
Implementing Kawi

Norbert Lindenberg
Version 1, 2022-09-13

This document assists in implementing the Kawi script in fonts, font rendering systems,
keyboards, and other software by providing information that complements information in
The Unicode Standard.

This document was completed on the day Unicode 15 was released, and the OpenType
Universal Shaping Engine, which is referenced several times in this document, needs final
Unicode data to implement a newly encoded script. Statements about this shaping engine
are therefore based on the documentation describing it and on Unicode 15 data; not on
actual implementations.

Contents
1 Reference materials 2
2 Script identification 2
3 Special characters 2
4 Encoding order of orthographic syllable components 3
5 Rendering 4
6 Keyboards 7
7 Line breaking 8
8 Acknowledgments 8

© 2022 Lindenberg Software LLC. Norbert Lindenberg, Lindenberg Software LLC, and the Unicode Consortium make
no expressed or implied warranty of any kind, and assume no liability for errors or omissions. No liability is assumed
for incidental and consequential damages in connection with or arising out of the use of the information or programs
contained in or accompanying this technical note. The Unicode Terms of Use apply.

https://www.unicode.org/copyright.html

Implementing Kawi 2

1 Reference materials

The materials listed here should be consulted together with this document.

• The Unicode Consortium: The Unicode Standard, Version 15.0.0. The Unicode
Consortium, 2022. Provides a 4-page summary of the Proposal to encode Kawi in
section 17.9 Kawi, the code chart for the Kawi block, and comprehensive character
data.

• Aditya Bayu Perdana, Ilham Nurwansah: Proposal to encode Kawi. The Unicode
Consortium, 2020. Provides comprehensive information about the script with
numerous illustrations and references to additional documents.

• Microsoft Corporation: Creating and supporting OpenType fonts for the Universal
Shaping Engine. Microsoft Corporation, 2020. Documents the OpenType shaping
engine that should support Kawi.

• Lindenberg Software LLC: Aksara Kawi. Lindenberg Software LLC, 2022. Prototype
application providing a font and a keyboard for Kawi for iOS and iPadOS.

2 Script identification

The ISO 15924 script code for Kawi is “Kawi”. The OpenType script tag is “kawi”.

3 Special characters

The following characters are mentioned multiple times in this document:

• U+11F42 KAWI CONJOINER is used as the first part of the character sequences
used to encode the conjunct forms of consonants and vocalic liquids. It is not
intended to be used or visible by itself. The visible virama sign is separately encoded
as U+11F41 � KAWI SIGN KILLER.

• U+11F02 KAWI SIGN REPHA represents the repha, a vowelless consonant r- that
starts an orthographic syllable. This document uses REPHA to denote the code point,
and repha for the glyph.

https://www.unicode.org/versions/Unicode15.0.0/ch17.pdf
https://www.unicode.org/charts/PDF/U11F00.pdf
https://lindenbergsoftware.com/kawi
https://docs.microsoft.com/en-us/typography/script-development/use
https://docs.microsoft.com/en-us/typography/script-development/use
https://www.unicode.org/L2/L2020/20284r-kawi.pdf
https://www.unicode.org/Public/15.0.0/ucd/
https://www.unicode.org/Public/15.0.0/ucd/

Implementing Kawi 3

4 Encoding order of orthographic syllable components

Kawi, like other Brahmic scripts, has features where phonetic and visual order of characters
within an orthographic syllable may differ: Dependent vowels and a conjunct form to the
left of the base, as well as an above-base repha. The script’s encoding uses a primarily
phonetic ordering. In addition, the conjunct forms of consonants and vocalic liquids are
encoded as sequences of CONJOINER and the respective letter; such sequences should never
be broken up. Characters and conjunct forms within an orthographic syllable should be
encoded in the relative order shown in the following table. The encoding column uses the
syntax defined in section A.2 Extended BNF of The Unicode Standard. The count column
states how many characters of each class occur in real-life orthographic syllables.

Class Characters Encoding Count

repha U+11F02 0 to 1

consonant, inde-
pendent vowel,
number, generic
base

[U+11F12..U+11F33,
U+11F04..U+11F10,
U+11F50..U+11F59,
U+25CC]

1

conjunct form

 ◌

U+11F42
[U+11F12..U+11F32,
U+11F0A, U+11F0C]

0 to 3

left-side depen-
dent vowel

◌ ◌ [U+11F3E..U+11F3F] 0 to 2

top dependent
vowel

 [U+11F36..U+11F37,
U+11F40]

0 to 1

bottom depen-
dent vowel

 [U+11F38..U+11F3A] 0 to 1

right-side depen-
dent vowel, vowel
killer

 � [U+11F34..U+11F35,
U+11F41]

0 to 1

bindu [U+11F00..U+11F01] 0 to 1

https://www.unicode.org/versions/Unicode15.0.0/appA.pdf
https://www.unicode.org/glossary/#orthographic_syllable

Implementing Kawi 4

Class Characters Encoding Count

visarga U+11F03 0 to 1

In some late Kawi varieties, the repha glyph may be used for a final -r consonant. This does
not affect the encoded representation, which keeps treating REPHA as the start of the ortho-
graphic syllable.

The encoding order shown above is the one resulting from the OpenType Universal
Shaping Engine’s default interpretation of the Unicode character data for Kawi characters,
so no overrides are needed in that shaping engine. The engine inserts dotted circles into
character sequences with out-of-order marks, so that OpenType fonts only need to deal
with correctly ordered characters. Fonts based on technologies other than OpenType, such
as Apple Advanced Typography or Graphite, should themselves insert dotted circles into
character sequences with out-of-order marks.

Keyboards and other text-generating software should ensure that typed or generated text
conforms to this encoding order. Spelling checkers and other text-validating software
should use this encoding order in their reference data.

5 Rendering

The following steps must be taken, in the order given, for each orthographic syllable to
achieve orthographically correct rendering:

1. Combine each CONJOINER with the following consonant or vocalic liquid to a
conjunct form.

 + → -ka

 + → -ṛ
2. Move the repha, if present, after the base, and treat it as a nonspacing combining

mark.

 + → + q → q rka

3. Move all pre-base vowels (◌ and ◌) before the base.

Implementing Kawi 5

 + ◌ → ◌ ke

4. Convert any ra conjunct form to its below-base variant if necessary to prevent colli-
sions with other glyphs.

 + + ◌ → + + mwra

5. Move any ra conjunct form that is not converted to its below-base variant before the
base (but after pre-base vowels).

 + ◌ → ◌ kra

 + ◌ + ◌ → ◌ + ◌ → ◌ ◌ kre

For OpenType fonts using the Universal Shaping Engine, step 1 needs to be implemented
in the font; steps 2 and 3 should be implemented by the shaping engine based on Unicode
character data; step 4 needs to be implemented in the font; and step 5 can be triggered by
applying the “pref ” feature to the ra conjunct form, which should cause the shaping engine
to reorder the glyph.

Several additional steps may be taken to improve typography and to support stylistic pref-
erences:

• Glyphs that sit below below-base glyphs may be reduced in height, and below-base
vowels may be attached at a higher-than-usual position, to reduce overall line
height.

+ + + → ntlū

+ + ◌ + → ntrya

• Above-base marks are commonly not stacked vertically but ligated or displayed
slightly offset. When determining the set of supported combinations, it is reason-
able to assume that at most one of the vowels U+11F36 KAWI VOWEL SIGN I,
U+11F37 KAWI VOWEL SIGN II, or U+11F40 KAWI VOWEL SIGN EU occurs.

 q + → u r-i

 + → v -iŋ

Implementing Kawi 6

• Above-base marks are positioned above base glyphs or right-side conjunct forms,
not above right-side vowels. In OpenType, this means that right-side vowels must
be treated as marks, so that they can be ignored when positioning the above-base
marks. Because of a compatibility feature in the Universal Shaping Engine, this
causes their width to be set to 0, so that it must be added back later using the “dist”
feature.

 + + → om

• Repha and U+11F35 KAWI VOWEL SIGN ALTERNATE AA may be ligated.

 q + → w r-ā

• Fonts may enable the selection of stylistic glyph variants via features such as stylistic
sets.

 → -ha

 → -ṣa
 → z -ā

• Orthographic syllables often need to be spaced apart to avoid collisions between
below-base glyphs.

 → kṛṣṇapakṣa

Ligatures versus glyph positioning. The Kawi script has some glyphs that may, depending
on the design of a typeface, connect to each other. For example, the dependent vowel u
may connect to the right-most stems of many base consonants, as in ku. For best
rendering results, all such combinations of connecting glyphs would be implemented as
ligatures. However, this might substantially increase the size of a font. The alternative is to
not include such ligatures, or only the most commonly used ones, and instead rely on posi-
tioning the connecting glyphs appropriately. This may however result in slight offsets in
connecting lines, as renderers usually first rasterize the glyphs separately, then position
them relative to each other, and both steps involve rounding of coordinates. Font devel-
opers should consider the trade-off carefully.

https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#tag-ss01---ss20
https://docs.microsoft.com/en-us/typography/opentype/spec/features_pt#tag-ss01---ss20

Implementing Kawi 7

6 Keyboards

Key issues in the development of keyboards include which characters to support, how to
arrange them on a physical keyboard or on screen, how to let the user interact with the
keyboard, whether and how to support predictive input, and how to ensure the correct
encoding order of orthographic syllable components. This section discusses some of these
issues, using the on-screen keyboard in the Aksara Kawi prototype app of Lindenberg Soft-
ware as a reference.

Supported characters. When selecting characters to support, a common practice is to select
only the characters needed for a given language, not all characters in a script. However, a
language-based approach requires identifying the character set used for each language and
then creating separate keyboards for each. As the currently encoded Kawi character set is
not that large, the app’s keyboard provides the complete character set.

In addition to encoded characters, developers need to consider how to support conjunct
forms. In Kawi, conjunct forms are encoded as sequences of CONJOINER, which is not
intended to be displayed by itself, and a consonant or vocalic liquid. If possible, keyboards
should have dedicated keys for conjunct forms so that users do not have to enter
CONJOINER separately. The Aksara Kawi app provides a separate layer with conjunct forms,
which is shown below.

Keyboard layout. There is no standard keyboard layout for Kawi yet. The Aksara Kawi
prototype app takes advantage of the fact that on-screen keyboards can show the keys of all
layers, and uses two layers for base characters and one for conjunct forms, each with five
rows.

Implementing Kawi 8

Encoding order of orthographic syllable components. The keyboard of the Aksara Kawi
app relieves users of having to understand the encoding order of orthographic syllable
components by automatically reordering characters within an orthographic syllable. It
assumes that a consonant without preceding CONJOINER, or a repha followed by such a
consonant start a new orthographic syllable. Other syllable components can be entered in
arbitrary order and will be reordered. This is possible because the keyboard API on iOS lets
keyboards read and edit the text surrounding the current insertion point. The input
method APIs on Android, macOS, and Windows provide similar capabilities. Smart
keyboards should take advantage of them to help users avoid incorrect text and dotted
circles.

7 Line breaking

Lines of Kawi text can be broken at any orthographic syllable boundary. The Unicode Line
Breaking Algorithm and implementations based on it, such as the Internationalization
Classes for Unicode (ICU) library, do not yet provide this style of line breaking. Instead,
two errors commonly occur: Either lines are broken only at punctuation, resulting in text
overflowing the space available to it, or lines are broken at Unicode grapheme cluster
boundaries, resulting in broken conjunct forms, as CONJOINER is treated as the end of a
grapheme cluster.

A proposal to correct the Unicode Line Breaking Algorithm has been submitted to the
Unicode Technical Committee, which has requested that this proposal be implemented in
ICU. Owners of other implementations should update them based on the proposal.

8 Acknowledgments

I would like to thank Aditya Bayu Perdana and Ilham Nurwansah, who provided a detailed
description of Kawi in their encoding proposal. Bayu also designed the font that is used in
the proposal, in the Unicode Standard, in this document, and in the Aksara Kawi app.
Finally, I would like to thank the reviewers of the peer document on Javanese, whose
comments helped shape this document as well.

https://www.unicode.org/L2/L2022/22061.htm#171-A67
https://unicode-org.atlassian.net/browse/ICU-22039
https://unicode-org.atlassian.net/browse/ICU-22039
https://www.unicode.org/notes/tn47/
https://www.unicode.org/L2/L2022/22080r2-line-break-ortho-bnd.pdf

	1 Reference materials
	2 Script identification
	3 Special characters
	4 Encoding order of orthographic syllable components
	5 Rendering
	6 Keyboards
	7 Line breaking
	8 Acknowledgments

