

Universal Multiple-Octet Coded Character Set
International Organization for Standardization
Internationale Standardisierungs-Organisation
Organisation Internationale de Normalisation
Διεθνής Οργανισμός Τυποποίησης
Международная организация по стандартизации

Doc Type: Working Group Document

Title: Proposal to encode Leibnizian ambiguous signs

Source: Uwe Mayer, Siegmund Probst, David Rabouin, Elisabeth Rinner, Andreas Stötzner,
Achim Trunk, Charlotte Wahl

Related: L-2402n (section c); L-2404

Version: 2nd revised version

Previous version: N5329R (L-2526)

Status: forward to Script Encoding Working Group and UTC

Action: for expert review and Unicode 18.0 pipeline

Date: November 24, 2025

Requester's reference: LUCP L-2529

Background

For background information about the Philiumm project (headed by Prof. David Rabouin, Paris) and the related research work, please visit the [Philiumm website](#).

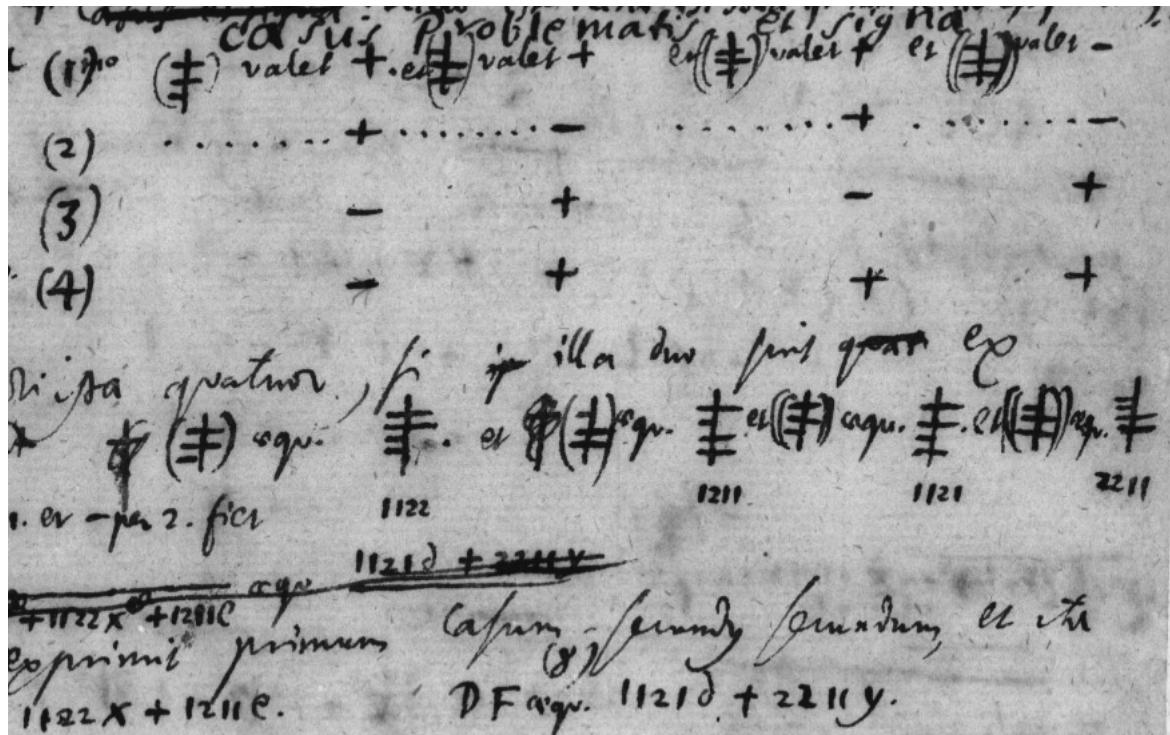
Leibnizian ambiguous signs

This proposal requests the encoding of 57 ambiguous operator signs (testified in works of Gottfried Wilhelm Leibniz) of which 6 characters count as variation sequences.

This document includes an in-depth explanation about the systematics and semantics of these signs. This explanation (author: Elisabeth Rinner) has been issued previously as doc. L-2404 (February 15, 2024).

The ambiguous characters are related to the well-known ± and ∓ characters (00B1, 2213), both by their graphical structure and historically. For editorial work the ambiguous signs are important for e.g. ascribing dates to manuscript sources which lack an original *datum*. The signs also inform about Leibniz's way of systematic thinking about how to notate certain logical concepts.

We propose an encoding scheme of complete sets of ambiguous signs because incomplete sets would be useless for editorial purposes.


1st Revision of proposal

Upon the first version N5329 (L-2504) we received the recommendation from the UTC, to introduce a different naming scheme for the ambiguous signs. Following that advice, we now propose character names which identify each character's semantical content with possible accuracy.

The initial nomenclature with A-xx, B-yy, C-zz numbering is, however, retained as *GWLB-ID* numbers, for sake of brevity and practical reasons. This nomenclature has been established at Gottfried-Wilhelm-Leibniz-Bibliothek Hannover (GWLB), for research and editorial usage.

2nd Revision of proposal

Subgroup B has seen a few changes. The wording “component” in the character names has been replaced by the more appropriate term “partial”. Some characters formerly named “variant” are now proposed as variation sequences. Despite these changes we kept the order of listing as it was, for ease of orientation.

Example of ambiguous signs in one of Leibniz's manuscripts. The signs are based on the + and – symbols. – (LH 35 XII 1, 217v)

1. Introductory remarks on Leibnizian Ambiguity signs

Early in his career, Leibniz wrote several texts in which he designed and systematically examined systems of symbols for analytical calculations. Complex systems of ambiguity signs, with which more than two cases are distinguished, represent an elementary and novel component of this *Méthode de l'universalité*. As part of the *Ars Characteristica*, the treatment of this method belongs to that branch of philosophy that is “the art of forming and arranging characters so that they agree with thoughts” (Mugnai 2018, abstract).

However, Leibniz's interest is not only theoretical. Rather, the design of higher ambiguity signs is closely linked to his occupation with the mathematics of conic sections. There he has to consider sub-cases of cases, but would like to write only one equation to treat them all together, since often the equations do not differ except for the signs of the terms. The use of double signs, which allows to represent two cases simultaneously, is already part of common practice in mathematics. The characters \pm and \mp , which are still in use today, are used for this purpose.

According to current knowledge, Leibniz designed six different systems over the course of time—as long as transitional forms and preliminary considerations are ignored.

One reason why a system of ambiguity signs is abandoned by Leibniz is the consideration that a large number of specific new printing types are required if a system does not rely on the traditional set of printing types. Leibniz's further penetration of the topic also

led to improved, simpler or, in some cases, even more complex characters. The draft of the first system, for example, provides for special characters to express the product of the two double signs A-01 \pm and A-02 \mp . For these, Leibniz envisages the ligature A-07 $\mp\mp$ and A-08 $\mp\mp\mp$ of these two symbols with the LEIBNIZIAN PRODUCT SIGN he typically uses. Only later does he take advantage of the fact that the mathematical meaning can also be expressed using existing symbols.

Some systems also take into account the relationship between several ambiguity signs in the same expression. Ambiguity signs can be *homogeneous* or *corresponding* and therefore dependent on one another, as well as *heterogeneous* and therefore independent of one another.

Likewise, it was only in his 5th system that Leibniz gave up structuring ambiguity signs according to the distinction between cases and sub-cases as they arise in the calculation process. Even though, from the perspective of modern mathematics, it makes no difference with regard to calculations whether the ambiguity sign $(mp)m$ (i. e. a sign which has the sub-cases mp in the first case and m in the second case, with p as abbreviation for plus and m for minus) or $m(pm)$ (i. e. a sign which has m in the first case and the sub-cases pm in the second case) is used, they do refer to two fundamentally different conceptions of the mathematical situation.

Design questions also play a role when considering the layout of systems of ambiguity signs, which lead Leibniz to the discussion of different positioning of lines and thus to variants that are compared to the systems ultimately favored.

Particularly in Leibniz's drafts, the ambiguity signs that occur can contribute to the dating of the texts, as a sequence of systems can be observed.

2. Overview of systems and character names for the UCS

Some systems of ambiguity signs are designed in such a way that they can be extended to distinguish any number of cases. In systems that use specific new characters and do not use the existing character set of a typesetting box, the surviving texts only contain characters that distinguish a maximum of four different cases. Usually, not all possible combinations of p and m occur in the texts. However, the systematics described or reconstructed on the basis of the surviving texts often allows to reconstruct the full set of ambiguity signs that belong to a system.

The overview in the appendix therefore contains only systems that use special new characters. For them, a list of all possible cases is provided. A representation of their glyphs is given, provided their use is documented in the texts written by Leibniz. In the overview, the meaning of the ambiguity signs is also stated in an abbreviated form.

For the encoding of Leibniz's ambiguity signs in the Unicode standard, we propose a name consisting of the components "AMBIGUITY SIGN", an identifier for the system ("A" for system 1, "B" for system 2, and "C" for system 5) which is followed by a hyphen, and a sequential number, with a leading zero being added to single-digit numbers. The character-specific parts of the proposed names are also included in the overview.

The characteristics of the systems are briefly described below with references to the overview.

2. 1 System 1

System 1 is based on the signs $+$ for p and $-$ for m that are still in use today, with A-01 \pm being understood as a combination of these signs. The additional bar in A-02 \mp represents negation, so the sign stands for mp .

When looking at the layout of the triple signs A-03 $\mp\pm$, A-04 $\pm\mp$, A-05 $\mp\mp$ and A-06 $\mp\mp\pm$, it can be seen that Leibniz takes the structure of possible distinctions of cases and sub-cases

into account. In the texts, only signs for which a distinction between two sub-cases arises in the second case are described and documented. This second case with both sub-cases is represented in the right part of the sign in analogy to the associated double signs A-01 \pm and A-02 \mp : the two upper crossbars suspended from the vertical bar again refer to the combination of p and m , while the third, lower bar appearing in A-04 $\mp\pm$ and A-06 $\mp\mp$ represents the negation of this part of the ambiguity sign. The value of the first case is on the left side (p or m). This part is connected to the second crossbar from the top in the right part of the ambiguity sign.

A special feature of the 1st system are the ambiguity signs A-07 $\mp\mp$ and A-08 $\mp\mp\mp$ that stand for products of the double signs of the system.

2. 2 System 2

System 2 develops from the same combination of $+$ and $-$ that forms the sign A-01 \pm . Unlike in the first system, the negation of the sign is not expressed by a third crossbar with the same width, but by a longer, horizontal bar that is placed at the bottom of the vertical bar (e. g. in B-01 $\pm\pm$). Such negations of the complete ambiguity sign can be applied to all of them, with B-05 $\pm\pm\pm$, B-06 $\pm\pm\pm\pm$, B-07 $\pm\pm\pm\pm\pm$, and B-10 $\pm\pm\pm\pm\pm\pm$ being examples.

As before, triple signs are composed of signs and double signs, with the first case on the left (subdivided or not) and the second case (not subdivided or subdivided) on the right. During this transition from double sign to triple sign, the negation bar of B-01 \pm slides upwards, so to speak, so that the vertical bar in the partial sign that is given in one of Leibniz's texts, which rather coincidentally has the same design as A-02 \mp , now protrudes at the bottom, and the width of the crossbar is adjusted to that of others in the sign. In contrast to the first system, both parts of the triple sign are composed by connecting the horizontal bar of the single sign part to the top bar of the double sign part. The ambiguity signs B-02 $\mp\mp$, B-03 $\mp\mp\mp$, B-04 $\mp\mp\mp\mp$, B-05 $\mp\mp\mp\mp\pm$, B-06 $\mp\mp\mp\mp\pm\pm$, B-07 $\mp\mp\mp\mp\pm\pm\pm$, B-08 $\mp\mp\mp\mp\pm\pm\pm\pm$, B-09 $\mp\mp\mp\mp\pm\pm\pm\pm\pm$ and B-10 $\mp\mp\mp\mp\pm\pm\pm\pm\pm\pm$ are of this kind.

The principle of composition is meant to be continued for distinguishing further ambiguities (i. e. the type of combination of cases that are distinguished). B-11 $\mp\mp\mp\mp\mp$ and B-12 $\mp\mp\mp\mp\mp\mp$ which represent the negation of $p(mp)$ and $m(mp)$ make it clear that the negation bar is “moved up” again in these partial signs, and that its size corresponds to the size of all other crossbars.

As Leibniz discussed questions about the suitability of different positions of the crossbars when designing this system, the six ambiguity signs B-13 $\mp\mp\mp\mp\mp\mp$, B-14 $\mp\mp\mp\mp\mp\mp\mp$, B-15 $\mp\mp\mp\mp\mp\mp\mp\pm$, B-16 $\mp\mp\mp\mp\mp\mp\mp\pm\pm$, B-17 $\mp\mp\mp\mp\mp\mp\mp\pm\pm\pm$, and B-18 $\mp\mp\mp\mp\mp\mp\mp\pm\pm\pm\pm$ have come down to us. They represent variants of ambiguity signs of the standard form.

2. 3 System 3

Leibniz builds system 3 from the ambiguity signs A-01 \pm and B-01 $\pm\pm$, which are used for pm and mp in the 2nd system. This means a reduction of the number of characters required, while still any complex ambiguity as well as all dependencies between ambiguity signs (i. e. whether they are *homogeneous*, *corresponding* or *heterogeneous*) can be expressed. To do this, numbers are added to the left and right of A-01 \pm and B-01 $\pm\pm$ according to certain given rules. Levels of case distinctions can also be expressed by building nested expressions according to rules. The entire expression is marked by a bracket with *vinculum* (i. e. they are connected by an overline).

As a ligature of the brackets “(“ and “)” with the *vinculum* is needed, LEFT VIRGULA PARANTHESIS and RIGHT VIRGULA PARANTHESIS are included in the proposal to encode these expressions. The overview at the end of the document does not

contain any characters that are specifically assigned to this system since the glyphs of the ambiguity signs used in this system match with those of signs from the first two systems.

2. 4 System 4

System 4 has no new characters at all and instead uses lowercase letters of the Greek alphabet. Ambiguity is expressed by strings of certain pairs of letters such as α and ω , β and ψ , or γ and χ , where the two letters are equidistant from the beginning or end of the alphabet, and the letter from the beginning stands for p and the other for m . As in the 3rd system, the letters are written one after the other, following the order of the cases, and marked by brackets and a *vinculum*.

By using several pairs of letters it is possible to express the relationship between the ambiguity signs that occur in an expression, because the same pair of letters is used for interdependent ambiguity signs and different pairs of letters for independent ones. The level of cases can be represented by structuring these sequences with commas.

2. 5 System 5

The principles of the standard form of system 5 and all its predecessors were reconstructed on the basis of ambiguity signs that can be found in Leibniz's manuscripts.

In its final version (see 3. 5 subgroup "Standard" in the overview), the 5th system probably has the simplest structure in the design of the glyphs. The set of n -fold ambiguity signs consists of almost all possible n -combinations of p and m . All the signs with the meaning $pp\dots p$ (string with n characters) and $mm\dots m$ (string with n characters) are omitted as they have the same meaning as + and -. The level of cases is not represented in this system. Likewise, dependencies that occur between several ambiguity signs of the same expression are not represented.

The double signs C-16 + and C-17 +, the triple signs C-18 ‡, C-19 ‡, C-20 ‡, C-21 ‡, C-22 ‡, and C-23 ‡ as well as the quadruple signs C-24 ‡, C-25 ‡, C-26 ‡, C-27 ‡, C-28 ‡, C-29 ‡, C-30 ‡, and C-31 ‡ belong to this group.

Their design follows a uniform principle. On a vertical bar, horizontal bars of equal length are positioned at equal distances depending on the cases distinguished in the sign. If a bar represents p , it is bisected by the vertical bar. If it stands for m , it starts on the left at the same distance from the vertical bar as the p -bars, but already ends at the vertical bar.

This approach was derived from the 2nd system, and there is a total of four stages in the development of the standard version of system 5 of which only few examples of ambiguity signs have been preserved. The representation of the level of case distinction is a common feature of all these systems.

- The "Transition Form 2 → 5" (subgroup 3. 1) preserves the division into left and right part from the 2nd system as a means to represent two cases on the top level of case distinction. What is new, however, is the reduction of the representation of the cases on the second level, where, among other things, a crossbar shortened to the half width appears for the first time. The ambiguity sign C-01 ‡ has been handed down in this group.
- In the ambiguity signs of the group "prae-pro-proto-5" (subgroup 3. 2), instead of being divided into left and right halves to distinguish the two cases, there is a subdivision of the sign into an upper and lower section which is arranged along a vertical bar. In the case of the two known ambiguity signs C-02 ‡ and C-03 ‡, a subordinate case distinction occurs in the first (upper) case, where p and m are expressed by a long and a short horizontal bar, respectively, which are positioned in the middle of the vertical bar and to its left, respectively. A connection of these two

horizontal bars by a short vertical bar at their left which ends above the upper horizontal bar illustrates that they belong to the same group of sub-cases.

- From the group “pro-proto-5” (subgroup 3. 3), only the ambiguity signs C-04 \ddagger and C-05 \ddagger have come down to us. For both, signs that represent the same type of ambiguity in the previous group “prae-pro-proto-5” (subgroup 3. 2) are also known. Compared to them, the upper halves of the short vertical bars which illustrate in the previous variant that the horizontal bars that are connected by them belong to the same group of sub-cases are omitted, so that the resulting glyphs are further reduced compared to their predecessors.
- The group “proto-5” (subgroup 3. 4) already shows very close similarities to the standard form. However, Leibniz continues to distinguish the levels of case distinction in the triple signs, with the first case or its two sub-cases being shown in the upper part of the signs, the second case or its sub-cases in the lower section. C-09 \ddagger and C-10 \ddagger , which stand for $p(mp)$ and $(pm)p$ respectively, differ only in the positions of the short crossbar that represents m . They have the same meaning as long as the levels of case distinction are ignored. The triple signs C-08 \ddagger and C-11 \ddagger also belong to this group, as well as the double signs C-06 \ddagger and C-07 \ddagger .

In this system there are also composed forms: C-12 \ddagger represents a composition of mp and $p(mp)$ according to a rule, the negation is C-13 \ddagger . There are also combinations based on this: in C-14 \ddagger , C-13 \ddagger occurs as the second case of an ambiguity sign whose other case is p , while in C-15 \ddagger it is the first case, again in combination with p .

Thus, it is giving up the representation of the level of case distinctions and the choice of equal distances that ultimately constitute the final step towards the standard form. At the same time, this reduces the number of ambiguity signs to be taken into account. While in its standard form the continuation of the system for distinguishing more cases is known, it is not clear from the surviving texts for the transitional and preliminary forms.

2. 6 System 6

System 6 which can be derived from several manuscripts shares its basic idea with system 4. In all examples known from these texts, p is expressed by 1. For m , Leibniz uses 3 in one text and 2 in all others.

By relying entirely on character types which are included in the usual typesetting box, this system does not have to be taken into account in the proposal.

References and additional literature

Mugnai 2018 Massimo Mugnai, *Ars Characteristica, Logical Calculus, and Natural Languages*, in: Maria Rosa Antognazza (ed.): *The Oxford Handbook of Leibniz*, Oxford University Press. Oxford 2018, p. 177-207 (published online as <https://doi.org/10.1093/oxfordhb/9780199744725.013.20>).

Probst & Trunk 2019 Siegmund Probst and Achim Trunk: *Einleitung*, in: Gottfried Wilhelm Leibniz: *Sämtliche Schriften und Briefe*, Vol. VII, 7.

Trunk 2016-2017 Achim Trunk, *Sechs Systeme: Leibniz und seine signa ambigua*, in: Wenchao Li (ed.): *Für unser Glück oder das Glück anderer, Vorträge des X. Internationalen Leibniz-Kongresses*. Hildesheim 2016-2017, vol. 4.

Overview of Leibniz's systems of ambiguity signs

The columns in this overview contain the following information:

- 1 number within the system
- 2 mathematical meaning
- 3 specific part of proposed character name (if it is part of the proposal)
- 4 representative glyph
- 5 ID in the proto standard as defined by the Leibniz-Edition (LE)
- 6 number and glyph in the current font of the Leibniz-Edition (if existing). The current glyphs can deviate from their actual layout.

The following signs are used to express the meaning of the signs:

p	plus
m	minus
(...)	group of sub-cases
non[...]	negation
.	multiplication of signs
o	composition of signs

1 System 1

1. 1 Double Signs

nr.	meaning	character name ID	repr. glyph	ID in proto standard of LE	glyphs used in the Leibniz Edition (LE)
1	Sys. 1 pm (= sys. 2 pm)	A-01	≠	T-01 = T-19	12: ≠
2	Sys. 1 mp (= sys. 2 (parts) mp)	A-02	ヰ	T-20 = T-02	13: ヰ

1. 2 Triple Signs

1	Sys. 1 p(pm)	A-03	ヰヰ	T-03	—
2	Sys. 1 p(mp)	A-04	ヰヰヰ	T-04	—
3	Sys. 1 m(pm)	A-05	ヰヰ	T-05	—
4	Sys. 1 m(mp)	A-06	ヰヰヰ	T-06	—

1. 3 Multiplication Forms

1	Sys. 1 pm · pm	A-07	ヰヰ	T-07	—
2	Sys. 1 mp · pm	A-08	ヰヰヰ	T-08	—

2 System 2

2. 1 Double Signs

2. 1. 1 Standard Forms

1	Sys. 2 pm (= sys. 1 pm)	(A-01)	≠	T-01 = T-19	6: ≠
2	Sys. 2 mp	B-01	±	T-12	7: ±

2. 1. 2 Standard Forms (Parts)

1	Sys. 2 (parts) pm	—	—	—	—
2	Sys. 2 (parts) mp (= sys. 1 mp)	(A-02)	≠	T-20 = T-02	230: ≠

2. 2 Triple Signs

2. 2. 1 Standard Forms

2. 2. 1 a) Type _ (_ _)

1	Sys. 2 p(pm)	B-02	++	R-118	118: ++
2	Sys. 2 p(mp)	B-03	++	T-10	120: ++
3	Sys. 2 m(pm)	—	—	—	—
4	Sys. 2 m(mp)	B-04	++	T-09	—
5	Sys. 2 <i>non</i> [p(pm)]	B-05	++	T-15	222: ++
6	Sys. 2 <i>non</i> [p(mp)]	B-06	++	R-119	119: ++
7	Sys. 2 <i>non</i> [m(pm)]	B-07	++	R-84	84: ++
8	Sys. 2 <i>non</i> [m(mp)]	—	—	—	—

2. 2. 1 b) Type (_ _) _

9	Sys. 2 (pm)p	B-08	++	T-17	231: ++
10	Sys. 2 (mp)p	—	—	—	—
11	Sys. 2 (pm)m	B-09	++	R-233	233: ++

12	Sys. 2 (mp)m	—	—	—	—
13	Sys. 2 <i>non</i> [(pm)p]	B-10	‡+	R-234	234: ‡+
14	Sys. 2 <i>non</i> [(mp)p]	—	—	—	—
15	Sys. 2 <i>non</i> [(pm)m]	—	—	—	—
16	Sys. 2 <i>non</i> [(mp)m]	—	—	—	—

2. 2. 2 Standard Forms (Parts)

2. 2. 2 a) Type

1	Sys. 2 (parts) p(pm)	—	—	—	—
2	Sys. 2 (parts) p(mp)	—	—	—	—
3	Sys. 2 (parts) m(pm)	—	—	—	—
4	Sys. 2 (parts) m(mp)	—	—	—	—
5	Sys. 2 (parts) <i>non</i> [p(pm)]	—	—	—	—
6	Sys. 2 (parts) <i>non</i> [p(mp)]	B-11	‡+	T-25	224: ‡+
7	Sys. 2 (parts) <i>non</i> [m(pm)]	—	—	—	—
8	Sys. 2 (parts) <i>non</i> [m(mp)]	B-12	‡+	R-226	226: ‡+

2. 2. 2 b) Type

9	Sys. 2 (parts) (pm)p	—	—	—	—
10	Sys. 2 (parts) (mp)p	—	—	—	—
11	Sys. 2 (parts) (pm)m	—	—	—	—
12	Sys. 2 (parts) (mp)m	—	—	—	—
13	Sys. 2 (parts) <i>non</i> [(pm)p]	—	—	—	—
14	Sys. 2 (parts) <i>non</i> [(mp)p]	—	—	—	—
15	Sys. 2 (parts) <i>non</i> [(pm)m]	—	—	—	—
16	Sys. 2 (parts) <i>non</i> [(mp)m]	—	—	—	—

2. 2. 3 Variants

1	Sys. 2 p(pm)	B-13	††	T-13	228: ††
2	Sys. 2 p(mp)	B-14	†‡	T-14	223: †‡
6	Sys. 2 <i>non</i> [p(mp)]	B-15	†‡	T-16	225: †‡
10	Sys. 2 (mp)p	B-16	‡†	T-18	229: ‡†
6	Sys. 2 (part) <i>non</i> [p(mp)]	B-17	†‡	R-232	232: †‡
6	Sys. 2 (part) <i>non</i> [p(mp)]	B-18	‡‡	R-227	227: ‡‡

3 System 5

3. 1 Subgroup “Transition Form 2 → 5”

—	Sys. Transition Form 2 to 5 p(mp)	C-01	††	T-75	—
---	--------------------------------------	------	----	------	---

3. 2 Subgroup “prae-pro-proto-5”

—	Sys. prae-proproto-5 (pm)p	C-02	†‡	T-72	—
—	Sys. prae-proproto-5(mp)p	C-03	‡†	T-73	—

3. 3 Subgroup “proproto-5”

—	Sys. proproto-5 (pm)p	C-04	†‡	R-220	220: †‡
—	Sys. proproto-5 (mp)p	C-05	†‡	T-74	221: †‡

3. 4 Subgroup “proto-5”

3. 4. 1 Double Signs

1	Sys. proto-5 pm	C-06	†‡	T-46	—
2	Sys. proto-5 mp	C-07	†‡	T-71	—

3. 4. 2 Triple Signs

1	Sys. proto-5 p(pm)	C-08	†‡‡	T-69	—
2	Sys. proto-5 p(mp)	C-09	†‡‡	T-47	—
3	Sys. proto-5 m(pm)	—	—	—	—

4	Sys. proto-5 m(mp)	—	—	—	—
5	Sys. proto-5 (pm)p	C-10	‡	T-42	—
6	Sys. proto-5 (mp)p	C-11	‡	T-70	—
7	Sys. proto-5 (pm)m	—	—	—	—
8	Sys. proto-5 (mp)m	—	—	—	—

3. 4. 3 Composed Forms

—	Sys. proto-5 mp o p(mp)	C-12	‡	T-41	—
—	Sys. proto-5 <i>non</i> [mp o p(mp)]	C-13	‡	T-48	—
—	Sys. proto-5 <i>pnon</i> [mp o p(mp)]	C-14	‡	T-44	—
—	Sys. proto-5 <i>non</i> [mp o p(mp)]p	C-15	‡	T-43	—

3. 5 Subgroup “Standard”

3. 5. 1 Double Signs

1	Sys. 5 pm	C-16	‡	T-55	8: ‡
2	Sys. 5 mp	C-17	‡	T-56	38: ‡

3. 5. 2 Triple Signs

1	Sys. 5 ppm	C-18	‡	T-57	99: ‡
2	Sys. 5 pmp	C-19	‡	T-58	39: ‡
3	Sys. 5 mpp	C-20	‡	T-45	85: ‡
4	Sys. 5 pmm	C-21	‡	T-59	40: ‡
5	Sys. 5 mpm	C-22	‡	T-60	42: ‡
6	Sys. 5 mmp	C-23	‡	T-61	41: ‡

3. 5. 3 Quadruple Signs

1	Sys. 5 pppm	C-24	‡	T-66	46: ‡
2	Sys. 5 ppmp	C-25	‡	T-65	45: ‡
3	Sys. 5 pmpp	C-26	‡	T-64	44: ‡
4	Sys. 5 mppp	C-27	‡	T-63	43: ‡
5	Sys. 5 ppmm	C-28	‡	T-67	47: ‡

6	Sys. 5 pppm	—	—	—	—
7	Sys. 5 mppm	C-29	≡	R-49	—
8	Sys. 5 pmmp	—	—	—	—
9	Sys. 5 mpmp	—	—	—	—
10	Sys. 5 mmpp	C-30	≡	T-68	—
11	Sys. 5 pmmm	—	—	—	—
12	Sys. 5 mpmm	C-31	≡	T-62	48: ≡
13	Sys. 5 mppm	—	—	—	—
14	Sys. 5 mmmp	—	—	—	—

Introduction and tables by Elisabeth Rinner

Leibniz-Akademie-Ausgabe (LAA, general edition of Leibniz's writings)
 LAA series VII (mathematical manuscripts, volumes 3 to 7 available online)
 LAA series VII volume 3
 LAA series VII volume 5
 LAA series VII volume 7

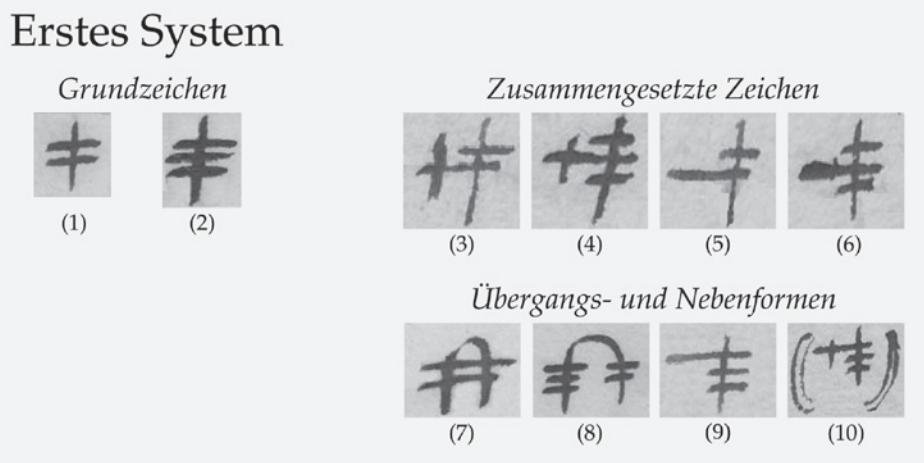
3. Characters proposed for encoding

If this proposal gets accepted, the following characters will exist:

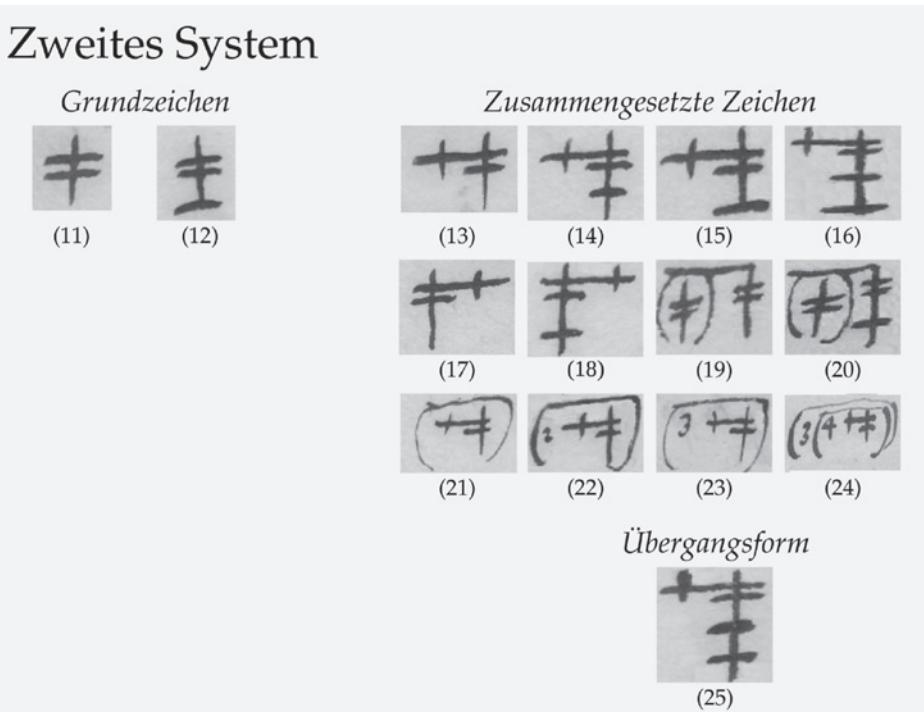
GWLB			
Glyph	Nº	-ID	Unicode Character Names
‡	1	A-01	LEIBNIZIAN SYSTEM 1 AND 2 PLUS-MINUS AMBIGUOUS SIGN
‡	2	A-02	LEIBNIZIAN SYSTEM 1 MINUS-PLUS AMBIGUOUS SIGN
‡	3	A-03	LEIBNIZIAN SYSTEM 1 PLUS OR PLUS-MINUS AMBIGUOUS SIGN
‡	4	A-04	LEIBNIZIAN SYSTEM 1 PLUS OR MINUS-PLUS AMBIGUOUS SIGN
‡	5	A-05	LEIBNIZIAN SYSTEM 1 MINUS OR PLUS-MINUS AMBIGUOUS SIGN
‡	6	A-06	LEIBNIZIAN SYSTEM 1 MINUS OR MINUS-PLUS AMBIGUOUS SIGN
‡	7	A-07	LEIBNIZIAN SYSTEM 1 PLUS-MINUS TIMES PLUS-MINUS AMBIGUOUS SIGN
‡	8	A-08	LEIBNIZIAN SYSTEM 1 MINUS-PLUS TIMES PLUS-MINUS AMBIGUOUS SIGN
‡	9	B-01	LEIBNIZIAN SYSTEM 2 MINUS-PLUS AMBIGUOUS SIGN
‡	10	B-02	LEIBNIZIAN SYSTEM 2 PLUS OR PLUS-MINUS AMBIGUOUS SIGN
‡	11	B-03	LEIBNIZIAN SYSTEM 2 PLUS OR MINUS-PLUS AMBIGUOUS SIGN
‡	12	B-04	LEIBNIZIAN SYSTEM 2 MINUS OR MINUS-PLUS AMBIGUOUS SIGN
‡	13	B-05	LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR PLUS-MINUS AMBIGUOUS SIGN
‡	14	B-06	LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR MINUS-PLUS AMBIGUOUS SIGN
‡	15	B-07	LEIBNIZIAN SYSTEM 2 NEGATED MINUS OR PLUS-MINUS AMBIGUOUS SIGN
‡	16	B-08	LEIBNIZIAN SYSTEM 2 PLUS-MINUS OR PLUS AMBIGUOUS SIGN
‡	17	B-09	LEIBNIZIAN SYSTEM 2 PLUS-MINUS OR MINUS AMBIGUOUS SIGN
‡	18	B-10	LEIBNIZIAN SYSTEM 2 NEGATED PLUS-MINUS OR PLUS AMBIGUOUS SIGN
‡	19	B-11	LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR MINUS-PLUS PARTIAL AMBIGUOUS SIGN
‡	20	B-12	LEIBNIZIAN SYSTEM 2 NEGATED MINUS OR MINUS-PLUS PARTIAL AMBIGUOUS SIGN
‡	21	B-13	<i>variation sequence to B-02</i>
‡	22	B-14	<i>variation sequence to B-03</i>
‡	23	B-15	<i>variation sequence to B-06</i>
‡	24	B-16	LEIBNIZIAN SYSTEM 2 NEGATED PLUS-MINUS OR PLUS PARTIAL AMBIGUOUS SIGN
‡	25	B-17	<i>variation sequence to B-11</i>
‡	26	B-18	<i>variation sequence to B-11</i>
‡	27	C-01	LEIBNIZIAN SYSTEM 5-1 PLUS OR PLUS-MINUS AMBIGUOUS SIGN
‡	28	C-02	LEIBNIZIAN SYSTEM 5-2 PLUS-MINUS OR PLUS AMBIGUOUS SIGN
‡	29	C-03	LEIBNIZIAN SYSTEM 5-2 MINUS-PLUS OR PLUS AMBIGUOUS SIGN
‡	30	C-04	LEIBNIZIAN SYSTEM 5-3 PLUS-MINUS OR PLUS AMBIGUOUS SIGN
‡	31	C-05	LEIBNIZIAN SYSTEM 5-3 MINUS-PLUS OR PLUS AMBIGUOUS SIGN
‡	32	C-06	LEIBNIZIAN SYSTEM 5-4 PLUS OR MINUS AMBIGUOUS SIGN
‡	33	C-07	LEIBNIZIAN SYSTEM 5-4 MINUS OR PLUS AMBIGUOUS SIGN
‡	34	C-08	LEIBNIZIAN SYSTEM 5-4 PLUS OR PLUS-MINUS AMBIGUOUS SIGN
‡	35	C-09	LEIBNIZIAN SYSTEM 5-4 PLUS OR MINUS-PLUS AMBIGUOUS SIGN
‡	36	C-10	LEIBNIZIAN SYSTEM 5-4 PLUS-MINUS OR PLUS AMBIGUOUS SIGN
‡	37	C-11	LEIBNIZIAN SYSTEM 5-4 MINUS-PLUS OR PLUS AMBIGUOUS SIGN
‡	38	C-12	LEIBNIZIAN SYSTEM 5-5 INVERTED MINUS-PLUS AMBIGUOUS SIGN
‡	39	C-13	LEIBNIZIAN SYSTEM 5-5 INVERTED PLUS-MINUS AMBIGUOUS SIGN
‡	40	C-14	LEIBNIZIAN SYSTEM 5-5 INVERTED PLUS OR PLUS-MINUS AMBIGUOUS SIGN
‡	41	C-15	LEIBNIZIAN SYSTEM 5-5 INVERTED PLUS-MINUS OR PLUS AMBIGUOUS SIGN
‡	42	C-16	LEIBNIZIAN SYSTEM 5 PLUS-MINUS AMBIGUOUS SIGN
‡	43	C-17	LEIBNIZIAN SYSTEM 5 MINUS-PLUS AMBIGUOUS SIGN
‡	44	C-18	LEIBNIZIAN SYSTEM 5 PLUS-PLUS-MINUS AMBIGUOUS SIGN
‡	45	C-19	LEIBNIZIAN SYSTEM 5 PLUS-MINUS-PLUS AMBIGUOUS SIGN
‡	46	C-20	LEIBNIZIAN SYSTEM 5 MINUS-PLUS-PLUS AMBIGUOUS SIGN
‡	47	C-21	LEIBNIZIAN SYSTEM 5 PLUS-MINUS-MINUS AMBIGUOUS SIGN
‡	48	C-22	LEIBNIZIAN SYSTEM 5 MINUS-PLUS-MINUS AMBIGUOUS SIGN
‡	49	C-23	LEIBNIZIAN SYSTEM 5 MINUS-MINUS-PLUS AMBIGUOUS SIGN
‡	50	C-24	LEIBNIZIAN SYSTEM 5 PLUS-PLUS-PLUS-MINUS AMBIGUOUS SIGN
‡	51	C-25	LEIBNIZIAN SYSTEM 5 PLUS-PLUS-MINUS-PLUS AMBIGUOUS SIGN
‡	52	C-26	LEIBNIZIAN SYSTEM 5 PLUS-MINUS-PLUS-PLUS AMBIGUOUS SIGN
‡	53	C-27	LEIBNIZIAN SYSTEM 5 MINUS-PLUS-PLUS-PLUS AMBIGUOUS SIGN
‡	54	C-28	LEIBNIZIAN SYSTEM 5 PLUS-PLUS-MINUS-MINUS AMBIGUOUS SIGN
‡	55	C-29	LEIBNIZIAN SYSTEM 5 MINUS-PLUS-PLUS-MINUS AMBIGUOUS SIGN
‡	56	C-30	LEIBNIZIAN SYSTEM 5 MINUS-MINUS-PLUS-PLUS AMBIGUOUS SIGN
‡	57	C-31	LEIBNIZIAN SYSTEM 5 MINUS-PLUS-MINUS-PLUS AMBIGUOUS SIGN

We propose the following encoding scheme:

	1xx1	1xx2	1xx3	1xx4
0		+	±	≡
		B-07	C-09	C-25
1	+	++	±	≡
	A-01	B-08	C-10	C-26
2	±	+	±	≡
	A-02	B-09	C-11	C-27
3	++	+	±	≡
	A-03	B-10	C-12	C-28
4	++	+	±	≡
	A-04	B-11	C-13	C-29
5	+	++	±	≡
	A-05	B-12	C-14	C-30
6	±	++	±	≡
	A-06	B-16	C-15	C-31
7	⋮		+	
	A-07		C-16	
8	⋮	++	+	
	A-08	C-01	C-17	
9		+	±	
		C-02	C-18	
A	+	+	±	
	B-01	C-03	C-19	
B	++	+	±	
	B-02	C-04	C-20	
C	++	+	±	
	B-03	C-05	C-21	
D	+	+	±	
	B-04	C-06	C-22	
E	++	+	±	
	B-05	C-07	C-23	
F	++	+	±	
	B-06	C-08	C-24	

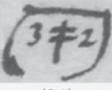
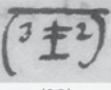
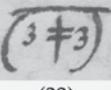
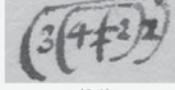
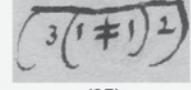

Standardized Variation Sequences	
1xx1B	⊕ LEIBNIZIAN SYSTEM 2 PLUS OR PLUS-MINUS AMBIGUOUS SIGN
B-02	⊕ 1xx1B FE00 variant form
1xx1C	⊕ LEIBNIZIAN SYSTEM 2 PLUS OR MINUS-PLUS AMBIGUOUS SIGN
B-03	⊕ 1xx1C FE00 variant form
1xx1F	⊕ LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR MINUS-PLUS AMBIGUOUS SIGN
B-06	⊕ 1xx1F FE00 variant form
1xx24	⊕ LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR MINUS-PLUS PARTIAL AMBIGUOUS SIGN
B-11	⊕ 1xx24 FE00 variant form 1
	⊕ 1xx24 FE01 variant form 2

Although utmost care has been taken to document a complete picture of all ambiguous symbols known in MS and printed sources, it is possible that few more symbols will be found in the course of continuing research upon yet unpublished works.


We advise to keep one open slot at the beginning of each group (A, B, C) in order to possibly accommodate such future additions in a sensible way.

Achim Trunk (GWLB Hanover) described six different systems, invented by Leibniz. System 3 deploys the same characters as system 2, mostly. The fourth system employs Greek letters and the sixth system uses ordinary numbers, so basically three systems remain (1., 2. and 5.) which consist of special graphic symbols.

4. The ambiguous signs in samples from Leibniz's manuscripts

First system (*basic signs, compound signs, transitional and secondary forms*)

Second system (*basic signs, compound signs, transitional form*)

Drittes System

Grundzeichen		Zusammengesetzte Zeichen							
	(11)		(26)		(27)		(28)		(29)
	(12)		(30)		(31)		(32)		(33)
			(34)		(35)				

Third system (*basic signs, compound signs*)

Fünftes System

Grundzeichen		Zusammengesetzte Zeichen									
	(55)		(56)		(57)		(58)		(59)		(60)
					(61)		(62)		(63)		(64)
					(65)		(66)		(67)		(68)
					(69)		(70)		(71)		

Fifth system (*basic signs, compound signs*)

Équation générale servant à la solution du problème en Nombre

$$\begin{array}{ccccccccc}
 \frac{+a^2}{+q^2} & y^4 & \frac{+q^2a^2y^3}{+q^2a^2} & \frac{+q^2a^2y^2}{-q^2a^2} & \frac{+2a^2qy}{+2a^2q} & +2a^2q & \text{π}^{\circ} \\
 \frac{+2a^2q}{+2a^2q} & \ddots & \frac{+2a^2q}{+2a^2q} & \ddots & \frac{+2a^2q}{+2a^2q} & \ddots & \\
 \frac{+2a^2q}{+2a^2q} & \ddots & \frac{+2a^2q}{+2a^2q} & \ddots & \frac{+2a^2q}{+2a^2q} & \ddots & \\
 \end{array}$$

A notation of an algebraic problem by Leibniz, using symbols of the 2nd system. (after A. Trunk)

5. Figures and explanations

A-01	A-02	
XXVI	EINLEITUNG	
Seit 1673 arbeitet auch er mit solchen einfachen Vorzeichen. Die beiden von ihm erdachten Zeichen \neq und $\not\equiv$ haben die gleichen Bedeutungen wie Schootens Symbole. Offensichtlich bildet Leibniz das Symbol \neq , indem er die Zeichen $+$ und $-$ ineinanderschiebt, und gelangt zu dessen Umkehrung, indem er ein weiteres $-$ als Merkmal der Negation in das erste Zeichen hineinschiebt. Beim Einsatz dieser Symbole in seiner mathematischen Praxis zeigt sich anfangs, dass Leibniz noch nicht alle Folgerungen durchdacht hat. So muss er in dem auf Herbst 1673 zu datierenden Stück N. 3 an einer Stelle, um ein Quadrat zu bilden, das Symbol \neq mit sich selbst multiplizieren. Er verschmilzt hierzu die beiden Doppelvorzeichen mit dem Multiplikationszeichen zum neuen Symbol $\not\equiv\neq$. Doch schnell bemerkt er, dass man sich diese Symbolbildung sparen kann. In einer Nebenbetrachtung zu Stück N. 5 vergewissert er sich der Ergebnisse von Multiplikationen und Divisionen von Doppelvorzeichen mit $+$ oder $-$ sowie von Doppelvorzeichen untereinander. Seine Aufstellung zeigt, dass die Multiplikation zweier Doppelvorzeichen stets ein $+$ oder ein $-$ ergibt, dass etwa $\not\equiv\neq = -$ gilt, womit eigene Symbole überflüssig sind.		

Example of ambiguous signs, 1st system. LAA VII-7, p. XXVI

$$[2]xq \neq 2x^2 \sim \frac{x-f}{q \neq 2x}.$$

$$d^2 \sim a \cancel{x} \neq \underbrace{\frac{a}{q}x^{\cancel{2}}}_{y^2} = a^2x^{\cancel{2}} \cancel{+} \underbrace{\frac{q^2}{q^2}x^{\cancel{3}}}_{y^4} \neq \frac{2a^2x^{\cancel{2}}}{q} + 4x^{\cancel{2}}q^2 \cancel{+} 4x^{\cancel{3}} \neq 4x^{\cancel{2}}q \sim \underbrace{\frac{x^2 + f^2 - 2xf}{q^2 \cancel{+} 4r^2 \neq 4qx}}_{\mathcal{D}} \stackrel{\odot}{\sim}$$

$$x \sim x^2 + f^2 - 2xf \frac{+3xq^2}{\mathcal{D}} \sim \frac{\odot}{4}$$

$$+2ax^{\cancel{2}}q \neq 32ax^{\cancel{2}} \neq \cancel{a} \cancel{+} \frac{3}{4}x^{\cancel{3}}$$

⌘ AMBIGUITY SIGN A-07;

Example of ambiguous sign A-07, 1st system. LAA VII-7, p. 14

$$\left. \begin{array}{cccc} + 4g & + 8ag & + 4ag^2 & - 2c^2g^2 \\ - 2c^2 & - 4ae^2 & - 2c^2e^2 & \\ + 6g^2 & - 4gc^2 & + g^4 & \\ + 2e^2 & + 4g^3 & + 2g^2e^2 & \\ & + 4ge^2 & + e^4 & \end{array} \right\} = 0$$

15

Examinato ergo Canone, per exempla circuli, et parabolae, pergemus cum Calculo generali. Habuimus paulo ante valorem ipsius generis. indagemus eum adhuc semel ope terminorum tertiorum, collatorum, seu ope multiplicantium secundae dimensionis incognitos. Fiet

20 Kontrollansatz zur quadratischen Ergänzung: $\sqrt{\pm 2\frac{a}{q} + 6} g \sim \frac{(\pm \frac{a}{q}) \pm a}{\sqrt{\pm 2\frac{a}{q} + 6}}$

15 f. } = 0 (1) Ponendo jam $x^2 = z^2 \frac{h}{a}$ (2) Examinato L

20 ... = ... : Die Koeffizienten, die Leibniz vergleicht, bezieht er wie oben aus den Gleichungen in N. 5 S. 35 sowie auf S. 48 Z. 3–12. Erneut vergisst er den Faktor $\frac{a^2}{q^2} \neq \frac{2a}{q} + 1$. Zudem nimmt er die

‡ AMBIGUITY SIGN B-04; a character belonging to the 2nd system. LAA VII-7, p. 52

N. 7 AEQUATIO EX INTERSECTIONE ORIENS, Ende Dezember 1673 – Juni 1674 53

seu extracta utrobique Radice

$$\frac{g \sqrt{\pm 2\frac{a}{q} + 6} \quad (\because \text{not}) - \frac{4a}{\sqrt{\pm 2\frac{a}{q} + 6}}}{\frac{h}{a}} = \sqrt{\dots} \quad \text{sive}$$

$$g = \frac{\sqrt{\pm 2\frac{a}{q} e^2 \pm 2\frac{a}{q} c^2 - 2e^2 + 2c^2 - 4a^2, \frac{2q^2 f - qf^2 \pm 2q^2 a + a^2 q \pm d^2 a}{\pm a + 2q \pm \frac{q^2}{a}} \gamma}}{\sqrt{[\pm] 2\frac{a}{q} + 6} \quad \delta}$$

$$(\pm \text{not}) - \frac{4 \wedge h}{\pm 2\frac{a}{q} + 6} \quad \delta$$

Unde evanescit incognita q . valore ejus jam aliter supra dato. Ubi erat:

$$g = \frac{\frac{((+\frac{a}{q})) \neq a ((\frac{a}{q})) q,}{\neq a + 2q \neq \frac{q^2}{a}} \sim 2d \sim \frac{\cancel{a^2}}{a^2}(\theta) \sim h^2 \neq 4 \frac{a^2}{q} - 4a}{\neq (\neq +\frac{a}{q}) 4 \frac{a}{q} (\neq -\frac{a}{q}) 4} \quad \blacksquare$$

Atque ita novam habemus aequationem inter hos duos valores, cuius aequationis ope

≡ AMBIGUITY SIGN B-04; LAA VII-7, p. 53

er in der kurzen Notiz N. 8, die er vielleicht noch im Dezember 1673, vielleicht auch erst im Mai 1674 niederschreibt. Hier erläutert er vier neue Doppelvorzeichen, mit deren Hilfe sich jeweils drei Fälle unterscheiden lassen: das Symbol $\pm\pm$, welches für „+ oder \neq “ (sprich: „im einen Fall +, im anderen entweder + oder \neq “) steht, $\pm\neq$ als sein Gegenteil sowie die auf gleiche Weise durch Zusammenschieber eines + oder \neq mit einem einfachen Doppelvorzeichen gebildeten Symbole $\neq\pm$ und $\neq\neq$. Zusammen mit den beiden Grundzeichen bilden diese vier zusammengesetzten Doppelvorzeichen (oder *signes composés*, wie Leibniz solche Zeichen später nennt) ein erstes System aus einfachen und komplexen *signa ambigua*. Ein praktischer Einsatz der zusammengesetzten Zeichen dieses ersten Systems ist allerdings nicht bekannt. Zwar verwendet er in N. 7, das sich auf denselben Papierbogen wie N. 8 findet, tatsächlich zusammengesetzte Vorzeichen — womöglich zum ersten Mal überhaupt in seiner mathematischen Praxis (ein anderer Kandidat hierfür ist eine Nebenbetrachtung in N. 5). Und als deren Bausteine fungieren die einfachen Zeichen \pm und \neq , die Grundzeichen des ersten Systems also. Die komplexen Zeichen werden jedoch nach geringfügig anderen Regeln gebildet, welche Leibniz erst

Example of ambiguous signs, 1st system. Introduction to LAA series VII volume 7, p. XXVI

A-02 B-13 B-01

Das zweite System, welches Leibniz in N. 10 darstellt, übernimmt zunächst die einfachen Doppelvorzeichen \neq und \pm aus dem ersten System und wendet für die Bildung zusammengesetzter Symbole wie \mp a is $+$; und \mp nur geringfügig abgewandelte Regeln an. Noch während der Arbeit am Konzept ersetzt Leibniz jedoch das negierte einfache Zeichen \neq durch ein neues Zeichen, \neq , das sich aus dem Symbol \neq ergibt, indem man an seinen Fuß einen (meist etwas langer gezogenen) Querbalken anfügt. Bereits in N. 7 negiert er zusammengesetzte Zeichen auf diese Weise; in der *Méthode* erhebt er sie zum allgemeinen Bildungsprinzip negierter Zeichen. Um aber das Zeichen \neq , die Negation von \mp , von dem aus $+$ und \pm zusammengesetzten Doppelvorzeichen zu unterscheiden, wird bei letzterem der Längsstreich über den unteren Querbalken hinaus verlängert, so dass das Zeichen \neq entsteht. Dessen Negation wiederum ist \neq . Dieses Symbol kann seinerseits zum Bestandteil eines noch weiter zusammengesetzten Zeichens werden; dies deutet Leibniz an, indem er den Längsbalken erneut verlängert und so den Baustein \neq erzeugt. Ein entsprechendes Symbol schreibt er jedoch nicht einmal beispielshalber auf.

B-13 *B-14* *B-01* *B-15* *B-05* *B-11*

Example of ambiguous signs, 1st and 2nd system. LAA VII-7, p. XXVIII

sich aus + und \neq zusammen und bedeutet „im einen Fall +, im anderen Fall entweder + oder –“. In seiner Praxis setzt Leibniz die zusammengesetzten Zeichen (*signes composés*) des ersten Systems allerdings niemals ein. Das Beispiel:

+ vel ≠ esto +†, et ejus contrarium seu - vel ≠ erit -‡ et - vel ≠ erit -† et ejus contrarium erit +‡. (N.8)

A-04 A-03 A-02 A-06 A-01 A-05

Example of ambiguous signs, 1st system. LAA VII-7, p. XLI

hierfür hält er in der *Méthode de l'universalité* I (N. 10), verfasst wohl im Mai oder Juni 1674, fest. Aus + und \ddagger etwa bildet er das Symbol $\ddagger\ddagger$, welches in Worten ausgedrückt bedeutet: „im einen Fall +, im anderen Fall entweder + oder –“. Auch hier gibt es also zwei Hierarchieebenen. Ist die Reihenfolge der beiden Fälle vertauscht, schreibt Leibniz dies als $\ddagger\ddagger$. Das Symbol $\ddagger\ddagger$ dagegen stellt die Negation von $\ddagger\ddagger$ dar, bedeutet also „immer dann –, wenn $\ddagger\ddagger$ für $\ddagger\ddagger$ steht, und immer dann +, wenn jenes Zeichen für –“

B-08

B-13 B-05

B-13

B-13

Example of ambiguous signs, 2nd system. LAA VII-7, p. XLI

326 II. ZAHLENTHEORETISCHE STUDIEN 1672–1676 N. 47a

novam fecimus suppositionem factum ex ipsis numeris primo et secundo aquari quadrato ab $\lambda + \theta$. Nam si prima suppositio quod differentia numeri primi et secundi aequetur differentia duorum quadratorum, iungatur alteri, quod factus sub primo et secundo aequetur facto ex duobus quadratis. Non hinc quidem omnino fortasse sequitur duos hos numeros esse quadratos. Sed tamen iam valde probabile est tales numeros esse quadratos. Id est raro occurrent numeri, nec nisi arte quaerendi erunt, qui id praestent nec tamen sint quadrati. (Unum tamen me male habet, quod verum est quemlibet numerum intelligi posse differentiam duorum quadratorum.) Aequationis huius novae suppositae ope eliditur ipsius λ , quadratum ex valore puro ipsius β . Tertia suppositio est numerum III. esse quadratum a $\beta + \xi$, sed et hac aequatione utimur imperfecte ad elidendum adhuc semel quadratum a β , atque ita reperitur duplex valor pars ipsius β , eiusque ope sublatu β , habetur valor pars ipsius λ , per $\theta^2, \theta, \xi^2, \xi$.

Fit nova suppositio factum ex numero I. in III. aquari \square^{10} a $\theta + \pi$. Ita eliditur θ quadratum ex valore ipsius λ . Denique ponitur factus ex \square^{10} in 3^{10} aquari quadrato ab $\lambda + \pi$. Tollitur adhuc semel λ^2 , ex valore ipsius β . Habetur denuo valor λ purus, et ita tollitur, et habetur valor pars ipsius θ . Quod nescio an sufficiat, aut an superfluum fuerit. Si hoc nihil nocet, sin non sufficit, attamen vix nec nisi rarissime eveniet, numeros esse tales, qui satisfaciant aequationibus per illas compositiones factis nec tamen sint quadrati.

Imo male ista, quia invento valore ipsius θ , si voles eum iam quaerere quomodo sumes q. ut in pro arbitrio? Sed hoc male. Ergo sic agendum, quaerendus est valor ipsius θ q. qui ut inveniatur inveniendus est valor duarum aliarum quadratum.

Restat ut videam pro plena problematica aequationis solutionem, poscit offici at tam quadrato-quadratus, quam quadratus simul sint dati, quod fiet, si aequationem hanc $\frac{\pm 2lq - 2q^2 - l^2}{\pm 2l + 10l + 4q}$ reddemus talem, ut v pro arbitrio sumta, q inveniri queat: Fiet $\pm 2l + 10l + 4q$ $\pm 2lq - 2q^2 - l^2$. Ponatur $v \cap z - \beta$, fiet: $\pm 2l\beta + 10l\beta - 10l^2 + 4qz \pm 4q\beta \cap \pm 2lq - 2q^2 - l^2$. Pone $\pm 2l\beta - 10l\beta \cap -l^2$, fiet $\beta \cap \frac{1}{\pm 2 - 10}$ et restabit: $\pm 2l\beta + 10l\beta + 4qz \cap \pm 2lq - 2q^2 - l^2$.

2 ab $\lambda + \theta$ erg. L 8f. eliditur (1) valor (2) ipsius L 9 puro erg. L 10 a $\beta + \xi$ erg. L 13 eliditur | valor gestr. | θL 15 semel | valor ipsius gestr. | β^2 , ex L 19 voles (1) invenire (2) eum L

26 Im Zähler müßte es –1 heißen, ein Fehler, der sich bis Z. 327,5 vererbt. 27 Leibniz vergibt vor dem ersten Summanden der rechten Gleichungsseite das Vorzeichen \ddagger . Der Fehler vererbt sich auf die Folgezeile.

II. ZAHLENTHEORETISCHE STUDIEN 1672–1676 327

Pone $z \cap \frac{q^2}{1}$, poterunt omnia dividiri per q, et fiet aequatio: $\pm 2y + 10y + \frac{4qy}{1} \pm \frac{4l}{\pm 2 - 10}$ $\cap 2l - 2q$. Esto iam $\frac{ev}{1} \cap$ dato $x_{(1)}$ item $(*) \frac{ev}{1} (t)$ e numerus datus, exempli causa d. fiet $v \cap \frac{x}{e}$ per priorem positionem, eque valore in posteriore substituto, fiet: $(*)x(t) \cap d$. fiet $v \cap \frac{x}{(t) d}$. et $v \cap \frac{x}{(t) d}$. Iam $v \cap z - \beta$, seu $z - \frac{1}{\pm 2 - 10}$. Erit $z \cap \frac{x}{(t) d} + \frac{1}{\pm 2 - 10}$ $\cap \frac{q^2}{1}$. Sed hinc iam video rem absolute effici hac methodo non posse, ut quadrato-quadratus sit datus, quia v iam datur. Ergo in aequatione initio reperta inseramus valorem ipsius v, fiet:

$\frac{\pm 2lq \cap z \cap lq \cap (z) d}{-2q^2 \cap -2q^2 \cap \dots}$ 10

$\frac{\pm 2x^2 + 10l^2x + 4qxl}{x(z) d} \cap \frac{-l^2 \cap -l^2}{x(z) d} \cap$ sive

$\frac{\pm 2x^2 + 10l^2x + 4qxl \cap \pm 2lq \cap +x(t) d}{x(z) d} \cap$ sive

$\frac{-2q^2 \cap \dots}{-l^2 \cap \dots}$

$\frac{\pm 2 - 2q^2 \cap \pm 2lq \cap (z) \cap 2ldq \cap \pm 2x^2 + 10l^2x + l^2x(z) \cap d}{\pm 4 \dots}$ 15

$\frac{\pm 2lq \cap \dots}{\cap \frac{1}{(t) \cap 2ld \dots} + \frac{\cap \dots}{-2x(t) \cap d} \cap \frac{\cap \dots}{4} \cap \frac{[u] 2x^2 + 10l^2x + l^2x(z) \cap d}{-2x(t) \cap d} \cap \frac{\cap \dots}{4} \cap \frac{\cap \dots}{4} \cap \dots}$ erit

$\frac{q + \frac{\cap \dots}{2} \sqrt{4l + \cap \dots}}{2}$

Sunt autem x et d, et l. ac per consequens etiam β et \cap numeri dati, quare si $4l + \cap^2 \gg$ evenit esse numerum quadratum, tunc effici potest ut tam quadratus quam quadrato-quadratus sint dati. Illud vero manifestum est, quia in aequatione β , neque x, neque d, quadratum ascendent, hinc semper effici posse, ut alterata earum sit data, item ut

2 dato erg. L 2 datus (1). Erit e (1), exempli L 5 hac methodo erg. L 6 datus, (1) ini (2) quia L 17 + L ändert Herg. 18 = erg. Herg. 25

Example of ambiguous signs, 2nd system. LAA VII-1, p. 326–327. See following figure for details.

quadrato-quadratus, quam quadratus simul sint dati, quod fiet, si aequationem hanc $\frac{\pm 2lq - 2q^2 - l^2}{\pm 2l + 10l + 4q}$ reddemus talem, ut v pro arbitrio sumta, q inveniri queat: Fiet $\pm 2l + 10l + 4q$ $\pm 2lq - 2q^2 - l^2$. Ponatur $v \cap z - \beta$, fiet: $\pm 2z \cap \pm 2l\beta + 10l\beta - 10l^2 + 4qz \cap 4q\beta \cap \pm 2lq - 2q^2 - l^2$. Pone $\pm 2l\beta - 10l\beta \cap -l^2$, fiet $\beta \cap \frac{1}{\pm 2 - 10}$ et restabit: $\pm 2l\beta + 10l\beta + 4qz \cap \pm 2lq - 2q^2 - l^2$.

A-01, B-01

A-05 B-05 A-01

B-14

B-13

B-05 B-05 B-13

B-14

B-14

B-05

B-01

$$\text{Q} - 2q^2x (\pm) 2q^2d \mp 2lqx (\pm) 2ld \sqcap \mp 2xl^2 + 10l^2x + l^2x (\pm) l^2d \quad \text{sive}$$

$$q^2 \frac{\mp 2lqx}{-2x(\pm) 2d} + \frac{\odot^2}{4} \frac{[\pm] 2xl^2 + 10l^2x + l^2x (\pm) l^2d}{-2x(\pm) 2d} \quad \text{erit}$$

$$q + \frac{\odot}{2} \sqcap \frac{\sqrt{4\odot l + \odot^2}}{2}.$$

Sunt autem x et d , et l , ac per consequens etiam \odot et \odot numeri dati, quare si $4\odot l + \odot^2$ evenit esse numerum quadratum, tunc effici potest ut tam quadratus quam quadrato-quadratus sint dati. Illud vero manifestum est, quia in aequatione Q . neque x . neque d . id quadratum ascendent, hinc semper effici posse, ut alterutra earum sit data, item ut

B-05

B-01

B-14

B-13

B-14

$$e^2l \mp 2e^2v \mp 2e^2q \quad (+ e^2v) \quad (- f^2) \quad (+ e^2v) \quad (+ e^2q) \quad (+ e^2v) - g^2(\pm) 2gf \quad (- f^2).$$

Ergo $f \sqcap \frac{e^2l \mp 2e^2v \mp e^2q + g^2}{(\pm) 2gl}$. Pro e^2 , substitue potius $\frac{g^2h^2}{l^2}$, fiet $f \sqcap \frac{h^2l \mp 2h^2v \mp h^2q + l^3}{(\pm) l^3}$

sive $f \sqcap \frac{h^2r + l^3}{(\pm) l^3} g$. Ergo $f^2 \sqcap \frac{h^4r^2 + 2h^2l^3r + l^6}{+ l^6} g^2$ fiet $\frac{l^3h^2r - h^4r^2 - 2h^2l^3r - l^6}{l^6} g^2 r$

[Text bricht ab]

$$\mp (2) l^2 + (10) l^2 \mp (4) ql, \quad (+ 2lq) \mp 10lq \mp (4) q^2, \quad - 2lq (+ 2q^2) (+ l^2),$$

$$\mp 2lq - 2q^2 (- l^2) \sqcap 0 \quad \text{sive } q^2 \quad \frac{+ 6l}{+ 2 - 2} \quad \frac{+ 10l}{+ 2 - 2} \quad \frac{+ 2l}{+ 2 - 2} \quad q + 36l^2$$

II $\frac{e^2l \mp 2e^2v \mp e^2q + g^2}{(\pm) 2gl}$. (a) fiet (a) item e^2v^2 (b) ergo f (2) Porro e^2 (3) Pro L

B-15

B-13

Example of ambiguous signs, 2nd system. LAA VII-1, p. 327 (top), 329

Soit maintenant une certaine grandeur affectée du signe \neq par exemple $\neq a$, c'est à dire : $o \neq a$. car puisque $+$ aussi bien que $-$ signifie une Relation entre deux, et qu'il n'y a qu'une seule grandeur a , l'autre sera o ou rien : supposons donc que la dite grandeur $\neq a$ doit estre adjointée à une autre b , le produit sera $b + \neq a < ou b + a >$ c'est à dire $b \neq a$, car le signe $+$ ne change point les autres signes : mais à present supposons que la dite grandeur $\neq a$ doit estre soustraite d'une autre b , 29 recto. le produit sera $b - \neq a$, ou b moins $\neq a$, et | par ce que cela arrive bien souvent, je trouve à propos d'employer un seul signe, \pm au lieu de ces deux $-$ et \neq joints ensemble, et le produit susdit sera $b \pm a$, et \pm vaudra $-$ et généralement j'observeray cette règle, qu'un signe ambigu insistant sur un $-$ aura une signification contraire à celle qu'il auroit sans cela, ou que le signe avec le $-$ $<$ au bas du caractere $>$ signifie moins le $<$ même $>$ signe sans $-$. Par exemple $\neq\neq$ (que nous expliquerons cy après :) signifiera $- - \neq\neq$. Par consequent si dans une même formule ou Equation ces deux signes opposés se trouvent à la fois, comme par exemple $\neq a \pm b \sqcap c$, et que cette formule vienne a estre expliquée ou appliquée à un certain cas particulier, où \pm signifie par exemple $+$, alors \pm s'expliquera aussi et signifiera $-$, et si \pm signifie $-$ dans le cas particulier dont nous avons besoin, \pm signifiera $+$

B-01

B-01

B-01

B-14

B-15

Example of ambiguous signs, 2nd system.

Couturat 1903 (1961), p. 126

B-16

126

DE LA MÉTHODE DE L'UNIVERSALITÉ II, Juni 1674

N. 11

fait voir que ces deux signes ambigus $\neq\neq$ et $\neq\neq$ signifient ou tous deux $+$, ou que l'un signifiant \neq , l'autre signifie \pm , je les exprime en mettant $+$ au devant, en tous deux $\neq\neq$ et $\neq\neq$, au lieu de $\neq\neq$ et $\neq\neq$ dont nous aurons besoin dans une autre rencontre.

On voit en fin par la; la grande difference qu'il y a entre le signe \neq , et tous les autres.

- 5 Car le signe simple \neq peut subsister tout seul, sans changement, par ce qu'il ne dit point de relation a aucun autre; mais tous les autres contiennent quelque relation à un autre signe provenant d'une même equation ambiguë, et pour cela je les appelle Correspondants. Par exemple si nous avons deux signes ambigus simples, \neq et \pm provenants de l'équation $\neq a \pm y \sqcap b$, et si dans la suite du calcul le signe \neq evanouit, comme il arrive en cet exemple,
- 10 ou nous trouvons en fin cette equation, $y \sqcap \pm b + a$, alors si nous nous determinons à abandonner entierement la première equation, avec tout ce qui en est provenu, hormis cette nouvelle trouvée, dont nous pretendons nous servir à l'avenir dans le calcul qui reste à faire; nous pourrons sans scrupule changer le signe \pm en \neq , et nous servir de cette

Example of ambiguous sign B-16, 2nd system. LAA VII-7, p. 126

Example of ambiguous signs, 2nd system.

Couturat 1903 (1961), p. 131

A-01

Necesse est ergo dividi posse aut per $a^2 \mp \frac{y^4}{x^2}$, aut per $a^2 \mp \frac{y^2}{x}$. Si ordinetur secundum y , necesse est si dividi potest dividi posse per $y^4 \mp a^2x^2$, vel $y^3 \mp a^2x$ vel denique si ordinatur secundum x , fiet: $x^2 \frac{+y^3ax^2}{a^2y^2 + a^4} x \frac{-y^6}{a^2y^2 + a^4}$ quo casu solus ex prioribus divisoribus

tentandis restat: $x \neq \frac{y^3}{a^2}$. Multiplicetur per $x + b$. fiet: $x^2 \neq \frac{y^3}{a^2}x \neq \frac{y^3b}{a^2}$. Unde conferendo:

$b \vdash \pm \frac{y^3}{y^2 + a^2}$ et fiet: $\frac{\mp y^2}{a^2} \pm \frac{y^2}{y^2 + a^2} \vdash \frac{y^2}{y^2 + a^2}$, sive $\mp y^2 (\mp a^2 \pm a^2) \vdash a^2$. Quod est absurdum. Ergo: nullum habet aequatio inventa divisorem rationalem. Aequatione ergo ad tangentes ordinata fiet:

$$6y^6 - 3a^2xy^3 - 2a^2x^2y^2 \sqcap + 2a^4xl + a^2y^3xl, \text{ et fiet: } l \sqcap \frac{6y^6 - 3a^2xy^3 - 2a^2x^2y^2}{2a^4x + 2a^2y^2x}.$$

B-01

B-01

Ambiguous signs, 2nd system. LAA VII-3, p. 567
see also LH 35 V2 f. 4v (next page)

au lieu de \ddagger ; et \ddagger au lieu de \ddagger . Et à fin aussi qu'on voye la raison de la distance que je laisse entre le trait haussé, et les premiers, et pour quoy je fais \ddagger au lieu de \ddagger , et \ddagger au lieu de \ddagger ou \ddagger je dis qu'on découvre par ce moyen à la premiere veue l'origine et composition de tous ces signes, mais qu'outre cette commodité il y a même quelque nécessité de faire de la sorte, pour eviter l'equivocation, ou confusion de deux signes de differente signification, car posons que le signe \ddagger doive entrer dans la composition ~~et un autre si on en faisoit alone \ddagger on haussant simplement le trait d'embas on ne le~~

B-11 B-17 B-18

B-05

ns une composition par ce que en le haussant simplement, nous aurions eu aussi \ddagger au lieu de \ddagger donc voila deux \ddagger de differente signification l'un fait de \ddagger , c'est à dire du contraire à \ddagger c'est à dire à + ou \ddagger : l'autre fait de \ddagger , c'est a dire de + ou \ddagger c'est à dire du + et du contraire à \ddagger : ce qui n'est pas le même.

Quand je dis par exemple que \ddagger vaut + ou \ddagger , et que \ddagger vaut + ou \ddagger cela se doit entendre avec une relation entre ces deux signes ambigus composez; de sorte que si dans l'application de l'ambiguité ou generalité à un cas particulier, \ddagger est expliqué par $-$, alors \ddagger sera expliqué par $+$ et *vice versa* car entre ces trois equations susdites de la 5^{me} figure il n'y a pas une, ou *AB* aussi bien que *BC*, tout a la fois soient affectées par $-$. Mais si \ddagger est expliqué par $+$, il n'est pas nécessaire que \ddagger soit expliqué par $-$ par ce que dans une de ces equations particulières, *AB*, aussi bien que *BC*, sont affectées par $+$. Par consequent si l'un de ces deux signes composés est expliqué par $+$ l'autre sera expliqué par \ddagger et *vice versa* (: avec la caution pourtant, que nous y apporterons plus bas:) de sorte que l'ambiguité decomposée qu'elle est, deviendra simple. Et par ce que la liste des Equations particulières

$$\begin{array}{rcl}
 AC & \sqcap & + \quad AB + \quad BC \\
 & - \} & \ddagger AB + \quad \ddagger BC \\
 & + \} & \ddagger AB - \quad \ddagger BC
 \end{array}
 \left. \right\} \text{qui peuvent estre entendues}$$

sous la Generale $\ddagger AB$ $\ddagger BC$,

B-12

2 entre ... premiers erg. L 3 de \ddagger ou \ddagger L ändert Hrsg. 8-10 signe \ddagger | qvand ... composition erg. | par ce qve (1) si on haussoit le signe (2) en ... eu | aussi erg. | \ddagger au ... deux \ddagger | de differente signification erg. | l'un (a) faisoit de (aa) \ddagger , l'autre de + ou \ddagger (bb) \ddagger , l'autre de \ddagger , c'est à dire de + ou \ddagger (b) fait de \ddagger , c'est à dire (aa) de + ou \ddagger (bb) du contraire L 13 (1) On voit par la, a (2) Qvand je dis | par exemple erg. | L 14f. dans (1) l'explication (2) l'application L 16f. car ... susdites | de la 5^{me} figure erg. | il ... bien | qve erg. Hrsg. | BC ... par - erg. L

Ambiguous signs, 2nd system. LAA VII-7, p. 125; see also LH 4 V 10, f. 31 (next page)

In this passage, Leibniz discusses how ambiguity signs of higher order should be derived from those of lower order. He suggests to slightly modify each ambiguity sign of order n (for example B-06) when it is used as a part of an ambiguity sign of order $n + 1$ (for example B-11 as a partial variant of B-06). Since the modification allows for freedom in design, Leibniz discusses different types as for example B-11, B-17, and B-18 for the partial ambiguity sign that corresponds to B-06. The lower part of the page shows the transition from ambiguity signs of degree 2 to those of degree 3.

LH 4 V 10, f. 31v-32r

prolonguer d'avantage vers en bas la ligne
perpendiculaire du caractere, et de faire
~~+~~ au lieu de ~~+~~; et ~~+~~ au lieu de ~~+~~
Et à fin aussi qu'on voye la raison de la
distance que le laisse, et pour quoy je fais ~~+~~ entre le trait haupe et les premiers
~~+~~ au lieu de ~~+~~, et ~~+~~ au lieu de ~~+~~ ou ~~+~~
et je dis qu'on voit la decouure
par ce moyen à la premiere veue l'origine et composition
de tous ces signes, mais qui outre cette commodité
il y a même quelque nécessité de faire de la sorte
pour eviter l'equivocation ou confusion de deux
signes de differente signification, car posons
que le signe ~~+~~ doive ^{alors} entrez dans la composition
d'un autre, si on en faisait ~~+~~ en saupant simplement
le trait d'embar^{quand il entrevoit aussi dans sa composition}
du signe ~~+~~ (par ce que ~~+~~ aussi dansant simplement
aussi),
lequel nous aurions eu au lieu de ~~+~~
dans voila deux ~~+~~ d'un ~~+~~ ~~+~~, c'est à dire de ~~+~~ ou ~~+~~: l'autre de ~~+~~ c'est à dire
de ~~+~~ ou ~~+~~ c'est à dire du ~~+~~ et du
contraire à ~~+~~: ce qui n'est pas le même par exemple
On voit par le a grand je dis que ~~+~~
vaut ~~+~~ ou ~~+~~, et que ~~+~~ ~~+~~ vaut ~~+~~ ou ~~+~~
cela se doit entendre avec une relation entre de
ces deux signes ambigus comparez; de sorte que
l'application de l'ambiguité ou

IV. Ambig.

$a \sqcap (3\ddagger) b (3\ddagger) c$ signifie $a \sqcap +b +c$, c'est à dire, $a \sqcap +b +c$
 $(3\ddagger) \left\{ \begin{array}{l} +b \\ -b \end{array} \right. (3\ddagger) \left\{ \begin{array}{l} -c \\ +c \end{array} \right. \quad \text{ou } (3\ddagger) b (3\ddagger) c$

a estant ou la somme, ou la difference de b . c . cela fait voir clairement la raison de la fabrique des signes, et il faut remarquer seulement que de $+$ ou $(3\ddagger)$, on a fait tout expres

0 $(3\ddagger)$ au lieu de $(3\ddagger)$ par ce que $(3\ddagger)$ signifie le signe opposé à $(3\ddagger)$.

Si nous eussions eu

$$\begin{array}{rcl} f \sqcap +b & +c & (3\ddagger) \left\{ \begin{array}{l} +e \\ -e \end{array} \right. \\ (3\ddagger) \left\{ \begin{array}{l} +b \\ -b \end{array} \right. (3\ddagger) \left\{ \begin{array}{l} -c \\ +c \end{array} \right. & -e & \text{cela auroit fait} \\ \hline f \sqcap (3\ddagger) b & (3\ddagger) c & (3\ddagger) e \end{array}$$

5

LAA VII-7, p. 144

B-09

B-02

B-05 B-08 B-14

B-05 B-10

146 TABLE DES SIGNES DE LA MÉTHODE DE L'UNIVERSALITÉ, Mitte 1674 N. 12

traits ~~ou~~ —, horsmis un qui se pourra placer ou l'on voudra, par exemple $\pm (3\ddagger) (2\ddagger) a$ fait $\pm (3\ddagger) (2\ddagger) - a$ ou $\pm (3\ddagger) (2\ddagger) a$ et $\pm (3\ddagger) a$, fait $\pm (3\ddagger) a$.

Si les signes qui se multiplient, ou qui se divisent sont correspondants seulement: leur nature particulière qui se reconnoit par la forme du Caractere, fera juger du produit.

5 Par exemple

$$\begin{aligned} (2\ddagger) b \cap (2\ddagger) a, & \text{ fait } (2\ddagger) ab \\ (2\ddagger) a \cap (2\ddagger) b, & \text{ fait } (2\ddagger) ab \\ (2\ddagger) a \cap (2\ddagger) b \cap (2\ddagger) c, & \text{ fait } +abc \\ (3\ddagger) a \cap (3\ddagger) b, & \text{ fait } (3\ddagger) ab \end{aligned}$$

10

Exemple d'une extraction d'une Racine Quarrée

Soit une Equation $2ax \pm \frac{a}{q}x^2$, $\sqcap y^2$, et la question est comment il faut exprimer la valeur de x , conformement à cette Equation, or je dis, que

$$+x \sqcap \pm \sqrt{\frac{aq^2 \pm y^2 q}{a}} \pm q$$

15 dont voicy la preuve. En transposant nous aurons $+x \pm q \sqcap \pm \sqrt{\frac{aq^2 \pm y^2 q}{a}}$, dont le quarré sera, $+x^2 \pm 2xq + q^2 \sqcap \frac{aq^2 \pm y^2 q}{a}$. Multipliant tout par a , ce sera: $+ax^2 \pm 2aqx + aq^2 \sqcap$
 $aq^2 \pm y^2 q$, ostons aq^2 de deux costez, et divisons tout, par $\pm q$, $\frac{+ax^2 \pm 2aqx}{\pm q} \sqcap \frac{\pm y^2 q}{\pm q}$, et nous aurons: $\pm \frac{a}{q}x^2 + 2ax \sqcap y^2$ qui est l'équation donnée.

La consideration de cette opération peut servir d'exemple à la pluspart de nos preceptes.

LAA VII-7, p. 146

La méthode de l'université,

nous enseigne de trouver par un seul calcul des formules analytiques, et des constructions géométriques générales, pour des sujets ou très différents, dont chacun sans cela aurait besoin d'une analyse ou synthèse à part. Ces méthodes

Les Instruments sont les caractères ambigus ou lettres qui signifient les grandeurs, ^{qui sont} les rapports significatifs qui expriment cette relation

des grandeurs. Les lettres Ambigues signifient tantôt des grandeurs ordinaires, tantôt des grandeurs infinités ou infiniment petites à l'égard des autres.

Ces signes ambiguës servent à marquer qu'une
grandeur affectée d'un signe signifie tel signe, signifie
+ dans un certain cas, (3) - dans un autre.

pour dresser des équations ambiguës générales, il faut dresser une liste des équations particulières, en remarquant toutes les situations possibles et un certain point ambiguë qui changeant le calcul : et on accommode les signes, qu'en forme des signes ambiguës, ainsi qui s'accordent avec cette liste, comme les exemples feront juger.

5 il y a plusieurs ambiguïtés, ou équations ambiguës, indépendantes (une de l'autre), on peut renfermer les signes dans des parenthèses, cacher par devant (afin de les distinguer d'autres sortes de parenthèses) et les marquer même des nombres de l'ambiguïté dont chaque signe dépend, comme \neq , (\neq) , (\pm)

dont chaque signe dépend, comme +, (+) et - .
Et cela est nécessaire sur tout qu'ainsi ces signes
soient semblables ; mais si les signes d'une
ambiguïté sont par exemple + et \pm , et
ceux de l'autre \mp , et \mp l'on peut
échapper à cette précaution parce qu'alors il n'y a
point de ambiguïté à craindre, parce qu'au contraire
on verra aux particularités

car \neq est composé de \neq et \sim qui n'est pas

Le nombre de ceux qui portent un bar est presque égal à celui des autres. Les observations sont assez nombreuses pour donner une idée assez exacte de la proportion des deux types.

LH 4 V 10, f. 39v

This manuscript by Leibniz shows the use of ambiguous signs of the 1st, 2nd and 3rd systems.
(see also the 2 following pages)

Table des Signes de la
Méthode de l'Universalité.

40

~~Signes de l'ambiguité~~

$a \square + b \neq c$ I. Ambiguité

$a \square + b \neq c$ signifie $a \square + b + c$
Consequence de l'ambiguité ou $b - c$

$b \square + a \neq c$ signifie $b \square a - \neq c$
II. Amb. c'est à dire $b \square a$, moins $\neq c$

$a \square \neq b \square c$ signifie que \square est la
différence $b - c$ entre b et c .

Il appelle deux Signes Opposés, si, lorsqu'il existe une grandeur affectée de l'un, vaut autant que Zero moins la même grandeur affectée de l'autre.

Signe. par exemple \neq et \pm , par ce que

\pm , $\square 0 - \neq c$, et pour cette raison
j'ay accoutumé de les marquer en sorte, qu'il
n'y ait point d'autre différence entre eux
que celle que l'un d'eux soit marqué d'un
- au bas ou qu'il indique sur un -.

$a \square \neq b \square \neq c$ signifie $a \square + b \square c$

IV. Ambig. $\square b + c$ signifie \square

Signifie $a \square + b + c$

c'est à dire, $a \square + b + c$

ou $\square b \square c$

a étant ou la somme, ou la différence de b . c.
Cela fait voir clairement la raison de la fabrique
des signes, et il faut remarquer seulement
que de + ou \square , on a fait tout (expr. \square)
au lieu de \square parce que \square signifie l'opposé de

le signe opposé à \square .

Deux signes semblables mais différents, par conséquent
tirent leur origine de différentes ambiguitez d'au-
même sujet pourront être distingués par des parenthèses
et s'il y en a beaucoup par des parenthèses marquées
de nombres. comme s'il y avait $a \square b \neq c$,
et $a \square + b - c$ nous ferons d' $a \square b \neq c$

et s'il y avait un autre troisième, i.e. la marqueront
ainsi : $a \square b \neq c$

Il se trouve à propos de fermes par entant
les parenthèses des signes, à fin de
les discerner l'autre parentheze.

~~Signes Homogènes~~ sont ou les mêmes, ou opposés
Signes Correspondants comme \neq et \pm ,

ou \pm et \pm , ou \neq et \neq
Signes correspondants sont qui entrent dans une
même ambiguïté, ou équation ambiguë
dans des cas particuliers, qui la composent
une équation, comme $(\square \square) + (\square \square)$

Les autres sont entièrement Hétérogènes.

Un signe ~~entierement~~ n'est appliqué, ou par l'appli-
cation de la formule générale à certains
cas particuliers. l'autre s'applique aussi
entièrement et tous jours. par exemple
 \square signifie + et \square signifie -
Un signe correspondant n'est appliquée l'autre
cas que l'ambiguité de l'autre corre-
spondant est toujours diminuée par
l'application d'un signe correspondant, par
exemple, si \square signifie +, alors
 \square signifiera ~~ceci~~ \neq ; mais pas
ou \square toujours avec entièrement, mais
quelques fois, comme dans le même exemple
 \square signifie ~~ordinaire~~ + ou ~~ordinaire~~ -

Addition et soustraction

Si les signes sont homogènes, on en peut faire
un seul par le moyen d'un vinculum.

$\square a \pm b$ nous pourrons faire $\neq a - b$

Si une même grandeur est opposée, alors
nous pourrons faire $\pm y c + y d$ $y, \neq c + \neq d$

Multiplication et Division
Deux signes homogènes entièrement semblables font +
et - opposés

$\square a \pm b$ fait $-ab$
 $\pm a, \square$ fait $+a^2$
 $\pm a$ fait $-a^2$
Il y a point de différence entre $+a^2$ et $-a^2$
élevé par un signe \pm dividé par
le même signe car $+a^2 = -a^2$

$\square a$ fait $\frac{a}{\pm}$
et $\pm a$ fait $\frac{\pm}{a}$

Un signe multiplié par + donne sens évidemment
sans être opposé, $\pm a \pm b, \pm ab - a \pm b$

Si les signes qui se multiplient, ou qui divisent, sont correspondants seulement; leur nature particulière qui se reconnaît par l'iforme du caractère, sera juge du produit; par exemple

$$(2\cancel{+}7)^6 \cancel{(2\cancel{+}7)}^a, \text{ fait } (3\cancel{+}7)ab$$

$$(2\cancel{+}7)^a \cancel{(2\cancel{+}7)^6} \text{ fait } (2\cancel{+}7)ab$$

$$(2\cancel{+}7)^a \cancel{(2\cancel{+}7)^6} \cancel{(2\cancel{+}7)}^b \cancel{(2\cancel{+}7)}^c, \text{ fait } abc.$$

$$(3\cancel{+}7)^a \cancel{(3\cancel{+}7)^b}, \text{ fait } (3\cancel{+}7)ab$$

Exemple d'une extraction de la racine carrée

Soit une équation $2ax = \frac{a}{q}x^2 + y^2$, et la question est comment il faut exprimer la valeur de x , conformément à cette équation, ~~2ax~~ je dis que

$$x = \sqrt{\frac{a^2 + y^2}{a}} = \sqrt{a^2 + y^2} + q$$

dont voici la preuve. En transposant nous aurons

$$x = q \cdot \sqrt{\frac{a^2 + y^2}{a}}, \text{ dont le carré sera,}$$

$$x^2 = 2qx + q^2 \cdot \frac{a^2 + y^2}{a}. \text{ Multipliant tout}$$

par a , et ~~et tout par a~~ , nous avons

$$x^2 = 2aqx + aq^2 \cdot \frac{a^2 + y^2}{a}, \text{ et nous aurons:}$$

ossons aq^2 de deux côtés, et divisons

tout, par $\cancel{+}q$, et nous aurons:

$$\frac{x^2}{\cancel{+}q} = \frac{2aqx}{\cancel{+}q} + \frac{aq^2 \cdot \cancel{+}y^2}{\cancel{+}q}, \text{ et nous aurons:}$$

$$\frac{x^2}{\cancel{+}q} = 2ax + y^2 \text{ qui est l'équation donnée.}$$

La conféderation de cette opération peut servir

d'exemple à la plupart de nos preceptes.

Opérations composées!

Considérons dans l'formation des définitions, invention des propriétés, et effectuon des demandes.

Définitions, ~~et~~ Equations les simples et des Figures, et équations propres à appliquer la relation de tous les points des courbes, à une certaine droite, ou tout qui est même chose. On trouver des définitions communes à plusieurs figures, c'est à dire en Harmonie pour trouver des théorèmes, et des constructions communes de quelq; problème posé.

Exemple de la réduction des Figures différentes en Harmonie, essayé dans les Coniques.

Exemple d'une propriété commune à toutes les Coniques, démontrée généralement par la méthode de l'universalité.

EXEMPLE DE LA MÉTHODE DE L'UNIVERSALITÉ

Exemple d'un problème les plus difficiles proposé par les Coniques,

et résolu par des constructions

universelles, que par le moyen

de la Conique donnée et de l'Hyperbole,

l'autre par le moyen de la Conique

donnée et de l'ellipse.

15 Hoc ut fiat, eam ita aequipollenter scribamus: $\vartheta^2 v^2 + \beta^2 v^2 + 2\vartheta\beta v^2 + 2\vartheta\beta v^2 \stackrel{(46)}{\sqcap} \vartheta^2\beta^2 + 1$.
Haec enim ipsi 45. coincidit. Eam porro ita divellemus in duas: $\vartheta^2 v^2 + \beta^2 v^2 + 2\vartheta\beta v^2 \stackrel{(47)}{\sqcap} 1$.

13f. Hinc exitus patet, nam scribentur: $\vartheta^2 v^2 - 1$ aequi $\beta^2 \vartheta^2 - \beta^2 v^2$ et fiat 1 , $\vartheta v + 1$ aequi

$\vartheta (+) v$ ergo $\vartheta v + 1$ aequi $1\beta^2, \beta (+) v$. Ergo $2\vartheta v$ aequi $\frac{\vartheta (+) v}{1}, +1\beta^2, \beta (+) v$. Pone ϑ aequi. f. v.
fiet $2\vartheta v$ aequi $\frac{f (+) v}{1}, +1\beta^2, \beta (+) v$. adeoque datur v . et solutum est problema universa-

C-16

C-17

C-16

C-17

Ambiguous signs, 5th system. LAA VII-1, p. 618

C-12 C-16 C-10 C-11 C-08
et $\vartheta + 2\vartheta\beta v^2 \stackrel{(48)}{\sqcap} \vartheta^2\beta^2$. ex. 47. extrahendo fiet: $\frac{\vartheta}{1} \beta v \stackrel{(49)}{\sqcap} (+) 1$. Ex 48. dividendo fiet: $+2v^2$
 $\stackrel{(50)}{\sqcap} \vartheta\beta$. Ex 49. erit $\vartheta \stackrel{(51)}{\sqcap} \frac{(+)}{v} \frac{\beta v}{1} + \beta v$. et ex 50, erit $\vartheta \stackrel{(52)}{\sqcap} \frac{+2v^2}{A}$, quibus duobus ipsius ϑ valo-
ribus aequatis, fiet: $(+) \frac{\vartheta}{1} \beta + \beta^2 v \stackrel{(53)}{\sqcap} 2v^2$. sive signo $(-)$ $\frac{\vartheta}{1} \beta$ compendiose per novum + ex-
presso, fiet $+ \frac{\vartheta}{1} + \beta^2 v \stackrel{(54)}{\sqcap} 2v^2$. Sit $v \stackrel{(55)}{\sqcap} \gamma\beta$. fiet ex 54. haec: $+1 + \beta^2 \gamma \stackrel{(56)}{\sqcap} 2\beta^2 \gamma^2$ sive β^2
 $\stackrel{(57)}{\sqcap} \frac{+1}{2\gamma^2 - \gamma}$. Iamque nova suppositione faciendo $\gamma \stackrel{(58)}{\sqcap} +1$ fiet $\beta \stackrel{(59)}{\sqcap} ((+)) 1$. 5

Ac proinde nisi forte in nihilo minores ita incidatur, erit problemati, particulariter quidem, satisfactum tamen. Et supererunt quatuor minimum casus, ob explicaciones signorum + $((+))$ a se invicem independentes, modo ut dixi nihilo minores non obstent, et error calculi abfuerit.

Nunc secundum inventos valores literas quaesitas retrogrado ordine explicemus: erit 10
ex 55. $v \stackrel{(60)}{\sqcap} ((+)) 1$ et ex 52. erit $\vartheta \stackrel{(61)}{\sqcap} ((+)) 2$. Manentibusque e. s. n. pro arbitrio, erit ex
41. $1 \stackrel{(62)}{\sqcap} ((+)) 1$ et ex 42. $p \stackrel{(63)}{\sqcap} ((+)) n$. $r \stackrel{(64)}{\sqcap} ((+)) 1$. Sed hinc iam absurdum orietur, in
aequationibus 35, 36. aliisque fiet enim $v \cdot g \cdot \frac{1}{m} \stackrel{(65)}{\sqcap} 0$. adeoque suppositio 58. et quae ex

C-12 C-16 C-16

Ambiguous signs, 5th system. LAA VII-1, p. 619

Redeundum ergo ad aeq. 57. videndumque an non formula $+2\gamma^3 + \gamma$ aequari possit 15
quadrato, hac enim ratione absolutum erit problema. Sit ergo $2\gamma^3 - \gamma \stackrel{(66)}{\sqcap} +\gamma^2\lambda^2$. fiet: $2\gamma^3 - 1$
 $\stackrel{(66)}{\sqcap} +\gamma\lambda^2$. erit $\gamma^2 + \frac{\lambda^2}{2} \gamma + \frac{\lambda^4}{16} \stackrel{(67)}{\sqcap} \frac{\lambda^4}{16} + \frac{1}{2}$ sive $\frac{\gamma}{2} + \frac{\lambda^2}{4} \stackrel{(68)}{\sqcap} \frac{\sqrt{\lambda^4 + 8}}{4}$.

C-12 C-13 C-15 C-14

Ambiguous signs, 5th system. LAA VII-1, p. 619

sind sodann vier Fälle gemeinsam zu betrachten, und auch hier bedient sich Leibniz neuer Doppelvorzeichen, nämlich der Symbole $\ddot{\pm}$, $\dot{\pm}$, $\ddot{\mp}$ und $\dot{\mp}$. Er erläutert die neuen Symbole nicht; ihre Verwendung scheint für ihn entweder selbstverständlich oder selbsterklärend zu sein. Der Übergang zur Verwendung der neuen Symbole ist also, soweit es die zusammengesetzten Symbole anbelangt, Weihnachten 1674 offenkundig bereits vollzogen. Dass die älteren zusammengesetzten Symbole nach Dezember 1674 noch einmal eingesetzt werden, lässt sich nicht belegen.

Leibniz führt das fünfte System nicht in einer weiteren programmatischen Schrift ein. Doch liefern manche Stücke Hinweise auf seine Genese. So finden sich in dem auf Dezember 1674 datierten Stück *De descriptionibus curvarum* (N. 44) nicht nur die einfachen Doppelvorzeichen des fünften Systems, $\ddot{\pm}$ und $\dot{\pm}$, sondern mit den Symbolen $\ddot{\mp}$ und $\dot{\mp}$ auch Vorformen zusammengesetzter Zeichen. Diese unterscheiden sich von den bald darauf kanonisierten Formen des fünften Systems dadurch, dass sie jeweils zwei der Querbalken mit Hilfe einer weiteren Linie verbinden. Dieser Verbindungsstrich gliedert die Zeichen: Die durch ihn verbundenen beiden Querbalken bilden zusammen den (doppideutigen) ersten Fall, der untere Querbalken den (eindeutigen) zweiten Fall. Das Symbol $\ddot{\mp}$ bedeutet also „im ersten Unterfall des ersten Falles –, im zweiten Unterfall des ersten Falles +; im zweiten Fall +“. In seinen Exzerpten aus Mariottes *Du choc des corps* (VIII, 2 N. 50), die ebenfalls aus dem Dezember 1674 stammen dürften, kann sogar unmittelbar verfolgt werden, wie Leibniz das fünfte aus dem zweiten System ableitet. Er hält fest, die Notation müsse neu gestaltet werden, startet mit dem Zeichen $\ddot{\mp}$, er setzt es zunächst durch die Übergangsform $\ddot{\mp}$ und gelangt schließlich zur Form $\ddot{\mp}$. Die Übergangsform $\ddot{\mp}$ findet sich ausschließlich in diesem Stück und an dieser Stelle, sie spiegelt Leibniz' Erfolg wider, ein Minus durch einen halben Querbalken auszudrücken. Diese Darstellungsweise wird — gemeinsam mit der geradlinigen Anordnung der Fälle an einem senkrechten Balken — für das fünfte System charakteristisch. Im selben Stück identifiziert Leibniz auch die Symbole des vierten Systems mit jenen des fünften: ($\alpha\alpha\omega$) setzt er mit $\ddot{\mp}$ gleich, ($\omega\alpha\alpha$) mit $\ddot{\mp}$. C-16
C-17
C-04
C-01
C-08
C-01
C-18

Die Form $\ddot{\mp}$ entspricht dem später bevorzugten Symbol $\ddot{\pm}$ bis auf eine Besonderheit: Bei ihr ist der mittlere Querbalken näher an den unteren als den oberen gerückt, wogegen das Symbol $\ddot{\pm}$ gleiche Abstände der Querbalken aufweist. Doch sind die Form $\ddot{\mp}$ und analog gestaltete Zeichen, etwa Symbol $\ddot{\pm}$, nicht lediglich Ausdruck eines Übergangsstadiums, sondern Leibniz setzt sie bisweilen auch in der Praxis ein, etwa in VII, 1 N. 96 von April 1676. Tatsächlich lassen sich die beiden Symbole $\ddot{\mp}$ und $\ddot{\pm}$ zu ei unterschiedlichen

C-18

C-19 C-11

C-08 C-18

Ambiguous signs, 2nd and 5th system. LAA VII-7, introduction, p. XXXIII

$\ddot{\mp}$ $\ddot{\mp}$ $\ddot{\mp}$ $\ddot{\mp}$ $\ddot{\mp}$ $\ddot{\mp}$ $\ddot{\pm}$ $\ddot{\pm}$ $\ddot{\mp}$ $\ddot{\mp}$ $\ddot{\mp}$ $\ddot{\mp}$

B-13 C-01 C-04 C-05 C-08 C-11 C-16 C-17 C-18 C-19 C-24 C-25 C-26 C-27

(31) Ponamus jam contra directricem esse non AD , sed AE , constantem WL , quam vocabimus λ . Crementum ordinatarum EG , esse GW ; ipsam $EH \sqcap l$. primum investi-

gemus hoc modo: $2ax \mp \frac{2a}{q}x^2 \sqcap 2yl$. sive $l \sqcap \frac{ax \mp \frac{a}{q}x^2}{y} \sqcap \frac{2ax \mp \frac{a}{q}x^2 - ax}{y}$ sive $\frac{y^2 - ax}{y}$.

Jam ut x inveniatur, erit $x^2 \mp \frac{2q\phi}{\phi}x + q^2 \sqcap q^2 \mp y^2$, adeoque fiet $\mp x \mp q \sqcap \sqrt{q^2 \mp y^2}$,

et $x \sqcap \mp q \mp \sqrt{q^2 \mp y^2}$ adeoque $l \sqcap \frac{y^2 \mp qa \mp a\sqrt{q^2 \mp y^2}}{y} \sqcap EH$. Ergo GW erit

$\sqcap \frac{\lambda, \wedge y^2 \mp qa \mp a\sqrt{q^2 \mp y^2}}{y, \wedge \mp q \mp \sqrt{q^2 \mp y^2}}$; et $\frac{GB \wedge WL^2}{GW} \sqcap \frac{y \wedge \lambda^2, \wedge y, \wedge \mp q \mp \sqrt{q^2 \mp y^2}}{\lambda, \wedge y^2 \mp qa \mp a\sqrt{q^2 \mp y^2}}$, cuius seriei itidem habetur summa, ex datis omnibus $\sqrt{q^2 \mp y^2}$.

Quae theorematum vel ideo annotanda duxi, quod semel elapsa non facile rursus in mentem venirent, et non nisi per multas ambages deprehensa sint. Et haec quidem de Trianguli characteristici usu ad dimensiones curvilineorum nunc sufficientia.

5

10

Ambiguous sign C-21, 5th system. LAA VII-5, p. 191

10

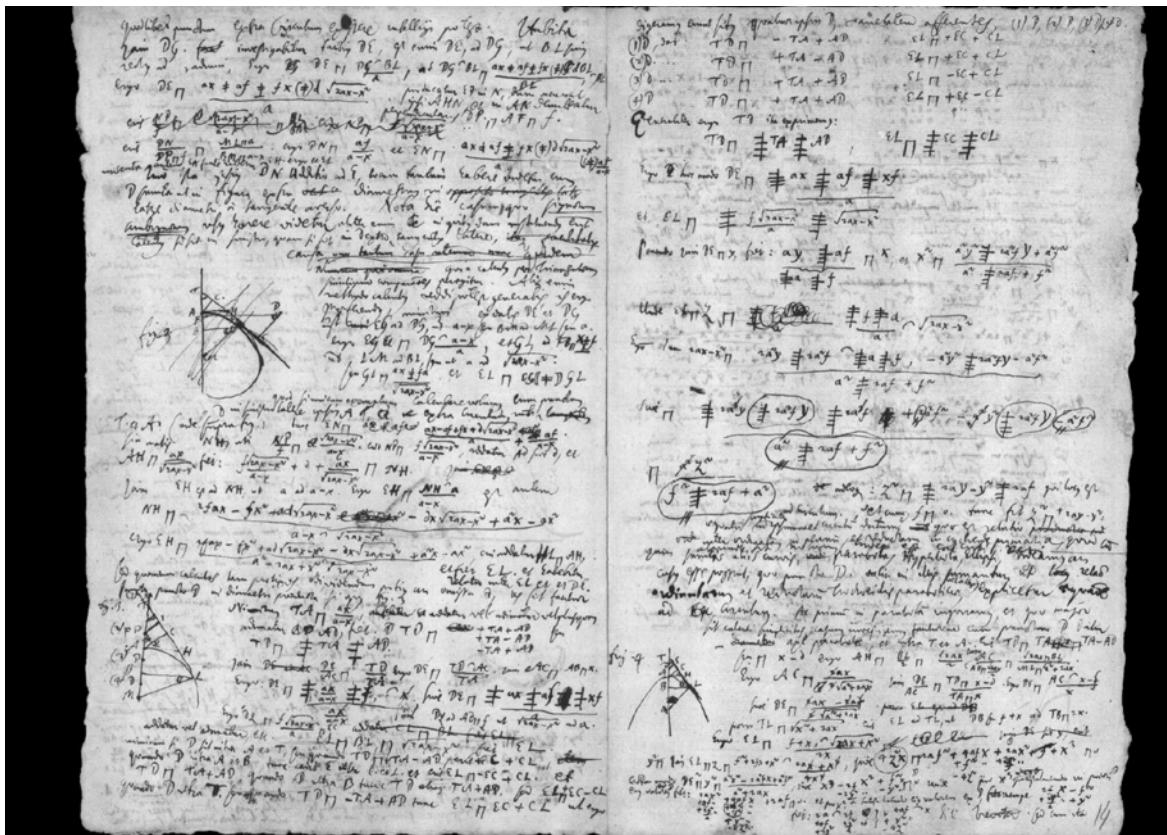
$C-25, C-24 \quad C-31 \quad C-26 \quad C-28 \quad C-24$

$(4)D \quad \dots \quad TD \sqcap +TA +AD \quad EL \sqcap +EG - CL$

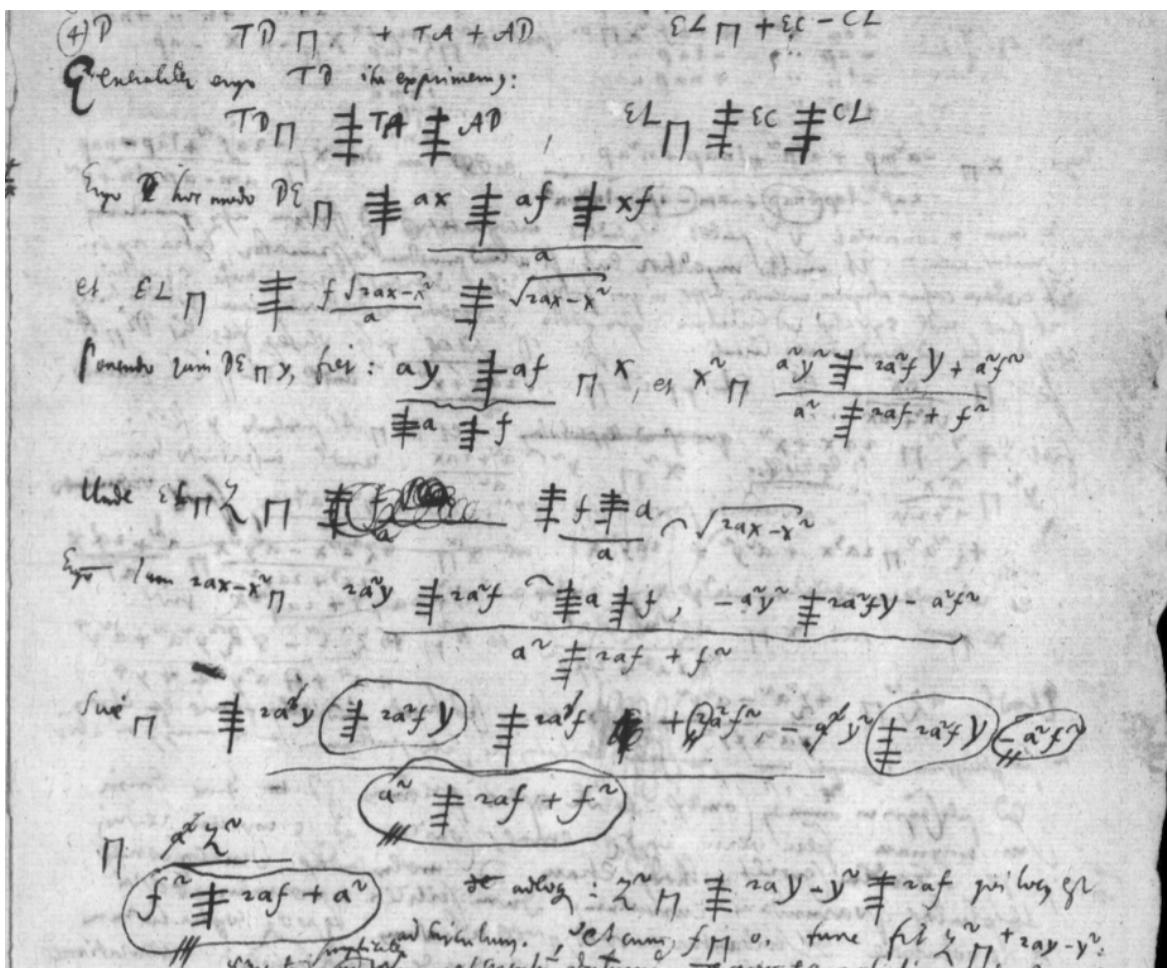
Generaliter ergo TD ita exprimemus:

$TD \sqcap \mp TA \mp AD, \quad EL \sqcap \mp EG \mp CL$.

Ergo hoc modo $DE \sqcap \frac{\mp ax \mp a f \mp xf}{a}$ et $EL \sqcap \frac{f\sqrt{2ax - x^2}}{a} \mp \sqrt{2ax - x^2}$.


Ponendo jam $DE \sqcap y$, fiet: $\frac{\mp y \mp af}{\mp a \mp f} \sqcap x$, et $x^2 \sqcap \frac{a^2y^2 \mp 2a^2fy + a^2f^2}{a^2 \mp 2af + f^2}$.

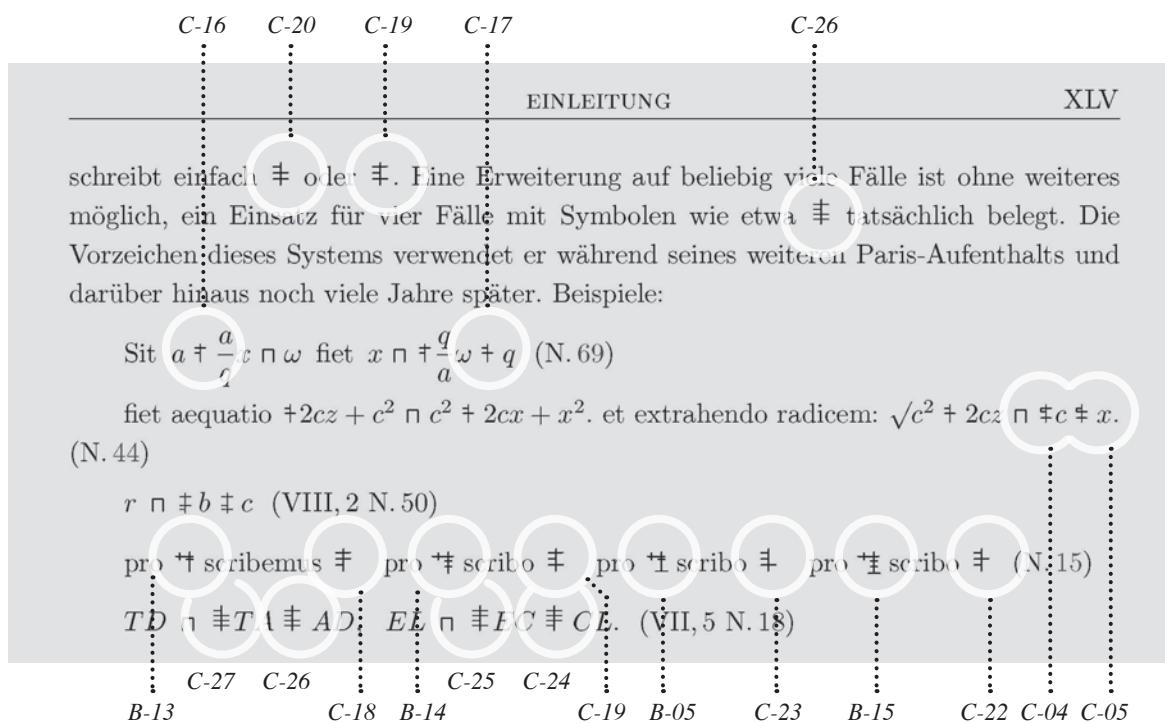
15 Unde $EL \sqcap z$ t. $\frac{\mp f \mp a}{a} \wedge \sqrt{2ax - x^2}$.


Jam $2ax - x^2 \sqcap \frac{2a^2y \mp 2a^2f \wedge \mp a \mp f, -a^2y^2 \mp 2a^2fy - a^2f^2}{a^2 \mp 2af + f^2}$ sive

$\mp 2a^2y \mp 2a^2fy \mp 2a^2f + \frac{\mp a^2f^2, -a^2y^2 \mp 2a^2fy \mp a^2f^2}{a^2 \mp 2af + f^2} \sqcap \frac{\mp a^2z^2}{f^2 \mp 2af + a^2}$.

Ambiguous signs, 5th system. LAA VII-5, p. 164
see also LH 35 V 3 f. 13v (next page)

LH 35 V 3, f. 13v

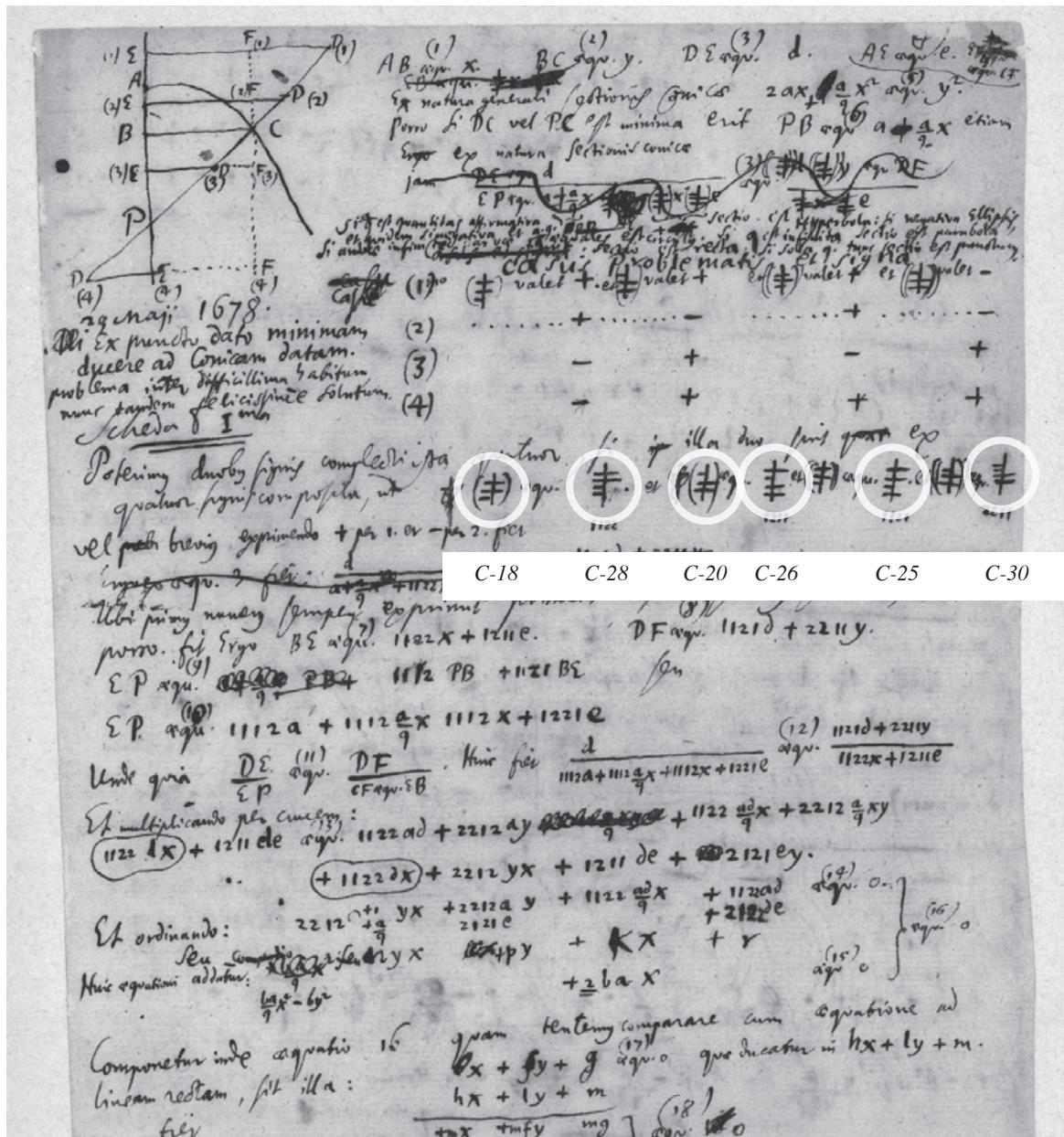


Debet ergo (t) $6m^3$ (t) $48m^2$ (t) $72m$ (t) 64 esse maior quam $\pm 8m^3 \pm 36m^2 \pm 150m \pm 238,9$ differentiae scilicet, ideo, ut sciamus signum + dandum parti maior, eorum quae signo + vel + affecta sunt.

Ad duas ergo conditiones rem reduximus scilicet, tum ut $\pm 8m^3 \pm 36m^2 \pm 150m \pm 238,9$ minor quain $(\pm) 6m^3 (\pm) 48m^2 (\pm) 72m (\pm) 64$ tum ut radix extracta sit iusto maior, sive ut novissima subtrahenda inter extrahendum sint maiora addendis.

$$\text{Cubus } a - 4m^2 + 12m - 16$$

Ambiguous signs, 5th system. LAA VII-2, p. 54


Example of ambiguous signs, 2nd and 5th system. **LAA VII-7**, introduction p. XLV

$\sqrt{az} + \frac{ab}{y} \sqcap z$. Ergo $\sqrt{az} \sqcap \frac{yz - ab}{y}$ sive $az \sqcap \frac{y^2z^2 - 2abyz + a^2b^2}{y^2}$ et fiet $y^2z^2 - y^2za - 2abyz + a^2b^2 \sqcap 0$.

Inquirendum est etiam in divisores aequationum quae sunt duarum incognitarum pluriumve.

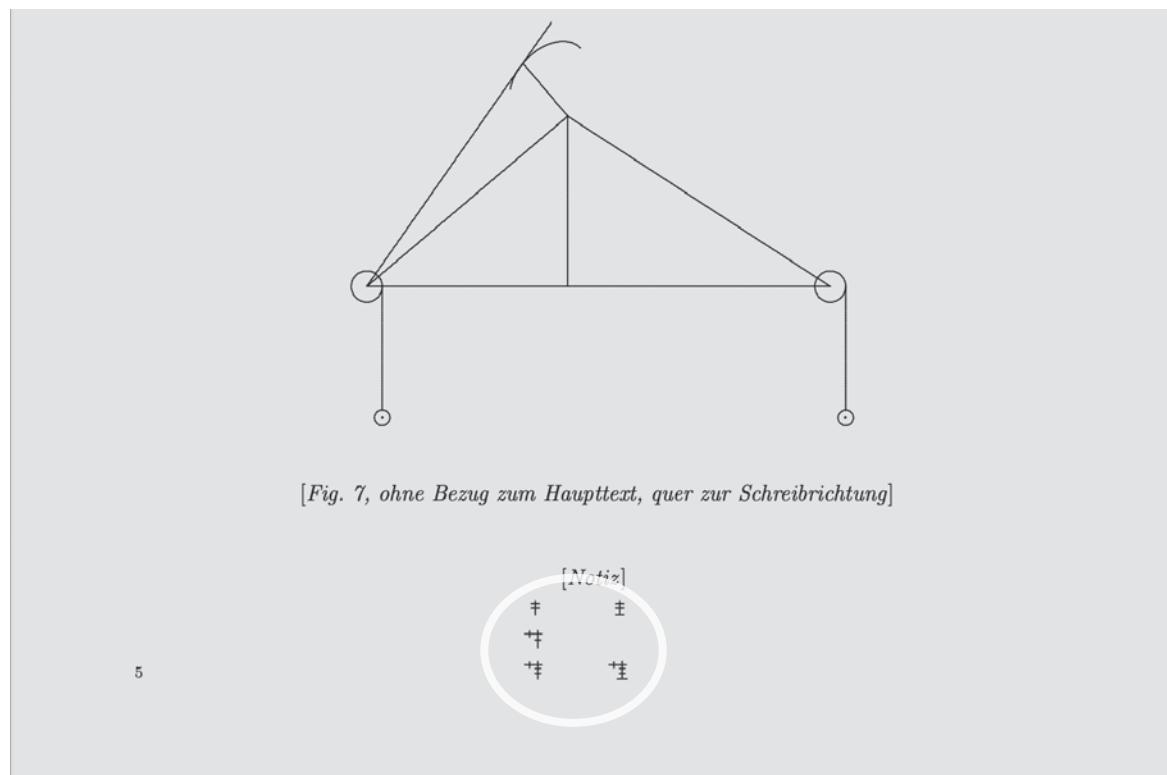
$\frac{+x + b}{a} \sqcap \frac{c}{c}$. summa scilicet aut differentia x et b . Ergo $+x^2 + bx \sqcap ac$. sive $x^2 \sqcap$
 $\pm bx + ac$. Unde jam patet hoc modo semper cum bx est affectum signo +, alterum ac
affectum signo -, nisi uno casu quo utrumque affectum signo +, ergo etiam x^2 aequatur
summae aut differentiae ipsarum $bx.ac$.

Ambiguous signs, 2nd system. *B-02, B-03, B-07*
LAA VII-5, p. 233

Ambiguous signs of the 5th system, LH 35 XII 1, 217v.

The edition of this manuscript is in preparation.

丰 丰 丰 丰 丰 丰


C-18 C-28 C-20 C-26 C-25 C-30

Ambiguous signs, 5th system.

C-04

C-18	B-01	C-19	B-13	C-19	B-13	C-01	C-08
N. 50		EXCERPTA EX LIBRO DU CHGC DES CORPS				439	
vel quia $r \sqcap \pm o \pm c$, erit $b \sqcap \pm r \pm c$, sive $b \sqcap \pm r \pm c$; sed quia relatio apparere debet, erit potius $b \sqcap \pm r \pm c$.							
Ac proinde reformanda nonnihil notatio est: nimurum pro \pm faciemus \pm vel in a \pm , vel etiam ita \pm pro $(\alpha\omega)$ et pro $(\omega\alpha)$ fiet: \pm . Quae naturalissima omnium haud dubie notatio est. Itaque ponendo: $r \sqcap \pm b \pm c$, erit $b \sqcap \pm r \pm c$ et $c \sqcap \pm r \pm b$. Sed et utile forte erit summam differentiamque distingui, c' fiet: $r \sqcap \pm b \pm c$, unde $b \sqcap \pm r \pm c$. vel $b \sqcap \pm r \pm c$ et $\sqcap \pm r \pm [b]$. Quod si velimus totam formulam signo afficere, aut <u>partium</u> , fiet, v.g. $r \sqcap (sd) b + c$, sed signum ejusmodi cum sit instar signi radicalis incapax est <u>partium</u> divulsionis: nisi aliunde ratiocineris. Nimurum perinde est ac si dicas esse $\sqrt{b^2 \pm 2bc + c^2}$, nam differentia seu $(d) b + c$ est $\sqcap [\sqrt{b^2 - 2bc + c^2}]$. Caeterum posito $r \sqcap (sd) b + c$ erit 10 $b \sqcap [(ds)]r + c$ et $c \sqcap (ds) r + b$. Sed cum haec signa ut dixi intractabilia sint, nisi quatenus in alia resolvuntur, rectius ex Analysis ablegabuntur.							
Redeamus ergo ad rem nostram, scilicet: $r \sqcap \pm b \pm c$. $b \sqcap \pm r \pm c$. $c \sqcap \pm r \pm b$. Quodsi compendii causa faciamus semper majorem celeritatem esse r , minorem semper esse c , fiet: $r \sqcap b \pm c$. adeoque $b \sqcap r \pm c$ et $c \sqcap \pm r \pm b$. 11							
C-18	C-19	C-18	C-20	C-19	C-20		

Example of ambiguous signs, 2nd and 5th system. LAA VIII-2, p. 439

B-02, B-06, B-03; **LAA VII-3**, p. 360

6. Unicode Character Properties

ID

A-01	X001;LEIBNIZIAN SYSTEM 1 AND 2 PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
A-02	X002;LEIBNIZIAN SYSTEM 1 MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
A-03	X003;LEIBNIZIAN SYSTEM 1 PLUS OR PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
A-04	X004;LEIBNIZIAN SYSTEM 1 PLUS OR MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
A-05	X005;LEIBNIZIAN SYSTEM 1 MINUS OR PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
A-06	X006;LEIBNIZIAN SYSTEM 1 MINUS OR MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
A-07	X007;LEIBNIZIAN SYSTEM 1 PLUS-MINUS TIMES PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
A-08	X008;LEIBNIZIAN SYSTEM 1 MINUS-PLUS TIMES PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-01	X009;LEIBNIZIAN SYSTEM 2 MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-02	X010;LEIBNIZIAN SYSTEM 2 PLUS OR PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-03	X011;LEIBNIZIAN SYSTEM 2 PLUS OR MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-04	X012;LEIBNIZIAN SYSTEM 2 MINUS OR MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-05	X013;LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-06	X014;LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-07	X015;LEIBNIZIAN SYSTEM 2 NEGATED MINUS OR PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-08	X016;LEIBNIZIAN SYSTEM 2 PLUS-MINUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-09	X017;LEIBNIZIAN SYSTEM 2 PLUS-MINUS OR MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-10	X018;LEIBNIZIAN SYSTEM 2 NEGATED PLUS-MINUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-11	X019;LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR MINUS-PLUS PARTIAL AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-12	X020;LEIBNIZIAN SYSTEM 2 NEGATED MINUS OR MINUS-PLUS PARTIAL AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-13	[X021] X010 FE00; variant form; # LEIBNIZIAN SYSTEM 2 PLUS OR PLUS-MINUS AMBIGUOUS SIGN
B-14	[X022] X011 FE00; variant form; # LEIBNIZIAN SYSTEM 2 PLUS OR MINUS-PLUS AMBIGUOUS SIGN
B-15	[X023] X014 FE00; variant form; # LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR MINUS-PLUS AMBIGUOUS SIGN
B-16	X024 LEIBNIZIAN SYSTEM 2 NEGATED PLUS-MINUS OR PLUS PARTIAL AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
B-17	[X025] X019 FE00; variant form 1; # LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR MINUS-PLUS PARTIAL AMBIGUOUS SIGN
B-18	[X026] X019 FE01; variant form 2; # LEIBNIZIAN SYSTEM 2 NEGATED PLUS OR MINUS-PLUS PARTIAL AMBIGUOUS SIGN
C-01	X027;LEIBNIZIAN SYSTEM 5-1 PLUS OR PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-02	X028;LEIBNIZIAN SYSTEM 5-2 PLUS-MINUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-03	X029;LEIBNIZIAN SYSTEM 5-2 MINUS-PLUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-04	X030;LEIBNIZIAN SYSTEM 5-3 PLUS-MINUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-05	X031;LEIBNIZIAN SYSTEM 5-3 MINUS-PLUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-06	X032;LEIBNIZIAN SYSTEM 5-4 PLUS OR MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-07	X033;LEIBNIZIAN SYSTEM 5-4 MINUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-08	X034;LEIBNIZIAN SYSTEM 5-4 PLUS OR PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-09	X035;LEIBNIZIAN SYSTEM 5-4 PLUS OR MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-10	X036;LEIBNIZIAN SYSTEM 5-4 PLUS-MINUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-11	X037;LEIBNIZIAN SYSTEM 5-4 MINUS-PLUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-12	X038;LEIBNIZIAN SYSTEM 5-5 INVERTED MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-13	X039;LEIBNIZIAN SYSTEM 5-5 INVERTED PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-14	X040;LEIBNIZIAN SYSTEM 5-5 INVERTED PLUS OR PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-15	X041;LEIBNIZIAN SYSTEM 5-5 INVERTED PLUS-MINUS OR PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-16	X042;LEIBNIZIAN SYSTEM 5 PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-17	X043;LEIBNIZIAN SYSTEM 5 MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-18	X044;LEIBNIZIAN SYSTEM 5 PLUS-PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-19	X045;LEIBNIZIAN SYSTEM 5 PLUS-MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-20	X046;LEIBNIZIAN SYSTEM 5 MINUS-PLUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-21	X047;LEIBNIZIAN SYSTEM 5 PLUS-MINUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-22	X048;LEIBNIZIAN SYSTEM 5 MINUS-PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-23	X049;LEIBNIZIAN SYSTEM 5 MINUS-MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-24	X050;LEIBNIZIAN SYSTEM 5 PLUS-PLUS-PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-25	X051;LEIBNIZIAN SYSTEM 5 PLUS-PLUS-MINUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-26	X052;LEIBNIZIAN SYSTEM 5 PLUS-MINUS-PLUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-27	X053;LEIBNIZIAN SYSTEM 5 MINUS-PLUS-PLUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-28	X054;LEIBNIZIAN SYSTEM 5 PLUS-PLUS-MINUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-29	X055;LEIBNIZIAN SYSTEM 5 MINUS-PLUS-PLUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-30	X056;LEIBNIZIAN SYSTEM 5 MINUS-MINUS-PLUS-PLUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;
C-31	X057;LEIBNIZIAN SYSTEM 5 MINUS-PLUS-MINUS-MINUS AMBIGUOUS SIGN;Sm;0;ON;;;;;N;;;;;

7. Bibliography

LAA – refers to: Leibniz, Gottfried Wilhelm: Sämtliche Schriften und Briefe. ('Leibniz-Akademie-Ausgabe', many volumes)

LH – refers to: Leibniz's original manuscripts, GWLB Hanover

Bombelli, Rafael: L'Algebra. Bologna 1579

— : L'Algebra. Milan 1966

Cajori, Florian: A history of mathematical notations. Chicago 1928

Couturat, Louis: Histoire de la langue universelle. Paris 1903

Leibniz-Forschungsstelle Hannover der Akademie der Wissenschaften zu Göttingen: PHILIUMM. Transkriptionen und Vorausditionen mathematischer Schriften für die Leibniz-Akademie-Ausgabe. Version 1. Hannover 2022

Probst, Siegmund: Édition des symboles de Leibniz. PDF, Hanover 2023 (L-2412)

Trunk, Achim: Sechs Systeme: Leibniz und seine signa ambigua. In: Wenchao Li (ed.): Für unser Glück oder das Glück anderer, Vorträge des X. Internationalen Leibniz-Kongresses. Hildesheim 2016–2017, vol. 4

Wallis, John: De sectionibus conicis nova methodo expositis tractatus. Oxford 1655

— : Operum mathematicorum, Oxford 1657

— : Treatise of Algebra. London 1685

ISO/IEC JTC 1/SC 2/WG 2
PROPOSAL SUMMARY FORM TO ACCOMPANY SUBMISSIONS
FOR ADDITIONS TO THE REPERTOIRE OF ISO/IEC 10646¹

Please fill all the sections A, B and C below.

Please read Principles and Procedures Document (P & P) from <http://std.dkuug.dk/JTC1/SC2/WG2/docs/principles.html> for guidelines and details before filling this form.

Please ensure you are using the latest Form from <http://std.dkuug.dk/JTC1/SC2/WG2/docs/summaryform.html>.
See also <http://std.dkuug.dk/JTC1/SC2/WG2/docs/roadmaps.html> for latest Roadmaps.

A. Administrative

1. Title:	Proposal to encode Leibnizian ambiguous signs	
2. Requester's name:	Uwe Mayer, Siegmund Probst, David Rabouin, Elisabeth Rinner, Andreas Stötzner, Achim Trunk, Charlotte Wahl	
3. Requester type (Member body/Liaison/Individual contribution):	Individual (work group)	
4. Submission date:	2025-11-24.	
5. Requester's reference (if applicable):	LUCP L-2529	
6. Choose one of the following:	This is a complete proposal: <input checked="" type="checkbox"/> Yes (or) More information will be provided later: <input type="checkbox"/> Yes	

B. Technical – General

1. Choose one of the following:	a. This proposal is for a new script (set of characters): <input type="checkbox"/> No Proposed name of script: <input type="text"/>	
	b. The proposal is for addition of character(s) to an existing block: <input type="checkbox"/> No Name of the existing block: <input type="text"/>	
2. Number of characters in proposal:	57	
3. Proposed category (select one from below - see section 2.2 of P&P document):	A-Contemporary <input type="checkbox"/> B.1-Specialized (small collection) <input checked="" type="checkbox"/> Yes <input type="checkbox"/> B.2-Specialized (large collection) C-Major extinct <input type="checkbox"/> D-Attested extinct <input type="checkbox"/> E-Minor extinct F-Archaic Hieroglyphic or Ideographic <input type="checkbox"/> G-Obscure or questionable usage symbols <input type="checkbox"/>	
4. Is a repertoire including character names provided?	<input type="checkbox"/> Yes	
	a. If YES, are the names in accordance with the “character naming guidelines” in Annex L of P&P document? <input checked="" type="checkbox"/> Yes b. Are the character shapes attached in a legible form suitable for review? <input checked="" type="checkbox"/> Yes	
5. Fonts related:	a. Who will provide the appropriate computerized font to the Project Editor of 10646 for publishing the standard? <input type="text"/> b. Identify the party granting a license for use of the font by the editors (include address, e-mail, ftp-site, etc.): <input type="text"/> Andreas Stötzner Gestaltung, Klaufügelweg 21, 88400 Biberach/R., Germany, as@signographie.de	
6. References:	a. Are references (to other character sets, dictionaries, descriptive texts etc.) provided? <input type="checkbox"/> Yes b. Are published examples of use (such as samples from newspapers, magazines, or other sources) of proposed characters attached? <input type="checkbox"/> Yes	
7. Special encoding issues:	Does the proposal address other aspects of character data processing (if applicable) such as input, presentation, sorting, searching, indexing, transliteration etc. (if yes please enclose information)? <input type="checkbox"/> No	

8. Additional Information:

Submitters are invited to provide any additional information about Properties of the proposed Character(s) or Script that will assist in correct understanding of and correct linguistic processing of the proposed character(s) or script. Examples of such properties are: Casing information, Numeric information, Currency information, Display behaviour information such as line breaks, widths etc., Combining behaviour, Spacing behaviour, Directional behaviour, Default Collation behaviour, relevance in Mark Up contexts, Compatibility equivalence and other Unicode normalization related information. See the Unicode standard at <http://www.unicode.org> for such information on other scripts. Also see Unicode Character Database (<http://www.unicode.org/reports/tr44/>) and associated Unicode Technical Reports for information needed for consideration by the Unicode Technical Committee for inclusion in the Unicode Standard.

¹ Form number: N4502-F (Original 1994-10-14; Revised 1995-01, 1995-04, 1996-04, 1996-08, 1999-03, 2001-05, 2001-09, 2003-11, 2005-01, 2005-09, 2005-10, 2007-03, 2008-05, 2009-11, 2011-03, 2012-01)

C. Technical - Justification

1. Has this proposal for addition of character(s) been submitted before?	Yes
If YES explain <i>N5329 (L-2526); N5329; previous as a part of N5277 / L-2402n</i>	
2. Has contact been made to members of the user community (for example: National Body, user groups of the script or characters, other experts, etc.)?	Yes
If YES, with whom? Leibniz-Archiv, Forschungsstelle der Leibniz-Edition, Niedersächsische Landesbibliothek (GWLB), Hanover, Göttingen Academy of Science and Humanities in Lower Saxony (DE), Philiumm research group of CNRS (UMR 7219, laboratoire SPHERE) / Université de Paris VII; general: scholars, researchers, authors and editors working in the field of science history and upon editions of historic text corpora (e.g. of G. W. Leibniz, but also many others)	
If YES, available relevant documents: L-2409, L-2410	
3. Information on the user community for the proposed characters (for example: size, demographics, information technology use, or publishing use) is included?	Yes
Reference:	
4. The context of use for the proposed characters (type of use; common or rare)	Common
Reference: mainly specialist usage, scholarly, worldwide	
5. Are the proposed characters in current use by the user community?	Yes
If YES, where? Reference: mainly Europe, Americas; other countries	
6. After giving due considerations to the principles in the P&P document must the proposed characters be entirely in the BMP?	No
If YES, is a rationale provided?	
If YES, reference:	
7. Should the proposed characters be kept together in a contiguous range (rather than being scattered)?	Yes
8. Can any of the proposed characters be considered a presentation form of an existing character or character sequence?	No
If YES, is a rationale for its inclusion provided?	
If YES, reference:	
9. Can any of the proposed characters be encoded using a composed character sequence of either existing characters or other proposed characters?	Yes
If YES, is a rationale for its inclusion provided?	
If YES, reference: <i>5 variation sequences; see introduction and p. 25</i>	
10. Can any of the proposed character(s) be considered to be similar (in appearance or function) to, or could be confused with, an existing character?	No
If YES, is a rationale for its inclusion provided?	
If YES, reference:	
11. Does the proposal include use of combining characters and/or use of composite sequences?	No
If YES, is a rationale for such use provided?	
If YES, reference:	
Is a list of composite sequences and their corresponding glyph images (graphic symbols) provided?	
If YES, reference:	
12. Does the proposal contain characters with any special properties such as control function or similar semantics?	No
If YES, describe in detail (include attachment if necessary)	
13. Does the proposal contain any Ideographic compatibility characters?	No
If YES, are the equivalent corresponding unified ideographic characters identified?	
If YES, reference:	