

Universal Multiple-Octet Coded Character Set
International Organization for Standardization
Internationale Standardisierungs-Organisation
Organisation Internationale de Normalisation
Διεθνής Οργανισμός Τυποποίησης
Международная организация по стандартизации

Doc Type: Working Group Document

Title: **Proposal to encode 6 letterlike symbols**

Source: Uwe Mayer, Siegmund Probst, David Rabouin, Elisabeth Rinner, Andreas Stötzner,
Achim Trunk, Charlotte Wahl

Version: 2nd version

Status: forward to Script Encoding Working Group / WG2

Action: for expert review and Unicode 18.0 pipeline

Date: November 25, 2025

Requester's reference: LUCP L-2535

1. Background

This proposal is part of the research program upon historical mathematical sources, conducted by the CNRS Philiumm project (headed by Prof. David Rabouin, University of Paris) and supported by researchers from the Landesbibliothek Hanover (Germany). The aim of this project work is to achieve a standardized encoding for special mathematical characters in historic texts, which is required for accurate facsimile editions of those sources.

For more background information about the Philiumm project and the related research work, please visit the [Philiumm website](#) or see doc. no. [N5277](#).

2. Letterlike symbols in historic sources

Mainly letters of the Latin and Greek alphabets have been transformed in many ways in order to get distinguishable symbols for specific purposes. A usual method of abbreviating frequently occurring words was by attaching some sort of extra marking to a base letter; this can be a stroke or slash, a loop or other details. Monetary symbols fall into the category of peculiar shaped abbreviation letters, which became standard for a particular connotation (e.g. £ for *libra/pound*, @ for *at*, R for *Recipe*).

A central question for the characters proposed here is, whether to encode them

- a) as **letters** or
- b) as **symbols**.

We will explain for each case, why we think a) or b) would be appropriate. By their origin, some of the proposed characters are derived from Latin letters, some are derived from Greek letters. One case is of a Greek-Latin hybrid nature.

Revision remark: There are two changes made: a) the ₔ character has been identified as an abbreviation ligature (or monogram) and was given a new glyph and name; b) the Greek capital Υ has been dropped from this version.

3. Characters

If this proposal gets accepted, the following characters will exist:

\mathfrak{O} ALPHA X SYMBOL

\mathfrak{F} FUNCTIO DIFFERENTIATA SYMBOL

\mathbb{X} DOUBLE X SYMBOL

\mathfrak{S} DOUBLE SMALL SIGMA SYMBOL

\mathfrak{o} GREEK SMALL LETTER OMICRON UPSILON

For one character we propose a variation sequence:

\mathfrak{q} LOWERCASE KURRENT X – *variation sequence to U+1D4CD*

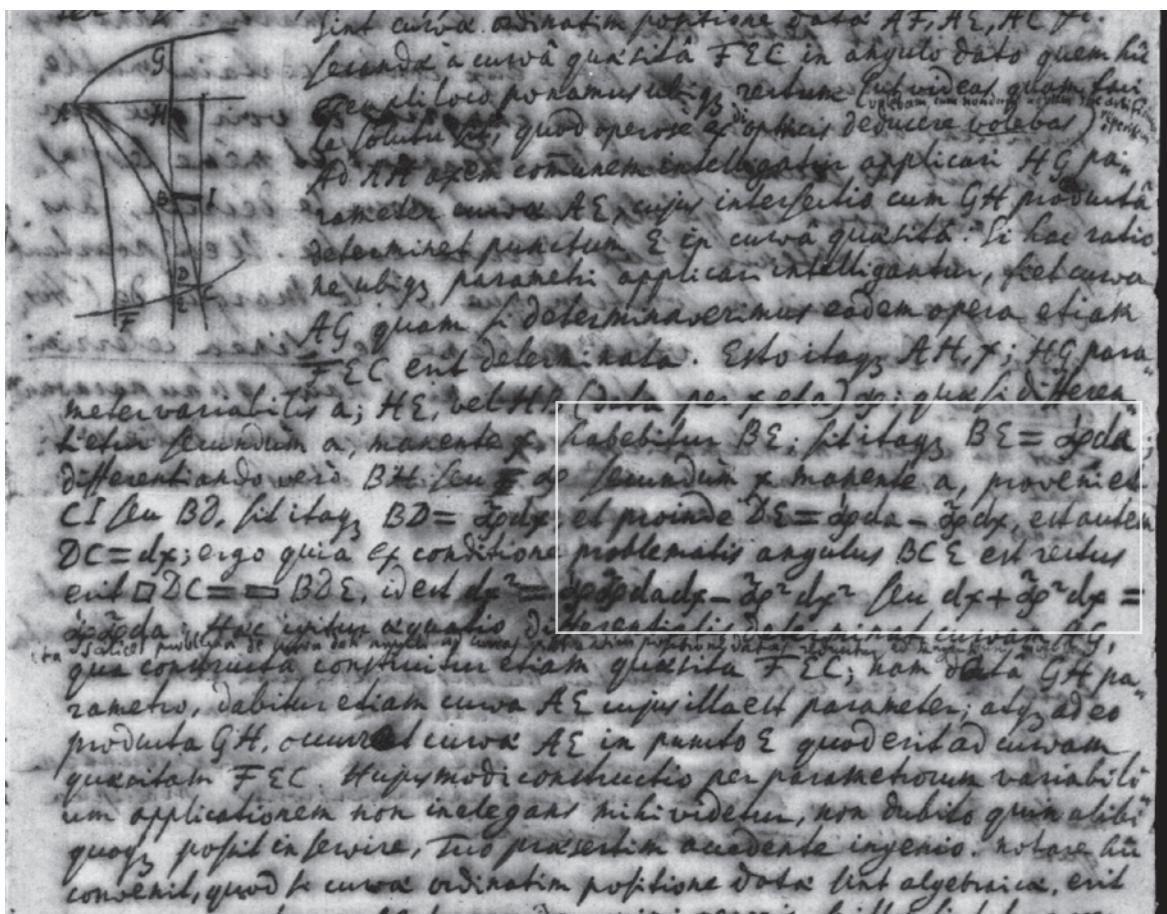
Leibniz-Akademie-Ausgabe (LAA, general edition of Leibniz's writings)

online

LAA series VII (mathematical manuscripts, volumes 3 to 7 available online)

4. Figures and explanations

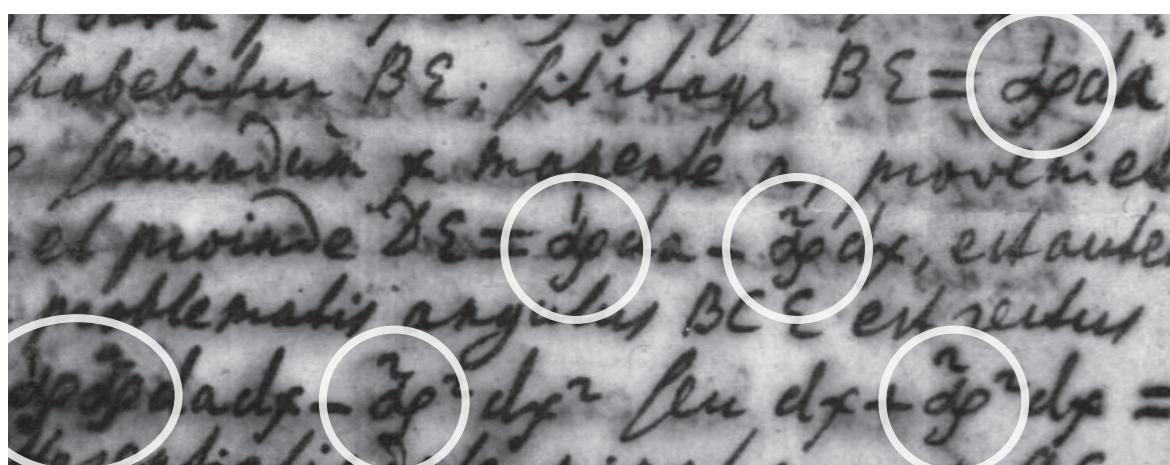
illarum portionum, quod sic facio: Quoniam VC seu α datur per a , ejus differentialis dabitur per da ; sit itaque $VC - V(C)$ seu $d\alpha = \alpha da$,²⁵ (per α , α , α etc. intelligo quantitates²⁶ diversimode datas per a). Sit jam VB , x ; ergo pars²⁷ curvae ${}_1C_2C$ dabitur per dx affectam quantitate composita ex x et a (hujusmodi quantitates datas per x et a quaecunque 5 hic occurtere possunt, vocabo²⁸ α , α , α , α etc.) sit itaque ${}_1C_2C = \alpha dx$; jam si differentietur ${}_1C_2C$ secundum a , manente x , habebitur ${}_1C_2C - {}_1F_2F$ seu $d\alpha dx = \alpha dx da$,²⁹ hoc si iterum summetur sed secundum x manente a , erit $VC - VF = da \int \alpha dx =$ (quia $\int \alpha dx$ datur per a et x) αda ; quoniam vero supra inventum est $\alpha da = VC - V(C) = VC - VF - {}_1F(C) = \alpha da - F(C)$, habebitur $F(C) = \alpha da - \alpha da$. Tandem quia BC 10 datur per x et a , si secundum a differentietur manente x , proveniet FC data per da , esto ergo $FC = \alpha da$. Unde si ducatur R^{θ} parallela ipsi $F(C)$ id est tangent³⁰ curvae datae VF , et si fiat $CB \cdot B^{\theta} :: FC \cdot F(C) :: \alpha da - \alpha da \cdot \alpha da :: \alpha - \alpha \cdot \alpha$,²⁹ tangent³¹ ducta C^{θ} curvam $C(C)(C)$ in puncto C . Si nunc regula generalis inventa ad certum exemplum 15 esset applicanda dispiciendum tantum esset quid sit α , α , et α , primum enim et ultimum semper dabuntur per a et x promiscue, medium vero per a tantum; dari per a et x , vel per a , comprehendo etiam quando transcenderet vel ut Tu vocas quadratorie dantur: hoc enim processum regulae generalis non impedit.


α ALPHAX SYMBOL

The author Johann (I) Bernoulli (1667–1748) uses α for ‘a quantity depending on a ’. In analogy, he merges α and x into one new symbol to denote a ‘quantity depending on the variables a and x ’ (in modern terminology ‘a function in a and x ’). **LAA III-7** p. 558

curva ${}_1C_2C$ dabitur per dx affecta quantitate composita ex x et a (hujusmodi quantitates datas per x et a quaecunque hic occurtere possunt vocabo α , α , α , α etc.) sit itaque ${}_1C_2C = \alpha dx$; differentietur ${}_1C_2C$ secundum a , manente x , habebitur ${}_1C_2C - {}_1F_2F$ seu $d\alpha dx = \alpha dx da$, hoc si iterum summetur sed secundum x manente a , erit $VC - VF = da \int \alpha dx =$ (quia $\int \alpha dx$ datur per a et x) αda ; quoniam vero supra inventum est $\alpha da = VC - V(C) = VC - VF - {}_1F(C) = \alpha da - F(C)$, habebitur $F(C) = \alpha da - \alpha da$. Tandem quia BC datum per x et a , si differentietur manente x , proveniet FC data per da , esto ergo $FC = \alpha da$. Unde R^{θ} parallela ipsi $F(C)$ id est tangent³⁰ curvata VF , et $CB \cdot B^{\theta} :: FC \cdot F(C) :: \alpha da - \alpha da \cdot \alpha da :: \alpha - \alpha \cdot \alpha$, tangent³¹ ducta C^{θ} curvam $C(C)(C)$ in puncto C . Si nunc regula generalis inventa ad certum exemplum esset applicanda dispiciendum tantum esset quid sit α , α , et α , primum enim et ultimum semper dabuntur per a et x promiscue, medium vero per a tantum; dari per a et x , vel per a , comprehendo etiam quando transcenderet vel ut Tu vocas quadratorie dantur: hoc enim processum regulae generalis non impedit.

α ALPHAX SYMBOL


Handwriting of Johann Bernoulli, in a letter to G. W. Leibniz, 1697. The corresponding part of text to the image above. **GWLB, LBr. 57,1** 211v

op ALPHA X SYMBOL

Handwriting of Johann Bernoulli, in a letter to G. W. Leibniz, 1697.

GWLB, LBr. 57,1 212r

differat ab RO particula infinite parva IO , censemur tamen in speculatione curvarum non solum ut ipsi aequalis sed prorsus tanquam eadem; quamdiu enim curvae particula infinite parva FO consideratur ut lineola recta, tunc singulae applicatae inter PF et RO cum legem mutationis curvaturaे nondum subeant haberi possunt pro una eademque applicata, quasi nempe singulae ipsi PF absolute essent aequales: eodem modo quia $\omega\varphi$ considero ut rectam lineolam singulae applicatae inter $\rho\omega$ et $\pi\varphi$ utpote legem mutationis curvaturaे pariter non subeuntes possunt pro se invicem sumi adeoque eaedem poni cum $\pi\varphi$; si igitur, inquam, loco RO sumatur aequipollens PF et loco $\rho\omega$ aequipollens $\pi\varphi$, habebitur $FO \times \mathcal{D}PF = \varphi\omega \times \mathcal{D}\pi\varphi$ adeoque $\mathcal{D}PF$ ad $\mathcal{D}\pi\varphi$ ut $\varphi\omega$ (φO) ad FO ut sin. $OF\varphi$ ad sin. $O\varphi F$ et permutando $\mathcal{D}PF$ ad sin. $OF\varphi$ ut $\mathcal{D}\pi\varphi$ ad sin. $O\varphi F$. Hinc cum $F\varphi$ sit subtensa arcus curvae infinite parvi $FO\varphi$, adeoque angulus $OF\varphi$ et $O\varphi F$ haberi possit pro semisse anguli curvedinis in F et φ , erit $\mathcal{D}PF$ ad sinum curvedinis in F ut $\mathcal{D}\pi\varphi$ ad sinum curvedinis in φ ; hoc est in ratione constanti. Problema itaque ad pure analyticum redactum huc reddit: Ut quaeratur curva $BF\varphi$ ejus naturae ut sinus curvedinis in singulis punctis F sit ad functionem differentiatam (neglecta differentiali) suae respective applicatae PF , in ratione constante. Hoc

¶ FUNCTIO DIFFERENTIATA SYMBOL

Another special symbol invented by Johann Bernoulli: a monogram built of capital F and D is used here to denote the *Functio Differentiata*. – **LAA III-7** p. 817

videris sic: Esto (Fig. III.) DF curva qualibet, cuius elementum
 quod pro constanti apparet $Fl = dt$, $BP = y$, $PF = x$, $Pp = dy$, $Ct = dx$,
 concipiatur Fm tangens in $F = Fl$, adeoque Fm angulus curvedinis,
 cuius sinus lm : fit porro $ml = dx$, et $nl = dy$. Quia itaque (ob trian-
 gula limitia) $lC \cdot Fl :: nl \cdot ml$, reprehenditur $ml = \frac{dt \cdot dy}{dx}$, cum vero
 ex natura curva requiri a ml a \mathcal{D}^2P se habeat in ratione con-
 stante, facit in $\frac{dt \cdot dy}{dx}$. $\mathcal{D}^2P :: dl :: dy$ quod hanc suppeditatem sequi-
 tur cum $ady = \mathcal{D}^2P \cdot dt$, jam autem $\mathcal{D}^2P \cdot dx$ utpote ipsissima functionis
 differentiatam hancem functionem dicitur \mathcal{D}^2P quia $\mathcal{D}^2P = Gt$,
 sit ergo $h \cdot Gt = X$ sumposita ex et datis quoniam solutio; sumis
 ita dy integrabilis aequationis modo invertita, prope a dy $ady = X \pm$
 C vel \mathcal{D}^2P homogeneis per constantem dt , $ady = Xdt \pm Cdt$,
 (N. per C intelligo qualitatem constantem et arbitrio cum qua integ-
 rale cuiusvis differentialis augeare vel diminuere possit) sumto quo,
 bis quadrato $ady^2 = dt^2 \cdot X^2 + C^2 = dx^2 + dy^2 \cdot X^2 + C^2$, et reduta
 aequatione habebitur tanquam $dy = \frac{dx \pm \sqrt{dx^2 + C^2}}{\sqrt{X^2 - dx^2}}$; ut vero sum-
 matur dx et C^2 inveniatur

¶ FUNCTIO DIFFERENTIATA SYMBOL

From a letter by Johann Bernoulli to G. W. Leibniz; **LBr. 57,1** fol. 242r

Prob. II.

Si deum positis si (Fig. I.) PZ jam sit ut function data ipsius aruis BF ,
quoniam determinatio curva BFN .

Solutio

Si deum vestigis inveniendo res facile expedietur: Erit enim longitudo lineae,
quibus $ZLY =$ triangulo ZXY seu $2CinLM = 3DinApu$; iam vero $2M$
($LR - MR$) est differentia functionum duorum aruum BFO et BT ; ut
et $Apu(\lambda_p - \mu_p)$ differentia functionum duorum aruum BFw et BFQ .
Atque haec functionum differentia eodem modo reperiatur ut supra dictum
multiplicando sive in differentiacione impliciter functionem neglectam
differentiacione per differentiam duorum aruum BFO BT tempe per TX ;
ad eam vero $2CinLM = 3DinApu$ scribendum est $F1 in DBFO in TX =$
 $gK in DBFw in \theta \xi$. Quoniam tunc per naturam eius, OX et $\omega \xi$
functio inter se aequales et proxime TX ad $\theta \xi$ ut tangens ang. IFO ad
tang. Kg_w est vers item $F1$ ad gK ut FO ad gws sin. $FO1$ ad gws sin.
 $gwsK$; ergo si loco $F1$, gK et TX , $\theta \xi$ sumantur eorum proportionalia
sunt FO sin. $FO1$ in tang. $1F1 in DBFO = gws$ sin. $gwsK$ in tang. Kg_w
in DBF ; sed quoniam ut constat ex natura functione, tang. et secant.
sunt FO sin. $1FO =$ rectangle inter lineam secant et sin. $1FO$; ita
etiam sin. $gwsK$ in tang. $Kg_w =$ sin. $colin.$ sin. Kg_w ; erit ergo FO in
sin. $1F1 in DBFO = gws$ sin. Kg_w in $DBFw$; seu si loco BFO sumantur
equipollens $1F$, et loco BFw aequipollens BFQ , habebit FO in sin.
 $1FO$ in $DBF = gws$ sin. Kg_w in $DBFQ$; adeoque sin. $1F1 in DBF$ ad sin. gws
 $1FO$ in DBF ut gws (FO) ad FO ut sin. OFQ ad sin. OF , et permutando
sin. $1FO$ in DBF ad sin. OFQ ut sin. OF ad sin. OFQ in ratio
re constante. Problema itaque jam analyticum factum est reddit ut quae
ratio curva BFQ hanc habens proportionalem ut linea curvilinearis in
quovis puncto F sit ad sin. $1FO$ in DBF in ratione constante: Hor
ut solvatur positis ut prius (Fig. III.) $BP = y$, $PF = f$, $BF = t$, $Pp = dy$
 $Cl = dx$, $Ft = dt$; function data aruis $BF = v$, erit $vt = \frac{dt dy}{dx}$
accum itaque secundum proprietatem curvae modo inveniatur $\frac{dt dy}{dx}$: dx
 $\ln Dv \left(\frac{dv}{dt} \right) = dt$: a unde hoc aequatio $\frac{adt dy}{dx} = dv$ seu $\frac{adt dy}{dt - dy} = dv$
integrabis $\int \frac{adt dy}{dt - dy} = v$ seu quia a et dt sunt constantes potest
simplificari ponit $v = \int \frac{dy}{dt - dy}$: quia itaque aequatio determinat naturam
curvae quae sit.

Scholium

¶ FUNCTIO DIFFERENTIATA SYMBOL

From the same letter by Johann Bernoulli to G. W. Leibniz; LBr. 57,1 fol. 242v

Et ut compendio consulamus licebit \mathbb{D} ita enuntiare: $\frac{\frac{l}{a}y^2 + \lambda y + \pi a}{y^2 + \varrho y + \omega a} \frac{\mathbb{D}}{\mathbb{D}}$. Tantum ergo notemus; \mathbb{E} pendere ex e . ϱ ex r . ω ex r et s . λ ex l et n . et π ex $l.n.p.$ Igitur $\frac{\mathbb{D}\mathbb{D}}{\mathbb{D}\mathbb{D}}$ faciet:

$$\begin{aligned} \mathbb{D} \left\{ \begin{array}{l} pay^2 \\ + \varrho n \dots + \varrho \pi a y \\ + \omega l \dots + \omega a n \dots + \omega a^2 p \end{array} \right\} &\sqcap \mathbb{D}\mathbb{D} \\ \mathbb{D} \left\{ \begin{array}{l} \pi a \dots \\ + r \lambda \dots + r \pi a \dots \\ + s l \dots + s a \lambda \dots + s a^2 \pi \end{array} \right\} &\sqcap \mathbb{D}\mathbb{D} \end{aligned}$$

Sed iam ex numeratore $\mathbb{D}\mathbb{D}$ intelligo conferendo cum calculo superiore, nullum hic a compendio seu brachylogia haberi lucrum, nisi forte in nominatore, cum hic per brachylogiam tantum novem habeantur quantitates, partes formulae, supra vero 14. Itaque retento superiore numeratore, quia nullum a comprehensione seu brachylogia lucrum, nominatorem novum adhibeamus, multiplicando: $y^2 + ry + sa$, per $y^2 \varrho y + \omega a$. Sed ne in lapsum proclives simus describendo ob affinitatem r et ϱ , et s et ω , satius ergo pro ϱ adhibere φ et pro ω adhibere, γ . et $y^2 + ry + sa$, multiplicata per $y^2 + \varphi y + \gamma a$, dabit:

$\sigma\sigma$ DOUBLE SMALL SIGMA SYMBOL

Leibniz used this symbol for a quantity in the same way as he used Roman letters or other Greek letters, such as gamma, epsilon, lambda, pi, phi or omega; as shown in this example.

LAA VII-3 p. 643

The shape of this character evolves when two small Sigmas – $\sigma\sigma$ – are written as a ligature in one movement: $\sigma\sigma$. Alternative name options for DOUBLE SMALL SIGMA SYMBOL are:

SMALL SIGMA SIGMA SYMBOL (char. property: Sm),

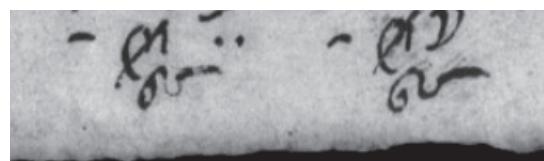
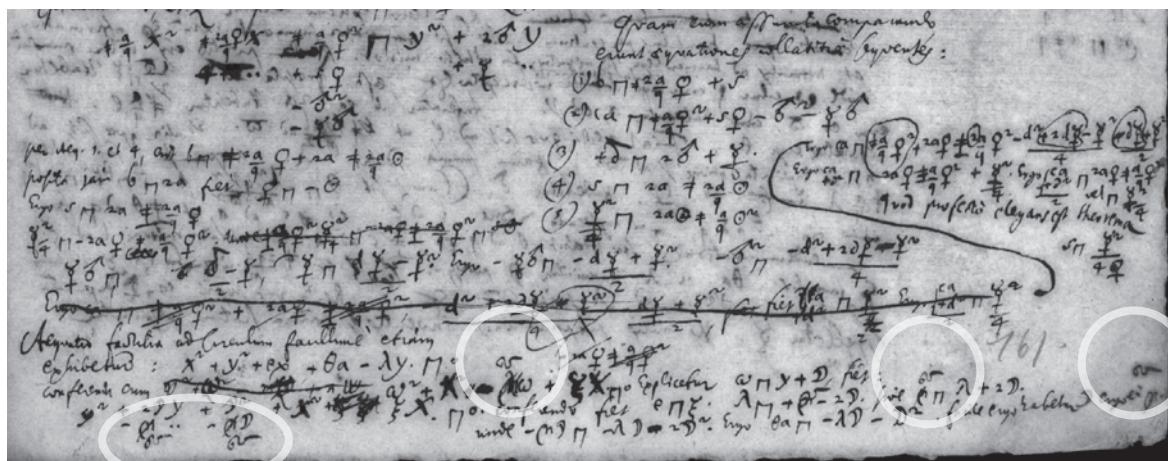
GREEK SMALL LIGATURE SIGMA SIGMA (char. property: Ll).

$$\begin{aligned} a \sqcap \frac{2y}{1} & \quad \sigma\sigma \sqcap \frac{2y}{a} \\ a \sqcap \frac{2y}{1} - \frac{2y^3}{3} & \quad \sigma\sigma \sqcap \frac{2y - 2y^3}{a} \\ \frac{2y^3}{3} \sqcap \frac{2y}{1} - a \text{ ex } 3 & \\ \text{arc } \sqcap \frac{2y}{1} & \quad \sigma\sigma \sqcap \frac{2y}{1 + y^2} \quad y^2 \sqcap \frac{a^2}{4} \quad \sigma\sigma \sqcap \frac{8y}{4 + a^2} \\ \text{arc } \sqcap 2y - \frac{2y^3}{3} & \quad \sigma\sigma \sqcap \frac{4a}{4 + a^2} \\ \text{Si tangens } y, \text{ arcus } a, \text{ erit} & \quad a \sqcap \frac{y}{1} - \frac{y^3}{3} + \frac{y^5}{5} - \frac{y^7}{7} \text{ etc.} \\ \text{et duplus arcus erit} & \quad 2a \sqcap \frac{2y}{1} - \frac{2y^3}{3} + \frac{2y^5}{5} - \frac{2y^7}{7} \text{ etc.} \end{aligned}$$

$\sigma\sigma$ DOUBLE SMALL SIGMA SYMBOL – **LAA VII-6** p. 376

$-\sigma^2 \sqcap \frac{-d^2 + 2d\varphi - \varphi^2}{4}$. Ergo $ca \sqcap \frac{a}{q} \varphi^2 + 2a\varphi \pm \frac{\sqrt{2}a}{q} \varphi^2 \frac{-d^2(+2d\varphi) - \varphi^2}{4} \frac{(-d\varphi) + \varphi^2}{2}$.

Ergo $\frac{ca}{d^2} \sqcap 2a\varphi \pm \frac{a}{q} \varphi^2 + \frac{\varphi^2}{4}$. Ergo $\frac{\{+d^2}{2} \sqcap 2a\varphi \pm \frac{a}{q} \varphi^2$ vel $\sqcap \frac{\varphi^2}{4}$. Quod profecto elegans est theorema. $s \sqcap \frac{\varphi^2}{4\varphi}$.



Aequatio factitia ad Circulum facillime etiam exhibetur: $x^2 + y^2 + ex + \theta a - \lambda y \sqcap 0$.
5 conferenda cum $\omega^2 + x^2 - \omega\omega + \xi x \sqcap 0$. Explicetur $\omega \sqcap y + \mathbb{D}$, fiet:

$$\begin{aligned} y^2 + 2\mathbb{D}y + \mathbb{D}^2 + x^2 + \xi x \sqcap 0. \\ -\omega \dots -\omega \mathbb{D} \end{aligned}$$

Conferendo fiet $e \sqcap \xi$. $\lambda \sqcap \omega - 2\mathbb{D}$. sive $\omega \sqcap \lambda + 2\mathbb{D}$. Unde $-\omega \mathbb{D} \sqcap -\lambda \mathbb{D} - 2\mathbb{D}^2$. Ergo $\theta a \sqcap -\lambda \mathbb{D} - \mathbb{D}^2$. Facile ergo habetur \mathbb{D} ergo et ω .

σ DOUBLE SMALL SIGMA SYMBOL – LAA VII-7 p. 414

The following figure shows the manuscript source of that text (LH 35 XIII 3, fol. 161r):

$$\begin{aligned} \frac{a}{1} - \frac{a^3}{1, 2, 3} + \frac{a^5}{1, 2, 3, 4, 5} - \frac{a^7}{1, 2, 3, 4, 5, 6, 7} \\ \frac{a^2}{1, 2} - \frac{a^4}{1, 2, 3, 4} + \frac{a^6}{1, 2, 3, 4, 5, 6} - \frac{a^8}{1, 2, 3, 4, 5, 6, 7, 8} \end{aligned}$$

14 Darunter: $\int \overline{d\mathbb{a}v} \sqcap \text{segm.} \sqcap \omega$. $\int \overline{ad\omega} \sqcap \int \overline{ad\mathbb{a}v}$. $d\mathbb{a}v \sqcap d\omega$. Ergo vel $v \sqcap \frac{d\omega}{d\mathbb{a}}$

vel $a \sqcap \int \frac{\overline{d\omega}}{v}$. $\int \overline{d\mathbb{a}v} \sqcap \omega$.

σ DOUBLE SMALL SIGMA SYMBOL

LAA VII-6 p. 401

σ DOUBLE SMALL SIGMA SYMBOL

LH 35 I 17, fol. 14r

primitiv C 77 C 70 11 2.
Quod D 65 R 65. angulus unius f.
in venus alterius est quod est glissa
et angulus duplex manet. non pro
to dicunt huius videlicet excepto notis
regula R 65. ab eo regula huius
est regula R 65. cum in unius primitiv
tempor anguli R 65 est rectitudine
D 65 quo dicit regulus est 65 et 65 R
continuata. quod ita ob hinditum
extremus prodens in venus regula
et primitiv in ipsa regula 65 perpetua
regula R 65. R 65. quod vel f.
t. numeri, c. regula est 65. ne
f. B

[Leibniz]

r	y	z	ω	γ		$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$
p	a	b	c	d	e			
q	g	h	i	k	l			
s	m	n	s	t				
t	v	w	x					
v								
w								

[Fig. 1]

[Tschirnhaus]

$$\begin{array}{ccccc} \frac{1}{1} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{3}{2} \bigg| \frac{11}{6} & \bigg| \frac{50}{24} & & & \end{array} \quad \begin{array}{cccc} \frac{1}{2} & \frac{1}{6} & \frac{1}{12} & \frac{1}{20} \\ \frac{2}{3} & \frac{3}{4} & \frac{4}{5} & \frac{5}{6} \end{array}$$

8 GREEK SMALL LETTER OMICRON UPSILON, LAA VII-3 p. 810

The context of the scheme beginning with $y z \omega \gamma$ (in the 1st line) shows evidence for this character being a Greek letter taken as a mathematical symbol, which must not get confused with other, similar looking characters.

328 DE CONSTRUCTIONE AEQUATIONUM SOLIDARUM, September – Oktober 1674 N. 31

autem ψr loco c^2 , quia nihil necesse est assurgere ad quadratum. Ergo valor ipsius ψr

$$\text{est } \frac{\frac{r}{t} \frac{\omega^2 r^4}{g^2} + \frac{\delta q}{r} \omega r^2 + 4b^2 g^2 + \frac{2\gamma q b}{r} g^2 - r^3 p}{\underbrace{+ rm + \frac{l^2}{r} + \frac{r}{t} g^2 - 4bg - \frac{\gamma q}{r} g}_{\gamma r}}. \text{ Sunt ergo lineae ducendae,}$$

$$EI \cap \frac{\gamma r^2}{g^2} - 2b, \text{ vel } \frac{\beta r}{g} + \frac{r}{t} g - 2b \cap \frac{\gamma q}{r} \quad g \cap \frac{-\frac{\beta r l}{2} + r^2 n - \lambda \frac{r^3}{t}}{\frac{rl}{2t}} \\ EP \cap \frac{\gamma r^3 + r^3 n + \delta q g^2}{+rg^2} \cap h \quad \psi r \cap \frac{\frac{h^2 r}{t} + \frac{dqhg^2}{r} + 4b^2 g^2 + \frac{2\gamma q b}{r} g^2 - r^3 p}{\gamma r - 4bg - \frac{\gamma q}{r} g}$$

$$5 \quad PK \cap \frac{\psi r}{g} + b$$

$\lambda.$ et $b.$ sunt quantitates arbitrariae.

$$K\sigma \cap \frac{2\psi r + \beta r}{2g} + \frac{g}{2}$$

$$\beta r \cap rm + \frac{l^2}{4}$$

$$\sigma^4 \cap \frac{-\beta rl - g^2 l + 2r^2 n}{2g^2}$$

$$\gamma r[g] \cap \beta rg + \frac{r}{t} g^3$$

Habemus ergo regulam generalem construendi problema solidum datum, ope sectionis

8 GREEK SMALL LETTER OMICRON UPSILON – LAA VII-7 p. 328

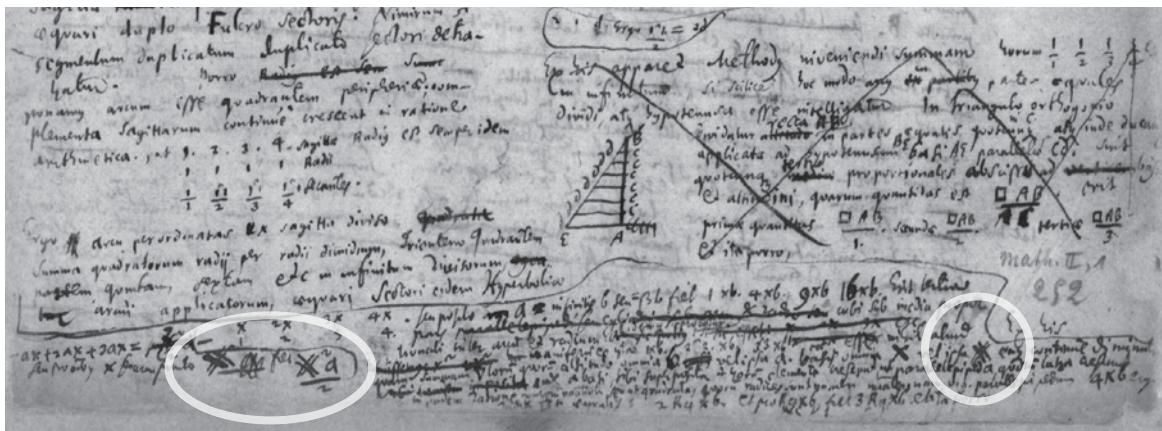
Leibniz used that symbol, which is derived from a Greek minuscule ligature $\omega\gamma$, for denoting a variable, alongside with e.g. β or ω and latin lowercase letters.

8 GREEK SMALL LETTER OMEGA, LEIBNIZ'S HANDWRITING, LH 35 I 17, FOL. 5R

quadratum. Envo valde ipsis Ψ_r est $\frac{f^2 \omega^n r^4}{g^2} \neq \frac{5g \omega r^n + 4b}{r}$

ergo linea succenda

$\Pi \frac{3r^2 - 2b}{g^2} \text{ vel } \frac{3r}{g} + \frac{2}{r} g - 2b \Pi \frac{1}{r}$


$\Pi \frac{8r^3 + r^3 n + 5g \omega r^n}{r} h$

$\Pi \frac{1}{r} + t g^n$

$\Pi \frac{\Psi_r}{g} + b$

$\delta \Pi \frac{2\Psi_r + 3r + g}{rg}$

$\Psi_r \Pi \frac{h^2}{r^2} \neq \frac{5g \omega r^n + 4b}{r}$

XX DOUBLE X SYMBOL – LH 35 II 1, fol. 252r

In contrast to the simple symbol x Leibniz needed another symbol to denote “pro omnibus x ” (“for all x ”), meaning “the sum of x ’s”.

In our first proposal (L-2402n) we presented the glyph XX for it, but we have reviewed this character in the manuscript source and decided to revise the glyph so that it better represents the original. In that earlier stage the shape XX , which looks like a letter ligature, led to the idea whether a case pairing lowercase/capital would make sense here. After thorough consideration we came to the conclusion that \mathbb{X} is the much preferred reference glyph. It is *not* a ligature in the usual typographic sense but a more complex composition built of two X ’s. Therefore case pairing would not make any sense at all. \mathbb{X} does never occur with any phonetic value, it exists only in a math context and has no reference to casing behaviour. (If someone would come up one day with a proposal for a language-related xx/XX ligature, that would be another matter.)

1xb. 2 \wedge 2xb. 3 \wedge 3xb. esse nihil aliud quam summam ∇ lorum quorum altitudo omnia b. vel ipsa a. basis omnia x . vel ipsa \mathbb{X} eaque continue diminuta. Inde a basi, sibi superposita horum elementa crescunt ut parallelepipeda, quorum latera crescunt in eadem ratione numerorum naturalium seu ut quadrata, quorum radices sunt numeri naturales: nam v. g. parallelepipedum 4xb. ergo radix \square^{ta} aequalis: 2Rqxb. et pro Rq, 9, xb, fiet 3 Rq xb. et ita porro.

This unsuitable typographic solution in the LAA edition has been disregarded.

LAA VII-4 p. 274

incognitae vel indeterminatae, nec altera in alterius locum substitui potest, cum aequatio illa, quae relationem ipsius x ad y exprimat, quaeratur.

5
$$\frac{x^2}{2} - \frac{a}{2} = \frac{ax^2}{4}$$
 quae si applicata ad ipsam unitatem constructionis intelligantur, fiet

$$\frac{x^2}{2} - \frac{a}{2} = \frac{ax^2}{4}$$
 momentum trianguli $CBNZC$ ex CZ . Momentum vero rectanguli $CLNZ$,
fiet $\frac{x^2y}{2}$. posita φ maxima = CL . a qua si auferatur momentum figurae ipsius $CLNBC$
restabit utique momentum trilinei quod supra. Momentum autem figurae habebitur,

$$\frac{CL^2y}{4} - \frac{aCL^2}{4}$$
 ductis $NL = y$, in x , fiet $x^2y - \frac{aCL^2}{4}$ summa omnium xy .

At figuram talem invenire difficillimum haud dubie problema est, non minus quam
10 propositum, quodque etiam pendet ex hyperbolae quadratura. Et memorabilia sunt e-
iusmodi problemata, quoniam iis similia nunquam hactenus proposita sunt.

Sed si y per suum valorem exprimamus, vereor ne aequatio fiat eiusdem cum eodem,
tentandum tamen[:]

15
$$y = \frac{y-a}{2} + \text{differentia inter } \frac{xy}{2} \text{ et } \frac{xy-y}{2} \text{ per } x \text{ seu } \frac{yx - ax + x^2y - x^2y + xy}{2}$$
. Ergo

$$\frac{a\varphi^2}{4} - x^2y = \text{summa omnium } \underbrace{yx - ax + x^2y - x^2y + xy}_{2xy - ax}.$$

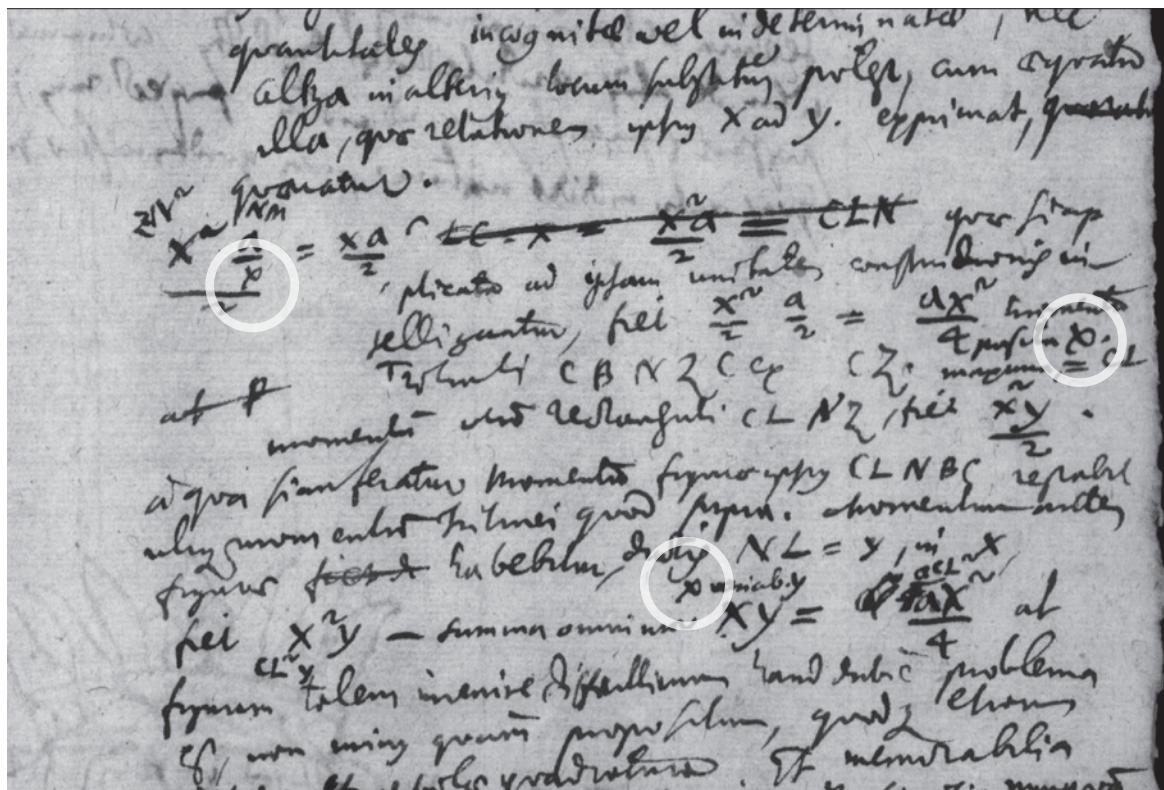
Atque ita habemus problemata quae in quadraturis fundantur, seu quae magnitudine
quorundam spatiorum locum determinant, uti communia magnitudine rectarum.

Differentiae in abscissas ductae, conflant spatium ut $NZCBN$. Id ergo spatium hoc
loco aequatur a in CL ducto, cum rectangulum QMB (quia QN et QM non differunt)

3 $ZN^2 NM$ erg. L 6 posita φ maxima = CL . erg. L 8 $CL^2 y$; φ variab. y ; $a CL^2$ erg. L

4 φ ist die laufende Variable mit der oberen Grenze x . 14f. Ergo: bei konsequenterem Rechnen
müssten die Vorzeichen auf der linken Seite vertauscht werden. φ und ψ bezeichnen hier die oberen
Grenzen.

φ (LOWERCASE KURRENT X)


This page shows a deliberate distinction between the normal Latin x and a German kurrent-style φ . In this case, the kurrent φ is used in the context of analyzing properties of curves. In a modern correspondence, it could be described as a variable on which the curve depends and which is limited by a given x . – **LAA VII-4** p. 824

We propose to encode this character as:

1D4CD FE00; kurrent style; # MATHEMATICAL SCRIPT SMALL X

– analogous to the character we proposed in the Cossic proposal (L-2518):

1D4CF FE00; kurrent style; # MATHEMATICAL SCRIPT SMALL Z

ꝝ (LOWERCASE KURRENT X)

The corresponding text part, which shows a clear distinction between x and ꝝ.

Ms. LH 35 XIII 3, fol. 251r.

5. Unicode Character Properties

```

xh01;ALPHA X SYMBOL;Sm;0;ON;;;;;N;;;;;
xh02;FUNCTIO DIFFERENTIATA SYMBOL;Sm;0;ON;;;;;N;;;;;
xh03;DOUBLE X SYMBOL;Sm;0;ON;;;;;N;;;;;
xh04;DOUBLE SMALL SIGMA SYMBOL;Sm;0;ON;;;;;N;;;;;
xh05;GREEK SMALL LETTER OMICRON UPSILON;Ll;0;L;;;;;N;;;0378;;0378

1D4CD FE00; kurrent style; # MATHEMATICAL SCRIPT SMALL X

```

6. Bibliography

LAA – refers to: Leibniz, Gottfried Wilhelm: Sämtliche Schriften und Briefe. ('Leibniz-Akademie-Ausgabe', many volumes)

LH – refers to: Leibniz's original manuscripts, GWLB Hanover

Cajori, Florian: A history of mathematical notations. Chicago 1928

Probst, Siegmund: Édition des symboles de Leibniz. PDF. Hanover 2023 (presentation Paris 2023)

Rinner, Elisabeth: List of glyphs in Leib.mf. PDF. Hanover 2022

ISO/IEC JTC 1/SC 2/WG 2
PROPOSAL SUMMARY FORM TO ACCOMPANY SUBMISSIONS
FOR ADDITIONS TO THE REPERTOIRE OF ISO/IEC 10646¹

Please fill all the sections A, B and C below.

Please read Principles and Procedures Document (P & P) from <http://std.dkuug.dk/JTC1/SC2/WG2/docs/principles.html> for guidelines and details before filling this form.

Please ensure you are using the latest Form from <http://std.dkuug.dk/JTC1/SC2/WG2/docs/summaryform.html>.
See also <http://std.dkuug.dk/JTC1/SC2/WG2/docs/roadmaps.html> for latest Roadmaps.

A. Administrative

1. Title:	Proposal to encode 7 letterlike symbols	
2. Requester's name:	Uwe Mayer, Siegmund Probst, David Rabouin, Elisabeth Rinner, Andreas Stötzner, Achim Trunk, Charlotte Wahl	
3. Requester type (Member body/Liaison/Individual contribution):	Individual (work group)	
4. Submission date:	2025-11-25	
5. Requester's reference (if applicable):	LUCP L-2535	
6. Choose one of the following:	This is a complete proposal: <input checked="" type="checkbox"/> Yes (or) More information will be provided later: <input type="checkbox"/> Yes	

B. Technical – General

1. Choose one of the following:	a. This proposal is for a new script (set of characters): <input type="checkbox"/> No Proposed name of script: <input type="text"/>	
	b. The proposal is for addition of character(s) to an existing block: <input checked="" type="checkbox"/> Yes Name of the existing block: <input type="text" value="not yet specified"/>	
2. Number of characters in proposal:	6	
3. Proposed category (select one from below - see section 2.2 of P&P document):	A-Contemporary <input type="checkbox"/> B.1-Specialized (small collection) <input checked="" type="checkbox"/> Yes B.2-Specialized (large collection) <input type="checkbox"/> C-Major extinct <input type="checkbox"/> D-Attested extinct <input type="checkbox"/> E-Minor extinct <input type="checkbox"/> F-Archaic Hieroglyphic or Ideographic <input type="checkbox"/> G-Obscure or questionable usage symbols <input type="checkbox"/>	
4. Is a repertoire including character names provided?	a. If YES, are the names in accordance with the “character naming guidelines” in Annex L of P&P document? <input checked="" type="checkbox"/> Yes b. Are the character shapes attached in a legible form suitable for review? <input checked="" type="checkbox"/> Yes	
5. Fonts related:	a. Who will provide the appropriate computerized font to the Project Editor of 10646 for publishing the standard? <input type="text" value="Andreas Stötzner"/> b. Identify the party granting a license for use of the font by the editors (include address, e-mail, ftp-site, etc.): <input type="text" value="Andreas Stötzner Gestaltung, Klaufügelweg 21, 88400 Biberach/R., Germany, as@signographie.de"/>	
6. References:	a. Are references (to other character sets, dictionaries, descriptive texts etc.) provided? <input checked="" type="checkbox"/> Yes b. Are published examples of use (such as samples from newspapers, magazines, or other sources) of proposed characters attached? <input checked="" type="checkbox"/> Yes	
7. Special encoding issues:	Does the proposal address other aspects of character data processing (if applicable) such as input, presentation, sorting, searching, indexing, transliteration etc. (if yes please enclose information)? <input type="checkbox"/> No	

8. Additional Information:

Submitters are invited to provide any additional information about Properties of the proposed Character(s) or Script that will assist in correct understanding of and correct linguistic processing of the proposed character(s) or script. Examples of such properties are: Casing information, Numeric information, Currency information, Display behaviour information such as line breaks, widths etc., Combining behaviour, Spacing behaviour, Directional behaviour, Default Collation behaviour, relevance in Mark Up contexts, Compatibility equivalence and other Unicode normalization related information. See the Unicode standard at <http://www.unicode.org> for such information on other scripts. Also see Unicode Character Database (<http://www.unicode.org/reports/tr44/>) and associated Unicode Technical Reports for information needed for consideration by the Unicode Technical Committee for inclusion in the Unicode Standard.

¹ Form number: N4502-F (Original 1994-10-14; Revised 1995-01, 1995-04, 1996-04, 1996-08, 1999-03, 2001-05, 2001-09, 2003-11, 2005-01, 2005-09, 2005-10, 2007-03, 2008-05, 2009-11, 2011-03, 2012-01)

C. Technical - Justification

1. Has this proposal for addition of character(s) been submitted before? If YES explain	<i>see N5335 (L-2520); N5277 (L-2402n)</i>	Yes
2. Has contact been made to members of the user community (for example: National Body, user groups of the script or characters, other experts, etc.)? If YES, with whom?	Leibniz-Archiv, Forschungsstelle der Leibniz-Edition, Niedersächsische Landesbibliothek (GWLB), Hanover, Göttingen Academy of Science and Humanities in Lower Saxony (DE), Philiumm research group of CNRS (UMR 7219, laboratoire SPHERE) / Université de Paris VII; general: scholars, researchers, authors and editors working in the field of science history and upon editions of historic text corpora (e.g. of G. W. Leibniz, but also many others)	
3. Information on the user community for the proposed characters (for example: size, demographics, information technology use, or publishing use) is included? Reference:	Yes	
4. The context of use for the proposed characters (type of use; common or rare) Reference:	Common	
5. Are the proposed characters in current use by the user community? If YES, where? Reference:	Yes	
6. After giving due considerations to the principles in the P&P document must the proposed characters be entirely in the BMP?	No	
7. Should the proposed characters be kept together in a contiguous range (rather than being scattered)?	No	
8. Can any of the proposed characters be considered a presentation form of an existing character or character sequence? If YES, is a rationale provided? If YES, reference:	No	
9. Can any of the proposed characters be encoded using a composed character sequence of either existing characters or other proposed characters? If YES, is a rationale for its inclusion provided? If YES, reference:	No	
10. Can any of the proposed character(s) be considered to be similar (in appearance or function) to, or could be confused with, an existing character? If YES, is a rationale for its inclusion provided? If YES, reference:	No	
11. Does the proposal include use of combining characters and/or use of composite sequences? If YES, is a rationale for such use provided? If YES, reference: Is a list of composite sequences and their corresponding glyph images (graphic symbols) provided?	No	
12. Does the proposal contain characters with any special properties such as control function or similar semantics? If YES, describe in detail (include attachment if necessary)	No	
13. Does the proposal contain any Ideographic compatibility characters? If YES, are the equivalent corresponding unified ideographic characters identified? If YES, reference:	No	