1. Introduction. This document proposes the addition to the UCS of 214 new graphic characters to provide compatibility with a wide range of home computers, or “microcomputers,” manufactured approximately from the mid-1970s to the mid-1980s, and with the teletext broadcasting standard originally developed in the early 1970s.

NOTE: Mapping tables between legacy character sets and the allocations in this proposal are attached to the PDF version of this document.

2. History. Box-drawing characters, solid and shaded blocks, and similar graphic characters were encoded in the UCS in 1991 (Unicode 1.0) for compatibility with established character sets, both in popular microcomputers—particularly the IBM PC—and in terminal-emulation software. The set of block characters was augmented in 1999 (Unicode 3.0) and in 2002 (Unicode 3.2) to cover additional platforms, due largely to proposals by Frank da Cruz (L2/98-353 through -355, L2/98-413, and L2/00-159), which also included C1 and EBCDIC control pictures, hex byte pictures, and some other graphic characters that were not accepted.

Over the years that followed, suggestions were occasionally made on the Unicode public mailing list to add characters from legacy platforms, but few formal proposals emerged. One that did was “Proposal to create a new block for missing Block Element characters,” by Eduardo Marín Silva (L2/17-194), which proposed five characters from the Sinclair ZX80 and ZX81 character sets.

A list discussion in April 2017 concerning the “PETSCII” character set, used in various forms by Commodore home computers ranging from the PET (1977) to the C128 (1985), led to the formation of an ad-hoc Terminals Working Group, which is responsible for this document.

Computers of this era enjoyed a great deal of popularity—the Commodore 64 is still, to this day, the largest-selling single computer model of all time—and spawned a large number of computer clubs and user groups devoted to these machines. Some of the original user groups are still in existence,
and new ones, often online-only, have emerged more recently. The characters proposed here are intended to benefit these users and hobbyists, by providing round-trip convertibility of character data between legacy platforms and the UCS. They may also facilitate the creation of software for these platforms, such as emulators and cross-assemblers, and have been requested by developers of present-day text-mode applications as well, to enhance pseudo-graphical displays.

3. Microcomputer platforms. The group considered the following platforms and character sets:

- Amstrad CPC (464, 664, 6128, etc.)
- Apple 8-bit computers (II, II Plus, Ile, Ilc, III, and the 16-bit IIgs), including MouseText
- Atari 8-bit computers (400, 800, XL, XE) (“ATASCII”)
- Atari 16-bit computers (ST, STE, TT, Falcon), including the GEM windowing system
- Commodore 8-bit computers (PET, VIC-20, 64, 128) (“PETSCII”)
- Commodore Amiga (500, 1000, etc.)
- Mattel Aquarius
- MSX computers (Spectravideo SV-328, Yamaha YIS503II, Canon V-20, etc.)
- Oric computer series (Tangerine Computer Systems)
- RISC OS computers (Acorn, other ARM machines)
- Sinclair 8-bit computers (ZX80, ZX81, ZX Spectrum, and Timex Sinclair equivalents)
- Tandy TRS-80 computers (TRS-80 Model I, Model III, Model 4, Color Computer)
- Texas Instruments TI-99/4A

For many of these platforms, information about the character sets and text and graphics modes was available only through scanned copies of user manuals and photographs of screens showing a full or partial character dump. The combination of low-resolution images and lack of supporting information meant that some characters were difficult or impossible to identify, and consequently have not been proposed in this document.

4. Teletext and Minitel. Teletext was a service invented in the United Kingdom in the early 1970s for broadcasting pages of information, generally text and simple block graphics, to analog television receivers via the vertical blanking interval. Teletext found its greatest popularity in Europe, where it was commonplace until the adoption of digital television; almost all analog television sets sold in Europe since the early 1980s had built-in teletext decoders.

Several different 7-bit character sets were defined for teletext, including a complete set of 2 × 3 block graphics (64 in all), analogous to the block quadrants found in other platforms, as well as additional mosaic graphics. There was also a set of 27 control characters which could be used to select foreground and background color, character height (single or double), and other attributes, similar to those found in the ISO 6429 (ANSI X3.64, ECMA-48) standard which was introduced later. Figure 25 illustrates several of these display techniques used on a single page. At least one line of microcomputers (the BBC Model B Microcomputer, manufactured by Acorn) supported a teletext display mode.

A digital version of teletext, using the same character encoding model, is still in use in Romania, as shown in Figure 27.
Later versions of the teletext specification included features such as (relatively) high-resolution graphics and dynamically redefinable character sets (DRCS), which are not considered in this document.

Minitel was an interactive videotext service, used in France from the early 1980s until 2012, that utilized dedicated terminals and standard telephone service to provide two-way online functionality, similar to many modern-day uses of the Internet. Like teletext, Minitel was character-based and made extensive use of 2 ×3 block characters to provide simple graphics.

5. Graphic characters. Most of the characters proposed in this document are _semigraphics_: block-style symbols which could be combined to simulate an all-points-addressable graphic display. Many platforms used these text characters to support a so-called “graphics mode”: small blocks could be “plotted” at various coordinates, and the appropriate full-sized block character consisting of the necessary “on” and “off” blocks would be displayed in text mode (Figure 24). The set also includes numerous box-drawing and shading characters, and some miscellaneous characters such as arrows and stick figures, which were present in the target platforms.

The word “sextant” is used in this document, by analogy with “quadrant”—a term used for certain UCS characters since 1999—to refer to a semigraphics block consisting of six smaller blocks or “cells” arranged in two columns and three rows. In the teletext specification, characters in this group could be displayed either with the cells joined together, as with the existing quadrant characters, or with a narrow space between cells. A teletext emulator could interpret the control character U+001A (“separated graphics”) to display space between cells, or U+0019 (“contiguous graphics”) to revert to the default, joined appearance (Figure 28).

Four of the 64 sextant block characters were unified with existing characters: the left and right half blocks and full block were unified with the visually identical U+258C, U+2590, and U+2588, while the empty block can be mapped to an existing space character with suitable properties, such as U+00A0 NO-BREAK SPACE.

Other line-drawing and partial-block characters proposed in this document were determined not to be unifiable with existing characters. The horizontal one-eighth blocks are similar in nature to the horizontal scan line characters at U+23BA through U+23BD and U+2500, but are defined strictly in terms of an 8-row cell, just as the horizontal scan lines are defined in terms of a 9-row cell. Additionally, the proposed U+1FB95 CHECKER BOARD FILL and U+1FB96 INVERSE CHECKER BOARD FILL exist side-by-side in the same legacy character sets as U+2592 MEDIUM SHADE and the proposed U+1FB90 INVERSE MEDIUM SHADE (Figures 1 and 8), which are finer-grained. Choosing the wrong semigraphics character in contexts like images or UIs could result in mismatches or “seams” in juxtaposition with surrounding semigraphics characters. New characters proposed here are intended to fit together visually, the same way the existing ones do.

Some of the graphic characters are intended to be used together, to represent line-drawing images that would not fit within a single character block. Examples include LEFT, MIDDLE, and RIGHT THIRD WHITE RIGHT POINTING INDEX from the TRS-80 Model III and Model 4, and LEFT and RIGHT HALF RUNNING MAN from MouseText on the Apple IIc. These are analogous to U+2320 TOP HALF INTEGRAL and U+2321 BOTTOM HALF INTEGRAL, which, like the present characters, were encoded for compatibility.
Graphic characters on text-oriented legacy platforms were designed for restricted resolution, typically an 8 × 8 cell. Many of these characters are shown with improved resolution in the code charts beginning on page 11. For example, two characters from the Apple MouseText set, LEFTWARDS and RIGHTWARDS ARROW AND UPPER AND LOWER ONE EIGHTH BLOCK, were displayed in the Apple II series with an incomplete upper line (Figure 3), but are shown in the code charts with a complete (broken) line. The code chart glyphs are illustrative only and do not imply a change in character identity.

6. **Seven-segment digits.** The character set for Atari 16-bit machines (ST and successors) defined clones of the ASCII digits 0 through 9, styled as upright (i.e. not oblique) seven-segment digits, in the code space below 0x20. These styled digits were particularly popular in Atari ST applications, where they were used in separate domains from regular ASCII digits, such as game scores. Representatives of the Atari ST user community have specifically requested these characters. They are proposed here at code points U+1FBF0 through U+1FBF9.

7. **Characters not proposed.** Not all characters identified in the target platforms were deemed suitable for encoding. For example, the character set for Atari 16-bit machines included two characters for the left and right halves of the Atari logo, and four which could be arranged to form an image of the fictional character J.R. “Bob” Dobbs (see Wikipedia article). Both of these symbols, like the existing Apple logo, were determined to be IP-encumbered and thus are not proposed here.

Glyphs from lesser-used platforms that the group observed but could not identify are also not proposed, as described above.

Characters that could not be attested in any of the target platforms are not proposed. One code point, U+1FBF93, was left unassigned in this proposal as a placeholder for the as-yet unattested *LEFT HALF BLOCK AND RIGHT HALF INVERSE MEDIUM SHADE, which would be the reverse-video equivalent of U+1FB8D RIGHT HALF MEDIUM SHADE from the Aquarius.

For some platforms, additional research yielded character-dump images that show characters not included in earlier revisions of this proposal. Many of these characters are already encoded in the Miscellaneous Technical or Control Pictures blocks of the UCS. Any additional characters present in the legacy platforms, but not proposed here, may be included in a separate, future proposal.

“Reverse video” or “inverse video” characters, which were present on nearly all microcomputers of the 1970s and 1980s and often served the same purpose that bold or italic characters serve today, have been determined to be out of scope for the UCS and are not proposed here. In a previous version of this proposal (L2/17-435), they were proposed as variation sequences. The ISO 6429 display sequences SGR 7 (“negative image”) and SGR 0 (“default rendition”) are suggested as a higher-level protocol to achieve this effect.

Control characters from microcomputer platforms and teletext were considered, but also determined to be out of scope for the UCS. These characters were located in what would today be considered the C0 control range (0x00–0x1F) or the C1 control range (0x7F–0x9F). Processes that need to interchange these codes should simply interchange the binary C0 or C1 value, extended to the UCS code space but without further mapping. Emulators should treat these control codes as appropriate for the targeted environment.
8. Character names. At least since the 1970s, international SDOs such as ECMA and national bodies such as ANSI and BSI have assigned names to the elements of coded character sets. By contrast, vendors of microcomputers, and even the developers of the teletext standard, tended to provide at best a code chart or image of a screen showing the character set, usually without names. We have attempted to invent names for these characters that are meaningful, unique, and conformant to WG2 and UTC guidelines.

9. Ordering and code point assignment. The proposed characters are presented roughly in groups: block sextants are together, followed by other mosaic graphics, and so forth. Although the exact order of these characters within their groups is not an overriding concern, it seems reasonable that the groups should be kept together.

All characters (with the exception of two arrows which seemed to fit logically within an existing block) are shown here with a suggested code point in a new block (1FB00..1FBFF) that is unassigned and adjacent to existing symbol blocks, according to the “Roadmap to the SMP,” revision 11.0.0. A placeholder block name, “Graphics for Legacy Computing,” is listed in the summary form. However, it is understood that final assignment of blocks, code points, and block and character names is completely at the discretion of UTC and/or WG2.

10. Implementation. To assist implementers of emulators and conversion tools with the variety of mechanisms discussed in this proposal—existing and new block graphics characters, control codes, ISO 6429 sequences for reverse video, and so forth—the group has developed an extensive set of mapping tables, providing suggested mappings from the legacy character sets to the UCS. These mapping tables are attached to the PDF version of this document. The group is also drafting a Unicode Technical Note to explain the mechanisms and recommended techniques for working with them.
11. Unicode character properties.

1F8B0;ARROW POINTING UPWARDS THEN NORTH WEST;So;0;ON;;;;;N;;;;;
1F8B1;ARROW POINTING RIGHTWARDS THEN CURVING SOUTH WEST;So;0;ON;;;;;N;;;;;
1FB00;BLOCK SEXTANT-1;So;0;ON;;;;;N;;;;;
1FB01;BLOCK SEXTANT-2;So;0;ON;;;;;N;;;;;
1FB02;BLOCK SEXTANT-12;So;0;ON;;;;;N;;;;;
1FB03;BLOCK SEXTANT-3;So;0;ON;;;;;N;;;;;
1FB04;BLOCK SEXTANT-13;So;0;ON;;;;;N;;;;;
1FB05;BLOCK SEXTANT-23;So;0;ON;;;;;N;;;;;
1FB06;BLOCK SEXTANT-123;So;0;ON;;;;;N;;;;;
1FB07;BLOCK SEXTANT-4;So;0;ON;;;;;N;;;;;
1FB08;BLOCK SEXTANT-14;So;0;ON;;;;;N;;;;;
1FB09;BLOCK SEXTANT-24;So;0;ON;;;;;N;;;;;
1FB0A;BLOCK SEXTANT-124;So;0;ON;;;;;N;;;;;
1FB0B;BLOCK SEXTANT-34;So;0;ON;;;;;N;;;;;
1FB0C;BLOCK SEXTANT-134;So;0;ON;;;;;N;;;;;
1FB0D;BLOCK SEXTANT-234;So;0;ON;;;;;N;;;;;
1FB0E;BLOCK SEXTANT-1234;So;0;ON;;;;;N;;;;;
1FB0F;BLOCK SEXTANT-5;So;0;ON;;;;;N;;;;;
1FB10;BLOCK SEXTANT-15;So;0;ON;;;;;N;;;;;
1FB11;BLOCK SEXTANT-25;So;0;ON;;;;;N;;;;;
1FB12;BLOCK SEXTANT-125;So;0;ON;;;;;N;;;;;
1FB13;BLOCK SEXTANT-35;So;0;ON;;;;;N;;;;;
1FB14;BLOCK SEXTANT-135;So;0;ON;;;;;N;;;;;
1FB15;BLOCK SEXTANT-235;So;0;ON;;;;;N;;;;;
1FB16;BLOCK SEXTANT-1235;So;0;ON;;;;;N;;;;;
1FB17;BLOCK SEXTANT-45;So;0;ON;;;;;N;;;;;
1FB18;BLOCK SEXTANT-145;So;0;ON;;;;;N;;;;;
1FB19;BLOCK SEXTANT-245;So;0;ON;;;;;N;;;;;
1FB1A;BLOCK SEXTANT-1245;So;0;ON;;;;;N;;;;;
1FB1B;BLOCK SEXTANT-345;So;0;ON;;;;;N;;;;;
1FB1C;BLOCK SEXTANT-1345;So;0;ON;;;;;N;;;;;
1FB1D;BLOCK SEXTANT-2345;So;0;ON;;;;;N;;;;;
1FB1E;BLOCK SEXTANT-12345;So;0;ON;;;;;N;;;;;
1FB1F;BLOCK SEXTANT-6;So;0;ON;;;;;N;;;;;
1FB20;BLOCK SEXTANT-16;So;0;ON;;;;;N;;;;;
1FB21;BLOCK SEXTANT-26;So;0;ON;;;;;N;;;;;
1FB22;BLOCK SEXTANT-126;So;0;ON;;;;;N;;;;;
1FB23;BLOCK SEXTANT-36;So;0;ON;;;;;N;;;;;
1FB24;BLOCK SEXTANT-136;So;0;ON;;;;;N;;;;;
1FB25;BLOCK SEXTANT-236;So;0;ON;;;;;N;;;;;
1FB26;BLOCK SEXTANT-1236;So;0;ON;;;;;N;;;;;
1FB27;BLOCK SEXTANT-46;So;0;ON;;;;;N;;;;;
1FB28;BLOCK SEXTANT-146;So;0;ON;;;;;N;;;;;
1FB29;BLOCK SEXTANT-246;So;0;ON;;;;;N;;;;;
1FB2A;BLOCK SEXTANT-1246;So;0;ON;;;;;N;;;;;
1FB2B;BLOCK SEXTANT-346;So;0;ON;;;;;N;;;;;
1FB2C;BLOCK SEXTANT-1346;So;0;ON;;;;;N;;;;;
1FB2D;BLOCK SEXTANT-2346;So;0;ON;;;;;N;;;;;
1FB2E;BLOCK SEXTANT-12346;So;0;ON;;;;;N;;;;;
1FB2F;BLOCK SEXTANT-56;So;0;ON;;;;;N;;;;;
1FB30;BLOCK SEXTANT-156;So;0;ON;;;;;N;;;;;
1FB31;BLOCK SEXTANT-256;So;0;ON;;;;;N;;;;;
1FB32;BLOCK SEXTANT-1256;So;0;ON;;;;;N;;;;;
1FB33;BLOCK SEXTANT-356;So;0;ON;;;;;N;;;;;
1FB34;BLOCK SEXTANT-1356;So;0;ON;;;;;N;;;;;
1FB35;BLOCK SEXTANT-2356;So;0;ON;;;;;N;;;;;
1FB36;BLOCK SEXTANT-12356;So;0;ON;;;;;N;;;;;
1FB37;BLOCK SEXTANT-456;So;0;ON;;;;;N;;;;;
1FB38;BLOCK SEXTANT-1456;So;0;ON;;;;;N;;;;;
1FB39;BLOCK SEXTANT-2456;So;0;ON;;;;;N;;;;;
1FB3A;BLOCK SEXTANT-12456;So;0;ON;;;;;N;;;;;
1FB3B;BLOCK SEXTANT-3456;So;0;ON;;;;;N;;;;;
1FB3C;BLOCK SEXTANT-13456;So;0;ON;;;;;N;;;;;
1FB3D;BLOCK SEXTANT-23456;So;0;ON;;;;;N;;;;;
1FB3E;BLOCK SEXTANT-123456;So;0;ON;;;;;N;;;;;
1FB3F;BLOCK SEXTANT-56;So;0;ON;;;;;N;;;;;
1FB40;BLOCK SEXTANT-156;So;0;ON;;;;;N;;;;;
1FB41;BLOCK SEXTANT-256;So;0;ON;;;;;N;;;;;
1FB42;BLOCK SEXTANT-1256;So;0;ON;;;;;N;;;;;
1FB43;BLOCK SEXTANT-356;So;0;ON;;;;;N;;;;;
1FB44;BLOCK SEXTANT-1356;So;0;ON;;;;;N;;;;;
1FB45;BLOCK SEXTANT-2356;So;0;ON;;;;;N;;;;;
12. References.

3d@galax.xyz. 2014. “Teletext Character Set.”
http://www.galax.xyz/TELETEXT/CHARSET.HTM

http://www.kreativkorp.com/software/fonts/apple2.shtml

http://www.kreativkorp.com/software/fonts/c64.shtml

http://www.kreativkorp.com/software/fonts/trs80.shtml

Covington, Michael A. Compute! issue 42. 1983. “All About The TI Character Set.”
http://www.atarimagazines.com/compute/issue42/082_1_ALL_ABOUT_THE_TI_CHARACTER_Set.php

http://www.etsi.org/deliver/etsi_i_ets/300700_300799/300706/01_60/ets_300706e01p.pdf

Microcomputer & Related Culture Foundation. 2016. “MSX font.”
https://www.msx.org/wiki/MSX_font

Oy, Aivosto. 2014. “Commodore PETSCII character sets.”

http://www.99er.net/files/userrefguide.pdf

13. Disclaimer. All trademarks and registered trademarks mentioned herein are the property of their respective owners. The company and product names used in this document are for identification purposes only.
Supplemental Arrows-C

Arrows for legacy computing

1F8B0 ⤸ ARROW POINTING UPWARDS THEN NORTH WEST

1F8B1 ⤹ ARROW POINTING RIGHTWARDS THEN CURVING SOUTH WEST
Block mosaic terminal graphic characters

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1FB00</td>
<td>BLOCK SEXTANT-1</td>
</tr>
<tr>
<td>1FB01</td>
<td>BLOCK SEXTANT-2</td>
</tr>
<tr>
<td>1FB02</td>
<td>BLOCK SEXTANT-12</td>
</tr>
<tr>
<td></td>
<td>= upper one third block</td>
</tr>
<tr>
<td>1FB03</td>
<td>BLOCK SEXTANT-3</td>
</tr>
<tr>
<td>1FB04</td>
<td>BLOCK SEXTANT-13</td>
</tr>
<tr>
<td>1FB05</td>
<td>BLOCK SEXTANT-23</td>
</tr>
<tr>
<td>1FB06</td>
<td>BLOCK SEXTANT-123</td>
</tr>
<tr>
<td>1FB07</td>
<td>BLOCK SEXTANT-4</td>
</tr>
<tr>
<td>1FB08</td>
<td>BLOCK SEXTANT-14</td>
</tr>
<tr>
<td>1FB09</td>
<td>BLOCK SEXTANT-24</td>
</tr>
<tr>
<td>1FB0A</td>
<td>BLOCK SEXTANT-124</td>
</tr>
<tr>
<td>1FB0B</td>
<td>BLOCK SEXTANT-34</td>
</tr>
<tr>
<td></td>
<td>= middle one third block</td>
</tr>
<tr>
<td>1FB0C</td>
<td>BLOCK SEXTANT-134</td>
</tr>
<tr>
<td>1FB0D</td>
<td>BLOCK SEXTANT-234</td>
</tr>
<tr>
<td>1FB0E</td>
<td>BLOCK SEXTANT-1234</td>
</tr>
<tr>
<td></td>
<td>= upper two thirds block</td>
</tr>
<tr>
<td>1FB0F</td>
<td>BLOCK SEXTANT-5</td>
</tr>
<tr>
<td>1FB10</td>
<td>BLOCK SEXTANT-15</td>
</tr>
<tr>
<td>1FB11</td>
<td>BLOCK SEXTANT-25</td>
</tr>
<tr>
<td>1FB12</td>
<td>BLOCK SEXTANT-125</td>
</tr>
<tr>
<td>1FB13</td>
<td>BLOCK SEXTANT-35</td>
</tr>
<tr>
<td>1FB14</td>
<td>BLOCK SEXTANT-235</td>
</tr>
<tr>
<td>1FB15</td>
<td>BLOCK SEXTANT-1235</td>
</tr>
<tr>
<td>1FB16</td>
<td>BLOCK SEXTANT-45</td>
</tr>
<tr>
<td>1FB17</td>
<td>BLOCK SEXTANT-145</td>
</tr>
<tr>
<td>1FB18</td>
<td>BLOCK SEXTANT-245</td>
</tr>
<tr>
<td>1FB19</td>
<td>BLOCK SEXTANT-1245</td>
</tr>
<tr>
<td>1FB1A</td>
<td>BLOCK SEXTANT-345</td>
</tr>
<tr>
<td>1FB1B</td>
<td>BLOCK SEXTANT-1345</td>
</tr>
<tr>
<td>1FB1C</td>
<td>BLOCK SEXTANT-2345</td>
</tr>
<tr>
<td>1FB1D</td>
<td>BLOCK SEXTANT-12345</td>
</tr>
<tr>
<td>1FB1E</td>
<td>BLOCK SEXTANT-6</td>
</tr>
<tr>
<td>1FB1F</td>
<td>BLOCK SEXTANT-16</td>
</tr>
<tr>
<td>1FB20</td>
<td>BLOCK SEXTANT-26</td>
</tr>
<tr>
<td>1FB21</td>
<td>BLOCK SEXTANT-126</td>
</tr>
<tr>
<td>1FB22</td>
<td>BLOCK SEXTANT-36</td>
</tr>
<tr>
<td>1FB23</td>
<td>BLOCK SEXTANT-136</td>
</tr>
<tr>
<td>1FB24</td>
<td>BLOCK SEXTANT-236</td>
</tr>
<tr>
<td>1FB25</td>
<td>BLOCK SEXTANT-1236</td>
</tr>
<tr>
<td>1FB26</td>
<td>BLOCK SEXTANT-46</td>
</tr>
<tr>
<td>1FB27</td>
<td>BLOCK SEXTANT-146</td>
</tr>
<tr>
<td>1FB28</td>
<td>BLOCK SEXTANT-1246</td>
</tr>
<tr>
<td>1FB29</td>
<td>BLOCK SEXTANT-346</td>
</tr>
<tr>
<td>1FB2A</td>
<td>BLOCK SEXTANT-1346</td>
</tr>
<tr>
<td>1FB2B</td>
<td>BLOCK SEXTANT-2346</td>
</tr>
<tr>
<td>1FB2C</td>
<td>BLOCK SEXTANT-12346</td>
</tr>
<tr>
<td>1FB2D</td>
<td>BLOCK SEXTANT-56</td>
</tr>
<tr>
<td></td>
<td>= lower one third block</td>
</tr>
<tr>
<td>1FB2E</td>
<td>BLOCK SEXTANT-156</td>
</tr>
<tr>
<td>1FB2F</td>
<td>BLOCK SEXTANT-256</td>
</tr>
<tr>
<td>1FB30</td>
<td>BLOCK SEXTANT-1256</td>
</tr>
<tr>
<td></td>
<td>= upper and lower one third block</td>
</tr>
<tr>
<td>1FB31</td>
<td>BLOCK SEXTANT-356</td>
</tr>
<tr>
<td>1FB32</td>
<td>BLOCK SEXTANT-1356</td>
</tr>
<tr>
<td>1FB33</td>
<td>BLOCK SEXTANT-2356</td>
</tr>
<tr>
<td>1FB34</td>
<td>BLOCK SEXTANT-12356</td>
</tr>
<tr>
<td>1FB35</td>
<td>BLOCK SEXTANT-456</td>
</tr>
<tr>
<td>1FB36</td>
<td>BLOCK SEXTANT-1456</td>
</tr>
<tr>
<td>1FB37</td>
<td>BLOCK SEXTANT-2456</td>
</tr>
<tr>
<td>1FB38</td>
<td>BLOCK SEXTANT-12456</td>
</tr>
<tr>
<td>1FB39</td>
<td>BLOCK SEXTANT-3456</td>
</tr>
<tr>
<td></td>
<td>= lower two thirds block</td>
</tr>
<tr>
<td>1FB3A</td>
<td>BLOCK SEXTANT-13456</td>
</tr>
</tbody>
</table>

Smooth mosaic terminal graphic characters

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1FB3B</td>
<td>BLOCK SEXTANT-23456</td>
</tr>
</tbody>
</table>

Graphics for Legacy Computing

- Block mosaic terminal graphic characters
- Smooth mosaic terminal graphic characters
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1FB5F | | \[
| 1FB60 | UPPER LEFT BLOCK DIAGONAL LOWER CENTRE TO UPPER MIDDLE RIGHT |
| 1FB61 | UPPER LEFT BLOCK DIAGONAL LOWER CENTRE TO UPPER RIGHT |
| 1FB62 | UPPER RIGHT BLOCK DIAGONAL UPPER CENTRE TO UPPER MIDDLE RIGHT |
| 1FB63 | UPPER RIGHT BLOCK DIAGONAL UPPER CENTRE TO UPPER RIGHT |
| 1FB64 | UPPER RIGHT BLOCK DIAGONAL UPPER CENTRE TO LOWER MIDDLE RIGHT |
| 1FB65 | UPPER RIGHT BLOCK DIAGONAL LOWER LEFT TO LOWER MIDDLE RIGHT |
| 1FB66 | UPPER RIGHT BLOCK DIAGONAL UPPER CENTRE TO LOWER RIGHT |
| 1FB67 | UPPER RIGHT BLOCK DIAGONAL LOWER LEFT TO LOWER MIDDLE RIGHT |
| 1FB68 | UPPER AND LOWER AND RIGHT TRIANGULAR THREE QUARTERS BLOCK |
| 1FB69 | LEFT AND LOWER AND RIGHT TRIANGULAR THREE QUARTERS BLOCK |
| 1FB6A | UPPER AND LEFT AND LOWER TRIANGULAR THREE QUARTERS BLOCK |
| 1FB6B | LEFT AND UPPER AND RIGHT TRIANGULAR THREE QUARTERS BLOCK |
| 1FB6C | LEFT TRIANGULAR ONE QUARTER BLOCK |
| 1FB6D | UPPER TRIANGULAR ONE QUARTER BLOCK |
| 1FB6E | RIGHT TRIANGULAR ONE QUARTER BLOCK |
| 1FB6F | LOWER TRIANGULAR ONE QUARTER BLOCK |
| 1FB70 | VERTICAL ONE EIGHTH BLOCK-2 |
| 1FB71 | VERTICAL ONE EIGHTH BLOCK-3 |
| 1FB72 | VERTICAL ONE EIGHTH BLOCK-4 |
| 1FB73 | VERTICAL ONE EIGHTH BLOCK-5 |
| 1FB74 | VERTICAL ONE EIGHTH BLOCK-6 |
| 1FB75 | VERTICAL ONE EIGHTH BLOCK-7 |
| 1FB76 | HORIZONTAL ONE EIGHTH BLOCK-2 |
| 1FB77 | HORIZONTAL ONE EIGHTH BLOCK-3 |
| 1FB78 | HORIZONTAL ONE EIGHTH BLOCK-4 |
| 1FB79 | HORIZONTAL ONE EIGHTH BLOCK-5 |
| 1FB7A | HORIZONTAL ONE EIGHTH BLOCK-6 |
| 1FB7B | HORIZONTAL ONE EIGHTH BLOCK-7 |
| 1FB7C | LEFT AND LOWER ONE EIGHTH BLOCK |
| 1FB7D | LEFT AND UPPER ONE EIGHTH BLOCK |
| 1FB7E | RIGHT AND UPPER ONE EIGHTH BLOCK |
| 1FB7F | RIGHT AND LOWER ONE EIGHTH BLOCK |
| 1FB80 | UPPER AND LOWER ONE EIGHTH BLOCK |
| 1FB81 | UPPER AND LOWER ONE EIGHTH BLOCK-1358 |
| 1FB82 | UPPER ONE QUARTER BLOCK |
| 1FB83 | UPPER THREE EIGHTHS BLOCK |
| 1FB84 | UPPER FIVE EIGHTHS BLOCK |
| 1FB85 | LOWER FIVE EIGHTHS BLOCK |
| 1FB86 | LOWER THREE EIGHTHS BLOCK |
| 1FB87 | LOWER SEVEN EIGHTHS BLOCK |
| 1FB88 | LOWER EIGHTHS BLOCK |
| 1FB89 | RIGHT FIVE EIGHTHS BLOCK |
| 1FB90 | RIGHT THREE EIGHTHS BLOCK |
| 1FB91 | RIGHT HALF EIGHTHS BLOCK |
| 1FB92 | RIGHT THREE QUARTERS BLOCK |
| 1FB93 | RIGHT HALF QUARTERS BLOCK |
| 1FB94 | RIGHT HALF EIGHTHS BLOCK |
| 1FB95 | RIGHT QUARTERS BLOCK |
| 1FB96 | RIGHT EIGHTHS BLOCK |
| 1FB97 | RIGHT HALF BLOCK |
| 1FB98 | RIGHT QUARTERS BLOCK |
| 1FB99 | RIGHT EIGHTHS BLOCK |
| 1FB9A | LEFT AND LOWER TRIANGULAR BLOCK |
| 1FB9B | LEFT AND RIGHT TRIANGULAR BLOCK |
| 1FB9C | LEFT TRIANGULAR MEDIUM SHADE |
| 1FB9D | RIGHT TRIANGULAR MEDIUM SHADE |
| 1FB9E | LOWER TRIANGULAR MEDIUM SHADE |
| 1FB9F | LOWER LEFT TRIANGULAR MEDIUM SHADE |

Shade characters

- 1FB8C: LEFT HALF MEDIUM SHADE
- 1FB8D: RIGHT HALF MEDIUM SHADE
- 1FB8E: UPPER HALF MEDIUM SHADE
- 1FB8F: LOWER HALF MEDIUM SHADE
- 1FB90: INVERSE MEDIUM SHADE
- 1FB91: UPPER HALF BLOCK AND LOWER HALF
- 1FB92: UPPER HALF INVERSE MEDIUM SHADE AND LOWER HALF
- 1FB93: LEFT HALF INVERSE MEDIUM SHADE AND RIGHT HALF BLOCK

Fill characters

- 1FB95: CHECKER BOARD FILL
- 1FB96: INVERSE CHECKER BOARD FILL
- 1FB97: HEAVY HORIZONTAL FILL
- 1FB98: UPPER LEFT TO LOWER RIGHT FILL
- 1FB99: UPPER RIGHT TO LOWER LEFT FILL

Smooth mosaic terminal graphic characters

- 1FB9A: UPPER AND LOWER TRIANGULAR HALF BLOCK
- 1FB9B: LEFT AND RIGHT TRIANGULAR HALF BLOCK

Shade characters
Character cell diagonals

- **1FBA0** → BOX DRAWINGS LIGHT DIAGONAL UPPER CENTRE TO MIDDLE LEFT
- **1FBA1** → BOX DRAWINGS LIGHT DIAGONAL UPPER CENTRE TO MIDDLE RIGHT
- **1FBA2** → BOX DRAWINGS LIGHT DIAGONAL MIDDLE LEFT TO LOWER CENTRE
- **1FBA3** → BOX DRAWINGS LIGHT DIAGONAL MIDDLE RIGHT TO LOWER CENTRE
- **1FBA4** → BOX DRAWINGS LIGHT DIAGONAL UPPER CENTRE TO MIDDLE LEFT TO LOWER CENTRE
- **1FBA5** → BOX DRAWINGS LIGHT DIAGONAL UPPER CENTRE TO MIDDLE RIGHT TO LOWER CENTRE
- **1FBA6** → BOX DRAWINGS LIGHT DIAGONAL MIDDLE LEFT TO UPPER CENTRE TO MIDDLE RIGHT
- **1FBA7** → BOX DRAWINGS LIGHT DIAGONAL MIDDLE LEFT TO LOWER CENTRE
- **1FBA8** → BOX DRAWINGS LIGHT DIAGONAL MIDDLE RIGHT TO LOWER CENTRE
- **1FBA9** → BOX DRAWINGS LIGHT DIAGONAL UPPER CENTRE TO MIDDLE RIGHT AND MIDDLE LEFT TO LOWER CENTRE
- **1FBAA** → BOX DRAWINGS LIGHT DIAGONAL UPPER CENTRE TO MIDDLE RIGHT TO LOWER CENTRE
- **1FBAB** → BOX DRAWINGS LIGHT DIAGONAL MIDDLE LEFT TO UPPER CENTRE TO MIDDLE RIGHT
to LOWER CENTRE
- **1FBAE** → BOX DRAWINGS LIGHT DIAGONAL DIAMOND

Terminal graphic characters

- **1FB9** → LEFT HALF FOLDER
 - → **1F4C1** file folder
 - → **1F5C0** folder
- **1FBA** → RIGHT HALF FOLDER
- **1FBB** → VOIDED GREEK CROSS
 - → **0023** number sign
 - → **256C** box drawings double vertical and horizontal
 - → **2719** outlined greek cross
 - → **271A** heavy greek cross
 - → **1F7A3** medium greek cross
- **1FBC** → RIGHT OPEN SQUARED DOT
 - → **2ACE** square right open box operator
- **1FBD** → NEGATIVE DIAGONAL CROSS
 - * glyph does not necessarily extend to the edges of the character cell
 - * diagonals extend past the corners of the box unlike in **274E**
 - → **274E** negative squared cross mark
- **1FBE** → NEGATIVE DIAGONAL MIDDLE RIGHT TO LOWER CENTRE
 - * glyph does not necessarily extend to the edges of the character cell
- **1FBF** → NEGATIVE DIAGONAL DIAMOND
 - * glyph does not necessarily extend to the edges of the character cell
- **1FC0** → WHITE HEAVY SALTIRE WITH ROUNDED CORNERS
 - → **274C** cross mark
 - → **1F5D9** cancellation x
 - → **1F7AC** heavy saltire
- **1FC1** → LEFT THIRD WHITE RIGHT POINTING INDEX
 - → **261E** white right pointing index
- **1FC2** → MIDDLE THIRD WHITE RIGHT POINTING INDEX
- **1FC3** → RIGHT THIRD WHITE RIGHT POINTING INDEX
- **1FC4** → NEGATIVE SQUARED QUESTION MARK
 - * glyph does not necessarily extend to the edges of the character cell
 - → **003F** question mark
 - → **2BD1** uncertainty sign
 - → **FFFD** replacement character
- **1FC5** → STICK FIGURE
 - → **1F6B9** mens symbol
- **1FC6** → STICK FIGURE WITH ARMS RAISED
- **1FC7** → STICK FIGURE LEANING LEFT
- **1FC8** → STICK FIGURE LEANING RIGHT
- **1FC9** → STICK FIGURE WITH DRESS
 - → **1F6BA** womens symbol
- **1FCA** → WHITE UP-POINTING CHEVRON
 - → **2302** house
 - → **1F530** japanese symbol for beginner

Segmented digits

- **1FB0** → SEGMENTED DIGIT ZERO
 - → **0030** digit zero
<table>
<thead>
<tr>
<th>Code</th>
<th>ASCII</th>
<th>Description</th>
<th>Unicode</th>
<th>Code</th>
<th>ASCII</th>
<th>Description</th>
<th>Unicode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1FBF1</td>
<td>1</td>
<td>SEGMENTED DIGIT ONE</td>
<td>031</td>
<td>1FBF8</td>
<td>8</td>
<td>SEGMENTED DIGIT EIGHT</td>
<td>038</td>
</tr>
<tr>
<td>1FBF2</td>
<td>2</td>
<td>SEGMENTED DIGIT TWO</td>
<td>032</td>
<td>1FBF9</td>
<td>9</td>
<td>SEGMENTED DIGIT NINE</td>
<td>039</td>
</tr>
<tr>
<td>1FBF3</td>
<td>3</td>
<td>SEGMENTED DIGIT THREE</td>
<td>033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1FBF4</td>
<td>4</td>
<td>SEGMENTED DIGIT FOUR</td>
<td>034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1FBF5</td>
<td>5</td>
<td>SEGMENTED DIGIT FIVE</td>
<td>035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1FBF6</td>
<td>6</td>
<td>SEGMENTED DIGIT SIX</td>
<td>036</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1FBF7</td>
<td>7</td>
<td>SEGMENTED DIGIT SEVEN</td>
<td>037</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1FBF7</td>
<td>1</td>
<td>SEGMENTED DIGIT SEVEN</td>
<td>037</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figures.

Figures showing legacy character charts or “dumps” are presented first, followed by examples of usage and other illustrations.

Figure 1. A character chart of the Amstrad CPC English character set, with U+1FB95 CHECKER BOARD FILL and U+2592 MEDIUM SHADE highlighted in red. (CPCWiki)
Figure 2. Character dump of the Apple II set, showing normal mode (with MouseText) and inverse video.

Figure 3. MouseText as implemented on the Apple IIc (above, with RUNNING MAN) and IIgs (below, with replacement characters). (Wikipedia)
Figure 4. Mattel Aquarius character set. Several of the glyphs in this collection were not identified in earlier revisions of this proposal, and hence are not proposed here. They may be included in a subsequent proposal document. See Section 8 for more information on non-proposed characters.

Figure 5. Character dump of ATASCII for the Atari 8-bit family (400, 800, XL, XE), showing both inverse and normal video.
Figure 6. Another character dump of ATASCII glyphs. Note the use of inverse video for headings, as character styling such as bold would be used today.

Figure 7. Atari ST glyphs, 8 pixels high (left) and 16 pixels high (right). Note 7-segment styled digits at 0x10 through 0x19 (proposed), and Atari logo at 0x0E–0x0F and J.R. “Bob” Dobbs image at 0x1C–0x1F (not proposed; see Section 8). (Wikipedia, CCO 1.0)
Figure 8. Image of the Commodore PET and VIC-20 character set, generated from a ROM dump, with U+1FB95 CHECKER BOARD FILL and U+2592 MEDIUM SHADE highlighted in red. (CBM Archive)

Figure 9. The Commodore 64 and 128 “PETSCII” character set, shown in several modes, including normal and inverse video.
Figure 10. PETSCII as displayed on the Commodore 64. Other Commodore models used slightly different versions of this set. (Wikipedia)
Figure 11. The MSX character set, including a selection of semigraphics not found on other platforms.

Figure 12. The character set used by the Oric series of computers manufactured by Tangerine Computer Systems. Note the 2×3 sextant blocks, similar to those used for teletext.
Figure 13. The RISC OS character set. This set is based on ISO 8859-1, but contains ASCII glyphs in the 00–1F range and several differences in the 80–9F range.

Figure 14. Sinclair ZX80 (left) and ZX81 (right) character dumps. (Wikipedia, CCO 1.0)

Figure 15. The Sinclair ZX Spectrum character set, including 2 × 2 block graphics.
Figure 16. Charts showing the block mosaic characters (2 × 3 sextants, left) and smooth mosaic and line-drawing characters (right) used in the teletext standard.

Figure 17. TI-99/4A character dump, generated by Rebecca Bettencourt using a JavaScript-based emulator.
Figure 18. Character dumps for the TRS-80 Model I (top left), Model III (top right), and Model 4 (bottom), shown with generating BASIC programs on Macintosh-based emulators.

Figure 19. The TRS-80 Color Computer character set.
Figure 20. The Apple IIc MouseText set with corresponding ASCII characters (64 code positions higher), showing RIGHTWARDS ARROW AND UPPER AND LOWER ONE EIGHTH BLOCK in the context of a scroll bar.

Figure 21. A text-mode message box constructed with Apple MouseText characters.
Figure 22. Image created on the Commodore PET using semigraphics. Examples of proposed characters are highlighted: (A) U+1FB8F LOWER HALF MEDIUM SHADE, (B) U+1FB91 UPPER HALF BLOCK AND LOWER HALF INVERSE MEDIUM SHADE, (C) U+1FB90 INVERSE MEDIUM SHADE (compare with U+2592 MEDIUM SHADE, circled).

Figure 23. Additional examples of art created on the Commodore 64, using semigraphics from the PETSCII repertoire.
Figure 24. Illustration of the use of semigraphics to plot “pixels” on the TRS-80 by displaying the appropriate 2×3 block graphic. (Wikipedia)

Figure 25. Screen shot from Ceefax, the world’s first teletext information service. Note the use of foreground and background colors, double-height text, and semigraphics.
Figure 26. A different example of the color and semigraphics capabilities of teletext. This image is composed using a wide variety of block sextant characters. (Teletext Art Research Lab)

Figure 27. A present-day example of digital teletext in Romania, using block semigraphics from the teletext character set. (Ricardo Bánffy)
Figure 28. Illustration of “contiguous mode” versus “separated mode” 2×3 block graphics in teletext. (IBA Technical Review #2)
A. Administrative

1. Title
Proposal to add characters from legacy computers and teletext to the UCS
2. Requester’s name
Terminals Working Group (Doug Ewell et al.)
3. Requester type (Member body/Liaison/Individual contribution)
Individual contribution.
4. Submission date
2019-01-04
5. Requester’s reference (if applicable)
6. Choose one of the following:
6a. This is a complete proposal
Yes.
6b. More information will be provided later
No.

B. Technical – General

1. Choose one of the following:
1a. This proposal is for a new script (set of characters)
Yes.
1b. Proposed name of script
1c. The proposal is for addition of character(s) to an existing block
No.
1d. Name of the existing block
2. Number of characters in proposal
214.
3. Proposed category (A-Contemporary; B.1-Specialized (small collection); B.2-Specialized (large collection); C-Major extinct; D-Attested extinct; E-Minor extinct; F-Archaic Hieroglyphic or Ideographic; G-Obscure or questionable usage symbols)
Category B.1.
4a. Is a repertoire including character names provided?
Yes.
4b. If YES, are the names in accordance with the “character naming guidelines” in Annex L of P&P document?
Yes.
4c. Are the character shapes attached in a legible form suitable for review?
Yes.
5a. Who will provide the appropriate computerized font (ordered preference: True Type, or PostScript format) for publishing the standard?
Rebecca Bettencourt
5b. If available now, identify source(s) for the font (include address, e-mail, ftp-site, etc.) and indicate the tools used:
Rebecca Bettencourt, FontForge.
6a. Are references (to other character sets, dictionaries, descriptive texts etc.) provided?
Yes.
6b. Are published examples of use (such as samples from newspapers, magazines, or other sources) of proposed characters attached?
Yes.
7. Does the proposal address other aspects of character data processing (if applicable) such as input, presentation, sorting, searching, indexing, transliteration etc. (if yes please enclose information)?
Yes.
8. Submitters are invited to provide any additional information about Properties of the proposed Character(s) or Script that will assist in correct understanding of and correct linguistic processing of the proposed character(s) or script.
See above.

C. Technical – Justification

1. Has this proposal for addition of character(s) been submitted before? If YES, explain.
2a. Has contact been made to members of the user community (for example: National Body, user groups of the script or characters, other experts, etc.)?
Yes.
2b. If YES, with whom?
comp.sys.apple2 (Apple II newsgroup); Atari ST user community; TRS-80 user community (George Phillips).
2c. If YES, available relevant documents
3. Information on the user community for the proposed characters (for example: size, demographics, information technology use, or publishing use) is included?
 4a. The context of use for the proposed characters (type of use; common or rare)
 Rare.
 4b. Reference
3a. Are the proposed characters in current use by the user community?
 Yes.
 5b. If YES, where?
Worldwide, but particularly in North America and Europe.
 6a. After giving due considerations to the principles in the P&P document must the proposed characters be entirely in the BMP?
 No.
 6b. If YES, is a rationale provided?
 6c. If YES, reference
7. Should the proposed characters be kept together in a contiguous range (rather than being scattered)?
 Mostly yes, but this is not required.
 8a. Can any of the proposed characters be considered a presentation form of an existing character or character sequence?
 Yes, the “7-segment” styled digits can be considered presentation forms of U+0030 through U+0039.
 8b. If YES, is a rationale for its inclusion provided?
 Yes.
 8c. If YES, reference
 Included in proposal.
9a. Can any of the proposed characters be encoded using a composed character sequence of either existing characters or other proposed characters?
 No.
 9b. If YES, is a rationale for its inclusion provided?
 9c. If YES, reference
 10a. Can any of the proposed character(s) be considered to be similar (in appearance or function) to an existing character?
 Yes.
 10b. If YES, is a rationale for its inclusion provided?
 Yes.
 10c. If YES, reference
The proposal document describes new semigraphics, some of which are superficially similar to existing characters.
 11a. Does the proposal include use of combining characters and/or use of composite sequences (see clauses 4.12 and 4.14 in ISO/IEC 10646-1: 2000)?
 No.
 11b. If YES, is a rationale for such use provided?
 11c. If YES, reference
 11d. Is a list of composite sequences and their corresponding glyph images (graphic symbols) provided?
 No.
 11e. If YES, reference
 12a. Does the proposal contain characters with any special properties such as control function or similar semantics?
 No.
 12b. If YES, describe in detail (include attachment if necessary)
 13a. Does the proposal contain any Ideographic compatibility character(s)?
 No.
 13b. If YES, is the equivalent corresponding unified ideographic character(s) identified?