-by-side or even
inside one another, which can be accomplished by creating combination glyphs.
When determining the set of supported combinations, it is reasonable to assume
that U+A980 ꧀� JAVANESE SIGN PANYANGGA and U+A9B3 ꧀x JAVANESE SIGN CECAK
TELU do not co-occur, and that at most one of the vowels U+A9B6 ꧀| JAVANESE
VOWEL SIGN WULU, U+A9B7 ꧀} JAVANESE VOWEL SIGN WULU MELIK, or U+A9BC ꧀ ~

JAVANESE VOWEL SIGN PEPET occurs. U+A981 ꧀� JAVANESE SIGN CECAK and U+A982
꧀ꦂ JAVANESE SIGN LAYAR only co-occur when layar is used as repha in Kawi or
Sanskrit.

꧀ ~ + ꧀ꦂ → ꧀� -ĕr

꧀ ~ + ꧀� → ꧀� -ĕng

꧀x + ꧀| → ꦳꧀ꦶ (nukta)-i

ꦤ + ꧀8 + ꧀x + ꦿ꧀ + ꧀| → ꦤ꧀ꦥꦿ꦳ꦶ nfri

• Above-base marks are positioned above base glyphs or right-side conjunct forms,
not above right-side vowels. In OpenType, this means that right-side vowels must
be treated as marks, so that they can be ignored when positioning the above-base
marks. Because of a compatibility feature in the Universal Shaping Engine, this
causes their width to be set to 0, so that it must be added back later using the “dist”
feature.

Implementing Javanese 12

ꦎ + ꧀k + ꧀� → ꦎk� om

ꦤ + ꦤꦺꦴ꧀ + ꧀k + ꧀ꦂ → ꦤꦺꦴꦤkꦂ nor

ꦥ + ꧀x + ꦤꦺꦴ꧀ + ꧀k + ꧀ꦂ → ꦤꦺꦴꦥ�k for

• Fonts may enable the selection of stylistic glyph variants via features such as stylistic
sets.

꧀< → ꧀= ba

꧀! → ꧀" nya

• Orthographic syllables often need to be spaced apart to avoid collisions between
below-base glyphs.

ꦎk� ꦱKꦱ�ꦾꦱ�ꦸ → ꦎk� ꦱK        ꦱ�ꦾ    ꦱ�ꦸ om swastyastu

Ligatures versus glyph positioning. The Javanese script has numerous glyphs that may,
depending on the design of a typeface, connect to each other. For example, the conjunct
form ꧀K wa may connect to the right-most stems of many base consonants, as in ꦏK kwa. If
followed by a vowel ꧀� u, it may also connect to that: ꦏ꧀ꦸꦮ kwu. For best rendering results, all
such combinations of connecting glyphs would be implemented as ligatures. However,
these combinations can easily number in the hundreds, possibly over a thousand, and
substantially increase the size of a font. The alternative is to not include such ligatures, or
only the most commonly used ones, and instead rely on positioning the connecting glyphs
appropriately. This may however result in slight offsets in connecting lines, as renderers
usually first rasterize the glyphs separately, then position them relative to each other, and
both steps involve rounding of coordinates. Font developers should consider the trade-off
carefully.

7 Keyboards

Key issues in the development of keyboards include which characters to support, how to
arrange them on a physical keyboard or on screen, how to let the user interact with the
keyboard, whether and how to support predictive input, and how to ensure the correct
encoding order of orthographic syllable components. This section discusses some of these
issues, comparing the Indonesian standard SNI 9048:2021, which covers physical and

https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#tag-ss01---ss20
https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#tag-ss01---ss20

Implementing Javanese 13

virtual (on-screen) keyboards for Javanese as well as for Sundanese and Balinese, and the
(on-screen only) keyboard in the Aksara Jawa app of Lindenberg Software.

Supported characters. When selecting characters to support, a common practice is to select
only the characters needed for a given language, not all characters in a script. The modern
Javanese language, for example, requires only 20 of the 36 consonants encoded in Unicode.
On the other hand, a language-based approach requires identifying the character set used
for each language (there does not seem to be much information available on Madurese or
Sasak) and then creating separate keyboards for each. As the currently encoded Javanese
character set is not that large, both SNI 9048 and the app’s keyboard provide the complete
character set.

One major difference between SNI 9048 and the app’s keyboard is how they support
conjunct forms. SNI 9048 does not specify dedicated keys for them, so users have to under-
stand that they have to type first PANGKON, then the letter whose conjunct form they need.
Experience with the Aksara Bali app of Lindenberg Software, which has the same limita-
tion, has shown that a fair number of users do not understand this, and complaints about
the “lack of support” for conjunct forms was the primary cause for customer care issues as
well as negative reviews for this app. The Aksara Jawa app therefore provides separate layers
with conjunct forms, one of which is shown below. This solution has proven much easier to
understand.

Keyboard layout. SNI 9048 specifies both physical and virtual keyboard layouts. Both are
similar and follow the English/Indonesian layout for physical keyboards, with two layers of
five rows. For the physical keyboards, this may take advantage of muscle memory. The
Aksara Jawa app, on the other hand, takes advantage of on-screen keyboards’s ability to
show the keys of all layers, and uses three layers for base characters and two for conjunct
forms, each with four rows to better fit on phone screens.

Implementing Javanese 14

Encoding order of orthographic syllable components. SNI 9048 does not discuss the
encoding order of orthographic syllable components. This likely means that correct
ordering is left up to users, who will have to understand the encoding order and edit text
until it is free of dotted circles. The keyboard of the Aksara Jawa app relieves them of this
by automatically reordering characters within an orthographic syllable. This is possible
because the keyboard API on iOS lets keyboards read and edit the text surrounding the
current insertion point. The input method APIs on Android, macOS, and Windows
provide similar capabilities. Smart keyboards should take advantage of them to help users
avoid incorrect text and dotted circles.

8 Line breaking

Lines of Javanese text can be broken at any orthographic syllable boundary. The Unicode
Line Breaking Algorithm and implementations based on it, such as the Internationalization
Classes for Unicode (ICU) library, do not yet provide this style of line breaking. Instead,
two errors commonly occur: Either lines are broken only at punctuation, resulting in text
overflowing the space available to it, or lines are broken at Unicode grapheme cluster
boundaries, resulting in broken conjunct forms, as PANGKON is treated as the end of a
grapheme cluster.

A proposal to correct the Unicode Line Breaking Algorithm has been submitted to the
Unicode Technical Committee, which has requested that this proposal be implemented in
ICU. Owners of other implementations should update them based on the proposal.

9 Acknowledgments

I would like to thank Aditya Bayu Perdana, who explained many details of Javanese typog-
raphy to me and who designed the font used in this document (and in the Aksara Jawa
app). I also thank Bayu (again), Evelyn Teo, Fadhl Haqq, Liang Hai, Marc Durdin, Martin
Hosken, Muthu Nedumaran, and Simon Cozens for feedback on drafts of this document.

꧅

https://unicode-org.atlassian.net/browse/ICU-22039
https://unicode-org.atlassian.net/browse/ICU-22039
https://www.unicode.org/L2/L2022/22061.htm#171-A67
https://www.unicode.org/L2/L2022/22080r2-line-break-ortho-bnd.pdf

	1 Reference materials
	2 Script identification
	3 Special characters
	4 Conjunct forms
	5 Encoding order of orthographic syllable components
	6 Rendering
	7 Keyboards
	8 Line breaking
	9 Acknowledgments

